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Abstract: The gravity models are commonly used spatial interaction models. They have
been widely applied in a large set of domains dealing with interactions amongst spatial
entities. The spread of vector-borne diseases is also related to the intensity of interaction
between spatial entities, namely, the physical habitat of pathogens’ vectors and/or hosts,
and urban areas, thus humans. This study implements the concept behind gravity models
in the spatial spread of two vector-borne diseases, nephropathia epidemica and Lyme
borreliosis, based on current knowledge on the transmission mechanism of these diseases.
Two sources of information on vegetated systems were tested: the CORINE land cover map
and MODIS NDVI. The size of vegetated areas near urban centers and a local indicator of
occupation-related exposure were found significant predictors of disease risk. Both the land
cover map and the space-borne dataset were suited yet not equivalent input sources to locate
and measure vegetated areas of importance for disease spread. The overall results point at the
compatibility of the gravity model concept and the spatial spread of vector-borne diseases.
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1. Introduction

The observed spatio-temporal patterns of vector-borne diseases (VBD) are the response to a wide
variety of factors, notably those affecting the ecology of vectors, hosts and pathogens, impacting their
demography and the species balance of ecosystems and shaping human exposure to pathogens.

The spatial nature of VBD risk factors has encouraged the use and development of spatial analysis
tools to deepen the understanding of the underlying mechanisms of disease spread, to elaborate
prevention and/or action plans and to detect changes in spatial spread of disease. The latter aspect is one
of special relevance as climate change may induce expansion and/or translocation of disease epidemic
foci. In this respect, both, vector/host habitats and human settlements can be conceived as spatial entities
interacting with one another in the context of a given landscape configuration. Hence, spatial notions
of common use in landscape ecology like distance, contiguity, cover fraction, etc. are applicable in
disease modelling when the focus is laid on ecosystems hosting disease vectors and their relation to
human settlements.

Therefore, modelling the spatial spread of VBD where the involved organisms have a well-defined
habitat should be supported by existing techniques of spatial interaction analysis. This study presents the
implementation of a spatial interaction model that aims at relating VBD risk to the location of vector/host
habitat with respect to urban areas. The chosen modelling framework is the gravity model (GM) which,
despite being the most widely used spatial interaction model [1], has not been tested in modelling VBD.

The implementation of the GM was made on the spatial spread of nephropathia epidemica (NE)
and Lyme borreliosis (LB) in Belgium. Both diseases have gained much attention in recent years as
abnormally high incidences have been reported in Belgium and other European countries [2,3]. The
causal agent of NE is the Puumala virus (PUUV) hosted by the bank vole Myodes glareolus. LB is
caused by the bacterium Borrelia burgdorferi, transmitted to humans during blood meals of the tick
Ixodes ricinus.

Based on current knowledge on NE and LB transmission mechanisms, this study aims at testing the
suitability of the GM concept in modelling the spatial spread of these vector-borne diseases. The study
responds to the growing need of innovating methods and datasets in VDB surveillance in a period of
marked alterations in the usual pattern of VBD [4].

2. NE and LB in Belgium

LB and NE are zoonotic diseases resulting from two different but related transmission mechanisms.
The bacterium Borrelia burgdorferi is the causal agent of LB and Puumala virus (PUUV) causes NE, a
mild form of haemorrhagic fever with renal syndrome. The pathways of both pathogens converge in the
vegetative system that hosts their reservoirs.
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The specific vector of PUUV in Western Europe, the bank vole (Myodes glareolus), is a native
rodent species in temperate forests. B. burgdorferi is transmitted to humans by means of bites by
ticks of the genus Ixodes. Besides its prominent role in the transmission of PUUV, the bank vole is
known to be an important reservoir in the transmission chain of B. burgdorferi, especially during the
ticks’ larval and nymphal stadia. Other vertebrates like rodents, deer, hedgehogs and birds as well as
vegetation characteristics are part of a complex system that influences the interaction between infected
ticks and humans.

Belgium is a Western European country with temperate climate, a warm summer and no dry
season [5]. Many vegetated areas in the country provide the environmental conditions to be the habitat
of vector and host organisms for PUUV hantavirus and B. burgdorferi. The vegetated areas as well as
the country’s population density [6] are heterogeneously distributed throughout the country.

Public awareness and scientific interest concerning LB and NE have risen in recent years as
consequence of a notable increase in the number of reported pathological cases and the higher frequency
of observed outbreaks [2,7–9]. Figure 1, based on reports by the Belgian Scientific Institute of Public
Health (IPH) [9], illustrates that the NE and LB reported cases manifest remarkable differences across
the temporal dimension and that important outbreaks are observable for both diseases. It will be shown
further on that the reported cases are not randomly distributed. While the incidence of NE is larger in
the southern part of the country, the number of LB cases is much larger in northern Belgium.

Figure 1. Annual number of cases of NE and LB for the period 2000–2010 in Belgium.
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3. Methods

3.1. The Gravity Model

GM is the most widely used formulation of spatial interaction analysis [1] and is applied in an
extensive range of study fields. The denomination of the GM is owed to its resemblance to Newton’s
law of universal gravitation. In its generic form, the GM states that the attraction force aij between
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two entities i and j is directly proportional to their masses, mi and mj and inversely proportional to the
squared distance separating them, dij , as presented in Equation 1 [10].

aij = mimjd
−2
ij (1)

Mathematically, the GM concept is associated to the concept of entropy maximization as it results
from searching the most probable configuration of interaction flows between spatial entities [10,11].

Analogies to this concept have been proposed for applications in domains like trade modelling,
transportation networks, migration flows, biodiversity monitoring [12], plant diseases [13], etc. Several
applications are related to human health issues like access to primary health services [14], exposure
to pollutants [15] and, in epidemiology, the spread of diseases like measles [16], influenza [17,18],
cholera [19] or Hodgkin’s lymphoma [20].

The implementation we tested in this study aimed at modelling the disease risk at municipal level,
expressed as number of cases per 10,000 inhabitants. The hypothesis behind this implementation is that
disease risk is primarily driven by the intensity of interaction between humans and vegetated systems
functioning as habitats for NE and LB vectors and hosts. The choice of a spatial interaction model for this
analysis, and GM in particular, results from conceiving urban areas and vegetated areas as spatial entities;
thereby, acknowledging the importance of the location of these entities with respect to one another.

The formulation of the GM tested in this study is presented in Equation 2.

R = θ
V αP βF γ

d2V U
(2)

where R is the estimation of disease risk in number of cases per 10,000 inhabitants; V is the sum of the
surface covered by the vegetated systems in the surroundings of urban areas (U ); P is an estimation of
population in U and F is the fraction of registered companies exerting economic activities implying
elevated exposure to the pathogens under study; dV U is the average distance separating U and the
surrounding vegetated areas; and θ, α, β and γ are the model parameters. The variable selection and their
implementation in a GM framework rely on current knowledge on NE and LB transmission mechanisms.
Some elements are presented hereafter:

1. Several studies have shown the importance of the location of residential areas with respect to
forests as risk factor [21–28]. The distance separating urban settlements and forests is also a
determinant of the flow of visitors to green areas for recreational purposes [29].

2. The surface covered by vegetative systems is also an important determinant of the magnitude
of disease risk and incidence [30]. Besides the ecological effects related to the size and degree
of fragmentation of ecosystems, these attributes of vegetated areas affect the kind and intensity
of interaction humans have with them. For instance, the size of vegetated areas is an important
determinant of the attraction value of green areas [31].

3. Accounting for human activities and their relation to disease risk is a complex matter [32] and no
single model element is able to represent this complexity. Nonetheless, it is known that certain
occupational groups are highly exposed to tick-bites and/or rodent-borne pathogens. Case-control
studies report that foresters, hunters, farmers, amongst other professions, present specially high
disease risk as consequence of intensive interaction with the habitat of vector organisms [33–36].
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The connection between occupation and disease risk supports the consideration of the variable F
in the model as proxy of the exposure to NE and LB pathogens linked to professional activities,
as it represents the share of activities like forester, hunter or ranger in the economic structure of
the municipality.

The estimation of the gravity model parameters was conducted on the log-transformed form of
Equation 2, as shown in Equation 3 (same symbology as in Equation 2), by using a generalized linear
model (GLM). A binomial distribution was used to model the variability of the number of cases in
a cohort composed by the population in risk per municipality. This value is expressed as f(R) in
Equation 3. The link function was the natural logarithm.

f(R) = log(θ) + αlog(V ) + βlog(P ) + γlog(F )− 2 ∗ log(dV U) (3)

Opting for GLM to estimate the parameters of Equation 3 implies that the error distribution is not
expected to follow a normal distribution, which is likely the case when modelling rate quantities [1].
Details on the estimation of the covariates in Equation 3 are presented in the remainder of this section.
Section 3.2 deals with the criteria and methods to estimate the response variable R. Sections 3.3 and 3.4
are devoted to describe the criteria and data sources for estimating the area and location of vegetative
systems V and population related aspects (P and F ), respectively.

3.2. Disease Risk Estimator

Epidemiological records provided by the Belgian Institute of Public Health (IPH) were processed
in order to compute values of disease risk. These estimations of risk were used as dependent variable
when fitting the model. Various disease risk estimators exist, several of them being based on Bayesian
statistics. We followed the method proposed by Marshall [37] to compute a local Empirical Bayesian
Estimator of risk (EBE).

The selection of a Marshall’s local estimator to assess risk dynamics in NE and LB is justified by
the spatial nature of the triggering factors of disease outbreaks; i.e., it is very likely that large variations
in terms of risk are present across the country and that neighboring municipalities exhibit similar risk
conditions as risk will be greatly influenced by spatially meaningful factors (e.g., landscape aspects,
forest characteristics, etc.).

The neighborhood relations among municipalities was established by following a First Order Queen
contiguity criterion, i.e., two municipalities were considered neighbors when their borders shared at least
one point.

Marshall’s algorithm is represented by the following expression [37]:

θ̂i = m̂i + (θi − m̂i)
âi

âi +
m̂i

ni

(4)

where θ̂i is the EBE for municipality i, θi was calculated as the ratio between the number of cases to
person-years at risk (n) in municipality i. m̂i and âi are the prior mean and variance of relative risk,
respectively, calculated over municipalities adjacent to i.
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The estimation of person-years at risk ni in Equation (4) was based on demographic data per
municipality concerning the number of inhabitants per age and sex classes obtained from official
statistical data sources [6,38] and on the breakdown of reported cases per age and sex class provided
by the IPH [9]. The value of ni resulted from a weighted summation in which weights were assigned in
function of the contribution of each sex and age class to the overall number of reported cases.

EBE values θ̂i were computed for NE and LB for all municipalities. The estimation of model
parameters was done on a sample of 10% of the municipalities. The sample municipalities were chosen
such that the whole range of variability of EBE values was represented. The adequacy of the model was
tested then against the totality of municipalities.

3.3. Area and Location of Vegetative Systems

Many studies inform on the habitat preferences of the organisms involved in the NE and LB
transmission mechanisms. For both diseases the forested areas, and particularly the broad-leaved forests,
are the most notorious landscape feature associated to disease risk [30,33]. The set of land cover classes
inducing high incidence of LB is larger as more organisms are involved in LB transmission mechanism
and ticks are found in a wide range of environment conditions like heathland, coniferous forests, urban
green areas, etc. [33].

Information on location and area of vegetated systems can be extracted from land cover maps or
remotely sensed datasets. In this study we evaluated both and generated various vegetation maps that
were tested as input in the model. Each of these tests is further referred to as a modeling formulation.

The CORINE land cover (CLC) map [39] was chosen in virtue of its Europe-wide scope in terms
of coverage and methodology. The CLC map considers three forest types, broad-leaved, mixed and
coniferous, as well as other vegetation classes of relevance for the organisms involved in NE and LB.
Each forest type was tested individually as well as combinations of forest types reported to influence NE
and/or LB occurrence [30]. In all cases, the vegetation maps included also the following classes: natural
grasslands, moors and heath-lands and transitional woodland-shrub, as these may host ticks and rodents
as well. This resulted in six binary vegetation maps presented in Figure 2.

As for remotely sensed datasets, we utilized the most commonly used vegetation index obtained from
space-borne observations: the normalized difference vegetation index (NDVI). The NDVI is computed
by normalizing the difference between reflectance values in two regions of the electromagnetic spectrum
captured by space-borne sensors and sensitive to vegetation activity. The NDVI is built as:

NDV I =
ρir − ρred
ρir + ρred

(5)

where ρ is the energy reflectance captured by the sensor in the infrared (ir) and red (red) regions of the
electromagnetic spectrum. The data were obtained from measurements by the MODIS sensor on board
the TERRA satellite in the year 2005 and delivered in the MOD09Q1 product at a spatial resolution
of 250 m [40]. The periodic availability of satellite imagery allowed the calculation of NDVI at three
different dates that were defined on the basis of the NE and LB annual occurrence pattern illustrated in
Figure 3.



Int. J. Environ. Res. Public Health 2012, 9 4352

Figure 2. Vegetation maps of Belgium derived from the CORINE land cover map. (A)
Broad-leaved forest; (B) Coniferous forest; (C) Mixed forest; (D) Broad-leaved and mixed
forest; (E) Broad-leaved and coniferous forest; (F) Mixed and coniferous forest; (G) All
forest classes. The classes Natural Grasslands, Moors and Heathland and Transitional
woodland-shrub are included in all maps. Vegetated area is depicted in gray.
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Figure 3. Boxplots of weekly occurrence of NE and LB for the period 2000–2010 in
Belgium. The vertical gray lines represent the three dates on which NDVI was computed:
Date 1 = week 15, Date 2 = week 25 and Date 3 = week 35.
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The three dates indicated in Figure 3 correspond to the weeks 15, 25 and 35 and can roughly be
associated to the green-up, climax and declining phases of the vegetation growing season. As illustrated
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in Figure 3, the first date marks, for both diseases, the beginning of the period of highest occurrence.
Around week 25 the highest occurrence of NE has been reached and LB cases show an increasing trend
that reaches a maximum around week 35.

On the basis of the NDVI values, binary maps were produced separating areas below and above a
critical value. The evaluated NDVI critical values range from 0.6 to 0.9 representing increasing levels
of vegetation greenness and abundance. The binary maps showing areas above and below the critical
values are presented in Figure 4.

Figure 4. Binary vegetation maps of Belgium based on NDVI critical values at week 15,
week 25 and week 35. Areas with NDVI equal or greater than the critical value are depicted
in dark gray.
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3.4. Human Population

The location of urban centres was determined using the CLC map; particularly, the classes labelled
as continuous and discontinuous urban fabric [41]. Mapping the urban areas allowed the computation
of Euclidean distances separating these areas and the vegetated areas located within a defined maximum
distance. The maximum distance was set to 20 km, as this threshold exceeds the distance reported by
previous studies as determinant for attracting visitors to forests [29,42] or for probable contact with
disease vectors [22,28].

The allocation of population at risk for each urban centre was made by disaggregating the estimated
population at risk per municipality (Section 3.2) over the urban centres in proportion to their area size.

In order to account for the elevated exposure to pathogens associated to certain professional
activities [33–36], the fraction of companies (F ) devoted to crop and animal production, hunting and
related services and forestry and logging was tested as covariate in the model. The value of F is meant to
be a proxy for exposure related to professional activities at municipal level. It was derived from national
statistics per type of economic activity according to the NACE-BEL classification system [43].

Figure 5. Schematic summary of methods highlighting the four main phases of data
acquisition: (1) The estimation of local disease risk; (2) Two approaches to map vegetated
systems; (3) The spatial heterogeneity in population density, and; (4) Information on
work-related exposure.

The methodological approach presented in the preceding sections is summarized schematically in
Figure 5. The four frames shown in Figure 5 represent the major methodological phases. The first
frame refers to the derivation of risk patterns from epidemiological records, the adjacency connections
among municipalities and the spatial distribution of population. The second frame shows the criteria and
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data sources used for the generation of vegetation maps, and the third and fourth frames are related to
aspects of the human population that may affect disease risk. The last step in the scheme of Figure 5
refers to the goodness of fit assessment in which the different modeling formulations were compared.
The comparison criterion was the Akaike information criterion (AIC) [44] and the estimation of spatial
autocorrelation of residuals by means of the Moran’s I parameter [45].

4. Results

4.1. Disease Risk

The computation of EBE values revealed heterogeneity in risk grade for both diseases across the
country. Figure 6 shows map representation of these values. These maps indicate that for NE, southern
Belgium is the most important risk area, especially the region along the Franco-Belgian border. The NE
risk grade seems to diminish as one moves in the north-east direction departing from the area of highest
risk. The infection risk for LB is spread over a larger part of the country being the most remarkable
areas the Walloon region (southern Belgium), including the area where the highest infection risk of NE
is located; and northeastern Belgium. The values depicted in Figure 6 were used as reference values
when estimating model parameters and when evaluating the models’ goodness of fit.

Figure 6. Estimation of disease risk for NE and LB according to Marshall’s local
estimator (EBE).
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Figure 7. Selected urban centres for fitting the gravity model. Selection was based on the
representativeness of the whole range of disease risk grades for both diseases.
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The spatial distribution of disease risk shown in Figure 6 was the basis for the selection of
municipalities to be sampled. As stated earlier, the main criterion to select municipalities was the
representativeness of the whole range of disease risk grades for both diseases. The area covered by
the sampled municipalities is presented in the map in Figure 7.

4.2. Model Selection

The plots in Figure 8 show the Akaike information criterion (AIC) for each of the tested modelling
formulations. Following the criterion of selecting the lowest AIC values, Figure 8 (A and C) shows that
obtaining vegetation maps from NDVI values at week 25 leads to more adequate modelling formulations
than NDVI at weeks 15 or 35. Moreover, these plots suggest that the spatial spread of NE and LB
can be associated to areas with, respectively, NDVI ≥ 0.9 and NDVI ≥ 0.85 in the period of full
vegetation development.

Figure 8. Akaike information criterion (AIC) for each of the tested modelling formulations
according to the definition of the vegetated areas. In plots A (NE) and C (LB) the data
source was MODIS NDVI captured at three different moments of the growing season and
applying different values of NDVI as threshold. Plots B (NE) and D (LB) result from deriving
vegetation maps from vegetation classes of the CORINE land cover map.
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Figure 8(B and D) shows, for NE and LB respectively, the AIC values of the GM when the vegetation
maps were derived from the CLC map. The best modelling formulations were obtained when using
the broad-leaved forest class for NE and the combination of all forest classes for LB. These results
are in accordance with other studies referring that broad-leaved forests is the most important landscape
feature related to NE and that the spatial spread of LB is associated to a larger gamma of land cover
classes [30,33].

Figure 9. Gravity model equations, residuals Moran’s I, root mean squared deviance
(RMSD) and map representation of modelled risk estimator and residuals with vegetation
maps derived from (A) MODIS NDVI ≥ 0.9 captured at week 25; (B) Broad-leaved forest
class from CLC map; (C) MODIS NDVI ≥ 0.85 captured at week 25; (D) All forest classes
from CORINE land cover map.

Reference Modelled EBE Residuals

NE A (MODIS)

f(R) = 1.709 ∗ 10−3 V 0.0807F 1.4340

d2V U

Moran’s I (residuals)=0.5027
RMSD=1.6785

B (CLC)

f(R) = 2.39 ∗ 10−8 V 2.0453F 0.8934

d2V U

Moran’s I (residuals)=0.2866
RMSD=2.3985

LB C (MODIS)

f(R) = 0.0126V 0.8215P 0.0170F 0.0302

d2V U

Moran’s I (residuals)=0.6645
RMSD=7.6888

D (CLC)

f(R) = 1.64V 1.0540

d2V U

Moran’s I (residuals)=0.4992
RMSD=7.6932

<1

1 - 3

3 - 5

5 - 10

10 - 15

15 - 20

>20

Legend EBE
(cases/10000 inhabitants)

x>1 s.d.

-1 s.d.<x<1 s.d.

x<-1 s.d.

Legend residuals*

* x=reference EBE - modeled EBE

  s.d.= st.deviation reference EBE



Int. J. Environ. Res. Public Health 2012, 9 4358

The model formulations with the lowest AIC were selected for further analysis. Non-significant
predictors were removed from the models (significance as ρ < 0.001) and model parameters were
recalculated where applicable. The final GM equations as well as map representations of the modelled
EBE values and the model residuals are presented in Figure 9.

A visual inspection of the maps in Figure 9 suggest the suitability of the models to segment the country
into sub-areas in function of disease risk. The most notorious homogeneous risk zones, represented
in the reference maps of Figure 6, are identifiable also in the modelled EBE maps and the residuals
across the largest part of the country are smaller than 1 standard deviation. The map of residuals also
showed that areas with the largest residuals were commonly located in areas of high disease risk, i.e.,
the model succeeded in locating the high risk areas but there, the modelled EBE value is lower than the
reference value.

The root mean squared deviance (RMSD), also indicated in Figure 9, reflected a better fit of the GM
for modelling NE with vegetation maps derived from MODIS NDVI as compared with the utilization of
the CLC map. In either case, the RMSD is not larger than the standard deviation of EBE values across the
country. The Moran’s I value indicated a higher degree of spatial autocorrelation in the former model,
which means a more clustered pattern in the spatial distribution of residuals. As for LB, the RMSD
in both formulations is practically the same and does not exceed the value of standard deviation either.
As was the case for NE, the most important difference in the LB model formulation lies in the spatial
autocorrelation of residuals.

5. Discussion

The results presented in the previous section verified the adequacy of the concept behind the GM for
applications in spatial epidemiology. The suitability of the GM concept is based on the fact that the
two diseases under study have a twofold connection with vegetated systems. Firstly, they are the habitat
of vectors and other organisms, hence the importance of mapping and measuring vegetation systems.
Secondly, human exposure to vector-borne pathogens is greatly determined by the way and intensity of
interaction between humans and vegetated systems, and this in turn is shaped by parameters defining the
attractiveness of green areas to humans like distance, size, composition, etc.

Our results showed that both land cover maps and space-borne data sources can serve the purpose
of locating vegetated systems influencing the spatial spread of disease. In both cases we obtained
satisfactory results in the segmentation of areas in function of disease risk grade. As can be observed in
the maps of residuals of Figure 9, most of the inaccuracies in the modelled values are underestimations
of the actual risk values and are located in areas of epidemiological importance. This can be related to
the fact that the reference EBE values are influenced by remarkable outbreaks in both diseases reported
in different moments throughout the period 2000–2010. Modelling inter-annual differences in the spatial
pattern of risk can be the subject of future research and would favor the use of remote sensing to detect
changes in vegetation systems.

Figure 10 illustrates the clear connection between the size of vegetated areas and risk grade for both
diseases. Figure 10 also shows that municipalities in the quartile of highest risk for NE and LB are
those where the fraction of companies exerting forestry-like activities is higher than in the other three
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quartiles. These facts explain why these two variables were repeatedly found significant in the tested
modelling formulations.

Figure 10. Relation between variables evaluated in the model and disease risk estimator
grouped by quartile. Labels A, B, C and D indicate, respectively, the first, second, third and
fourth quartile of the local disease risk estimator values.
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Furthermore, Figure 10 also shows that the average population size in the quartile of NE highest
risk is lower than in other areas of the country. Despite the correspondence between these variables, P
was not found a significant predictor of NE. This apparent contradiction is related to the scale of the
analysis and the relation between P and the other variables in the model, V and F . Figure 11 shows the
bivariate relation between the NE model variables when the vegetation map was derived from MODIS
imagery. It follows from the scattering patterns that P has some degree of colinearity with variables
whose contribution to the model were more significant, V and F . In contrast, the relation between the
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variables V and F does not describe a recognizable pattern, hence the modelled EBE values is the result
of the interaction of these variables and the average distance between urban and vegetation entities. This
result must not be interpreted as a lack of relevance of the population size as determinant of disease risk
rather refers to the impact of the scale of the study. Changing the scale at which the entities are observed
can result in different interaction patterns between variables [30].

Figure 11. Bivariate relations between tested variables for modelling NE when the
vegetation map was derived from MODIS imagery.
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For both diseases the Moran’s I value for residuals was higher when vegetation maps were derived
from MODIS NDVI. This can be related to inherent differences between a land cover map and vegetation
maps defined in terms of NDVI values. In the former case, the vegetation classes are defined in
function of the species composition of the vegetation community, whereas in the latter case the leading
determinant is vegetation abundance and density, regardless of species composition. Therefore, when
using a land cover map, all patches complying with the target cover class are considered in the model
even if they are not large and/or dense enough to represent significant disease risk. This can result in a
more heterogeneous distribution of residuals across the study area. On the other hand, using land cover
maps has the advantage of preventing the confusion between vegetated areas with relevance to disease
vectors and other vegetation classes with less importance for the disease under study.

The two LB models presented in Figure 9 differ in the set of significant covariates composing the
GM equations. The equation based on MODIS imagery is defined in terms of V ,P and F whereas
the equation obtained when using CLC is built on V only. This difference may be explained by a
combination of factors. Firstly, zones of elevated LB risk can occur in the context of highly fragmented
forest but also in landscapes characterized by large unfragmented forest cover. The finer resolution of
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CLC map (cell size equal to 100 m) may allow the detection of smaller vegetation patches as compared
with MODIS images (cell size equal to 250 m). Thus, the model based on MODIS imagery may
need more covariate to reach a high level of accuracy. Secondly, since no distinction is made between
vegetation classes when the model is based on MODIS imagery, the application of the NDVI threshold
criterion may lead to selecting epidemiologically non-relevant vegetation classes. Additional covariates
may then be needed to account for this source of uncertainty. This does not occur when using CLC
because one can be certain that forests are the only vegetation class used.

Finally, it is important to stress that the results on significance of predictors and suitability of data
sources may not hold for studies made at other scales. This study aimed at results at country level.
Studies focusing on sub-national or regional scales may have more detailed information at disposal,
hence the setting of the model may differ. For instance, forest accessibility, management regime or
ownership may determine the importance of vegetated areas in human exposure to pathogens together
with the attributes considered in this study (size, location, composition). The notion of distance can be
refined by incorporating friction factors related to the quality of roads, topography, accessibility, etc.
Also, research towards the most suited exponent for the distance factor in the GM might result in more
accurate treatment of the effect of distance between urban and vegetated areas on disease risk spread.
This is beyond the objectives of this study.

6. Conclusions

This study aimed at evaluating GM as an approach to model the spatial spread of VBD, particularly
NE and LB in Belgium. The results led us to the following conclusions:

• Information on location, size and composition of vegetated areas is of great importance in
modelling the spatial spread of NE, LB and other VBD. Our results show the suitability of both
static (land cover maps) and dynamic (space-borne datasets) data sources to derive that information
and incorporate it as input of the models.

• Accounting for habitat conditions is of paramount importance when attempting to model VBD.
Nevertheless, the models should be enriched by including variables that may come from domains
different than ecology or biophysics but that inform on human exposure to pathogens. In the
particular case of NE and LB, previous studies highlighted the elevated risk associated to certain
occupational groups. Our results showed that data on the number of active companies per branch
of the economy at municipal level can provide a significant covariate of risk grade.

• Spatial interaction models have been applied in a large variety of domains where distance and
attracting attributes of entities are relevant. The results obtained in this study support the idea of
adopting GM or other forms of spatial interaction analysis to model the spread of NE and LB risk
and encourage the investigation of the applicability of spatial interaction models in the study of
other VBD.
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