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Abstract: A better understanding of the relative importance of different spatial scale 

determinants on fish communities will eventually increase the accuracy and precision of 

their bioassessments. Many studies have described the influence of environmental variables 

on fish communities on multiple spatial scales. However, there is very limited information 

available on this topic for the East Asian monsoon region, including Korea. In this study, we 

evaluated the relationship between fish communities and environmental variables at 

multiple spatial scales using self-organizing map (SOM), random forest, and theoretical path 

models. The SOM explored differences among fish communities, reflecting environmental 

gradients, such as a longitudinal gradient from upstream to downstream, and differences in 

land cover types and water quality. The random forest model for predicting fish community 

patterns that used all 14 environmental variables was more powerful than a model using any 

single variable or other combination of environmental variables, and the random forest 

model was effective at predicting the occurrence of species and evaluating the contribution 

of environmental variables to that prediction. The theoretical path model described the 
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responses of different species to their environment at multiple spatial scales, showing the 

importance of altitude, forest, and water quality factors to fish assemblages. 

Keywords: fish assemblage; community patterns; prediction; multiple spatial scales;  

self-organizing map; random forest; theoretical path model; indicator species 

 

1. Introduction 

The distribution and abundance of aquatic communities are governed by various environmental 

factors at different spatial scales [1–4]. Among aquatic organisms, fish are relatively easy to identify, 

and are an important component of aquatic ecosystems through their regulatory effects on a variety of 

ecosystem-level properties and functions via their consumption of lower trophic levels [5–7]. They are 

commonly recognized as sensitive keystone communities that can indicate habitat change, 

environmental degradation, and overall ecosystem health [8–10]. 

Diverse studies have explored the relationships between biotic and abiotic factors, including 

geological factors [11], land cover and land use types [12,13], hydrological factors [14], stream habitat 

characteristics [15], stream order [16–19], and water quality [20]. These environmental factors are 

considered in a hierarchical structure ranging from large scale to small scale. Large-scale factors (i.e., 

landscape features) affect small-scale factors (i.e., microhabitat conditions and water quality, which 

have important influences on the distribution and abundance of organisms). Therefore, environmental 

conditions can be viewed as constituting filters through which species in the regional species pool must 

pass to potentially be present at a given locale [21,22]. The multi-scale habitat filter primarily specifies 

a set of four habitat levels (watershed, reach, channel unit, and microhabitat). However, slightly 

different numbers of habitat levels and diversity of elements within levels have been reported [23,24]. 

Therefore, various studies have been carried out to predict fish distribution or to identify the important 

environmental factors affecting the distribution patterns of fish [25–27]. Predicting fish assemblages is 

relevant to the evaluation of environmental quality and is an important framework for ecological 

studies on species interactions [28]. Species composition models may support environmental 

management by simulating different environmental scenarios and pointing out the most critical factors 

that need to be changed or regulated [28]. 

Understanding the effects of environmental variables on the distribution of biodiversity is 

fundamental for developing biological monitoring tools. A better understanding of the relative 

importance of determinants of fish communities at different spatial scales will eventually increase the 

accuracy and precision of bioassessments [1]. Many studies have examined the influence of 

environmental variables on fish communities from Europe [25,29], North America [30,31], and 

Oceania [32,33]. However, very little information is available on the East Asian monsoon region, 

particularly Korea [34,35], despite this region’s long history and environmental features that have 

contributed to a rich biodiversity [1]. The Asian monsoon region has more than half of the World’s 

population and comprises a major portion of the largest ocean and the largest continent, including the 

highest mountains in the World [36]. 
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In this study, we evaluated the relationship between fish communities and environmental variables 

at 691 sampling sites throughout South Korea. Our goals were as follows: (1) to characterize the 

distributional patterns of fish communities on the national scale, (2) to identify the most important 

environmental factors influencing the distribution and abundance of fish species for different 

environmental categories across multiple spatial scales, and (3) to clarify the relative influence of 

regional and local variables on fish community composition in Korean rivers. 

2. Materials and Methods 

2.1. Ecological Data  

Fish community data were obtained from the National Aquatic Ecological Monitoring Program 

operated by the Ministry of Environment and the National Institute of Environmental Research, Korea. 

Fish were sampled at 720 sites from 388 rivers at the national scale (Figure 1) in April and May 2009, 

according to the standardized sampling protocol of the programme [37]. Among them, fish were 

collected at 691 sites. Five major rivers (Han, Nakdong, Geum, Yeongsan, and Seomjin Rivers) and 

their tributaries and small streams form the entire stream system in the country. 

Figure 1. Locations of the sampling sites in five major watersheds in South Korea. 
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Table 1. Mean and standard deviation of 14 environmental variables in 691 sampling sites. 

Category Variable Mean (±SD) 

Geo-hydrological factors 

Altitude (m) 108.7 (±127.7) 
Slope (%) 13.4 (±18) 
Stream Order 5.3 (±1.5) 
Distance from Source (DFS; km) 51.5 (±80.4) 

Land cover types 

Urban (%) 17 (±23.1) 
Forest (%) 30.1 (±30.7) 
Paddy field (%) 27.6 (±27.3) 
Dry field (%) 12.2 (±14.5) 

Physicochemical factors 

pH 8.1 (±0.8) 

Conductivity (EC; μS/cm) 288.2 (±232.5) 

BOD (mg/L) 2.9 (±2.6) 

TN (mg/L) 2.9 (±2.4) 

TP (mg/L) 0.1 (±0.2) 

Chlorophyll-a (μg/L) 5.3 (±10.8) 

Fish were collected from all types of habitats in each site, including riffle, run, and pool areas, 

based on the catch per unit effort, with two types of sampling equipment: casting net (5-mm mesh size) 

and kick net (4-mm mesh size). Stream segments of approximately 200 m were sampled at each site 

for 50 min. Most of the captured fish were identified to the species level in the field. Among the 

collected specimens, some species requiring detailed identification and observation were fixed with  

10% formalin solution and transported to the laboratory. Details of the sampling protocol for fish are 

described in MOE/NEIR [37]. 

Fourteen environmental variables were measured at each site. Environmental variables were 

categorised into three groups, geo-hydrological factors, land cover types, and physicochemical factors 

to indicate different fish assemblage characteristics (Table 1). Slope and stream order were obtained 

from the Water Management Information System (WAMIS, http://www.wamis.go.kr) of the Ministry 

of Land, Transport and Maritime Affairs, Korea. Altitude was measured from a Digital Elevation Map 

(DEM), and distance from the source (DFS) was calculated as the distance from the source of the 

stream to each site. The above variables were extracted from a digital map using ArcGIS 9.3 

(www.esri.com). Land cover types (urban area, forest area, paddy field, and dry field) were obtained 

from the Ministry of Environment, Korea. The proportion of each type of land cover was extracted 

from a 1,000 × 100 m (length × width) area that included each sampling site on a digital map using 

ArcGIS 9.3 (www.esri.com). Dissolved oxygen (DO), conductivity, and pH were measured in the field 

using YSI 85 meters (YSI Inc., Yellow Springs, OH, USA) for DO and conductivity, and an Orion  

3-Star-Plus pH meter (Thermo Fisher Scientific Inc., Waltham, MA, USA), for pH. Other variables, 

such as biological oxygen demand (BOD), total nitrogen (TN), and total phosphorus (TP), were 

analyzed in the laboratory by using the techniques by Eaton et al. [38]. Details of the sample collection 

protocol for fish and that for laboratory analysis are described in MOE/NIER [37]. 

Fish species were grouped into four different trophic guilds (omnivores, piscivores, insectivores, 

and herbivores) and three different tolerance guilds (i.e., tolerant species, intermediate species, and 

sensitive species) to evaluate how these traits were related to environmental differences. Tolerance and 
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trophic guilds were defined according to the guidelines of the “National Surveys for Stream Ecosystem 

Health” in Korea [37]. A dataset consisting of 691 sites with fish species observed at more than two 

sampling sites were used for patterning and predicting fish communities. To reduce variation, fish 

density was natural-logarithm transformed after adding one to all data to avoid the problem of zero 

being undefined for logarithms. 

2.2. Data Analysis  

2.2.1. Overall Procedure 

Data analyses were conducted with four different analytical methods: self-organizing map (SOM), 

indicator species analysis, random forest model, and theoretical path model: (1) SOM classified fish 

communities to several groups, (2) indicator species were defined in each group using indicator species 

analysis, (3) SOM groups were predicted with random forest model, (4) occurrences of selected 

species were predicted with random forest model, and (5) theoretical path model was used to evaluate 

the influence of environmental factors on the occurrence of indicator species. The overall data analyses 

procedures are given in Figure 2. 

Figure 2. Overall data analyses procedures.  
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2.2.2. Self-Organizing Map (SOM) 

SOM was applied to characterize the distributional patterns of fish communities. SOMs average the 

dataset in weight vectors through the learning process while removing noise [39,40]. The weight 

vectors in SOM tend to approximate the probability density function of the input vector and provide 

the distributional pattern of each input variable [41]. SOM consists of an input layer and an output 

layer. Each layer is connected by connection intensities (weights). The input layer is formed by 

computation units (neurons) that receive input data, which are used to calculate the Euclidean distance 

between the weight vector and the input vector. The output layer consists of N output neurons on a 

two-dimensional hexagonal lattice. A map size of 126 (= 14 × 9) output neurons was chosen, which 

was determined by the heuristic equation [42]. Two criteria, the quantization error for resolution and 

the topographic error for topology preservation, were used to evaluate the map quality [41]. These 

error values were used as an indicator of the accuracy of the mapping at preserving topology [43]. 

After the learning process, the SOM units were classified based on a hierarchical cluster analysis 

using Ward’s linkage method with the Euclidean distance measure [44]. Based on the SOM weight 

after the SOM training, 25 relatively abundant species were examined to find indicative species for 

each cluster in SOM. We used the functions in the SOM toolbox [45] for training the SOM in Matlab 

version 6.1. A multi-response permutation procedure (MRPP), a nonparametric procedure for testing 

the differences between groups, was conducted using PC-ORD version 4.25 to evaluate the 

significance of the clusters [46]. 

2.2.3. Random Forest Model 

A random forest model [47] was applied to predict the occurrence of fish species and the patterns of 

fish communities as defined by the SOM, using different combinations of environmental variables, and 

to identify the determinant environmental factors contributing to the models. The random forest model 

is a non-parametric method for predicting and assessing the relationship between a large number of 

potential predictor variables and response variables [47]. Random forest models have several 

advantages compared to other statistical methods, such as high classification accuracy, a novel method 

of determining variable importance, and the ability to model complex interactions among predictor 

variables [48]. Therefore, the random forest model offers powerful alternatives to traditional 

parametric and semiparametric statistical methods for the analysis of ecological data. 

The importance of environmental variables used in the random forest model was evaluated using 

the Minimum Description Length (MDL), which measures the quality of attributes as their ability to 

compress the data [49] To compare the relative importance of each environmental factor, values of 

MDL were rescaled to range from 0 to 100. Dichotomies (0 and 1) for SOM clusters were used to 

predict fish community patterns. We used a correct prediction rate (i.e., the number of sites correctly 

predicted out of the total number of sites in the cluster) and Cohen’s kappa [50] as a measure of 

agreement. Cohen’s kappa ranges from 0 (completely random predictions) to 1 (perfect predictions).  

The random forest model was run with the CORElearn package [51] in the R statistical program 

(http://cran.r-project.org). Prior to running the random forest model, environmental variables, except 

land cover type, were transformed by the natural logarithm (x + 1) to reduce variation.  
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2.2.4. Indicator Species Analysis 

To evaluate the indicator species in each SOM cluster, we applied indicator species analysis [52]. 

Indicator species were selected by an indicator value calculated as the product of its relative abundance 

and its relative frequency with ranges from 0 (no indication) to 100 (perfect indication) [53]. Monte 

Carlo tests were used to determine the significance of species indicator values. Indicator species 

analyses and Monte Carlo tests were carried out using PC-ORD version 4.25. 

2.2.5. Theoretical Path Model (TPM) 

TPM was used to describe the directed dependencies among a set of variables at multiple spatial 

scales [54]. Path analysis [55–57] was used to decompose correlations into their direct and indirect 

components and to allow simple correlations among a set of variables to be partitioned according to a 

path model describing their causal relationships [58]. Path analysis generated diagrams representing 

the relationships between variables at different scales, their direct link, and its significance [59]. This 

included correlation coefficients from the Pearson’s correlation analysis and explanatory values (R2) 

for environmental variables from multiple regression models (MRMs). Environmental variables were 

placed into three groups (geo-hydrological factors, land cover types, physicochemical factors) with one 

response layer (indicator species). Only a single important indicator was employed for each SOM 

cluster in the TPM. The indicator species were selected using indicator species analysis. TPMs were 

conducted using Statistica software (StatSoft, Inc., version 7). 

2.2.6. Statistical Analysis 

Spearman rank correlation coefficients were calculated among environmental variables. The 

Kruskal–Wallis test (K–W test) was used to compare the differences in environmental variables, 

community indices, and biological guilds, such as trophic and tolerance guilds, among clusters defined 

in the SOM. The nonparametric Dunn’s multiple comparisons test was used for post hoc comparisons. 

The K–W test and the Dunn’s test were conducted using the Statistica software. 

3. Results 

3.1. Fish Communities  

A total of 128 fish species in 32 families were collected from 691 sites (Table 2), including 49 

endemic species (representing 34.3% of the total fish abundance) and five exotic species (representing 

3.3% of the total fish abundance). Zacco platypus (32.5%), Z. koreanus (11.6%), and Pungtungia herzi 

(4.4%) were the most abundant species and made up 48.6% of all the individuals collected. The Han 

River Watershed showed the highest species richness (96 species), followed by the Geum (69 species), 

Nakdong (67 species), Youngsan (59 species), and Seomjin (50 species) River Watersheds. The most 

common species in each of the five major watersheds was the same species that was the most common 

at the national scale, Z. platypus, but the second most common species was different in the Geum 

River Watershed (Hemiculter eigenmanni) and Youngsan River Watershed (Z. temminckii) from the 

other watersheds (Z. koreanus).  
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Table 2. Fish assemblage characteristics for different watersheds. 

 Number of species Dominant species 

Watershed Total Endemic  Exotic  1st 2nd 

Han River 96 30 5 Zacco platypus Zacco koreanus 
Nakdong River 67 23 3 Z. platypus Z. koreanus 

Geum River 69 26 4 Z. platypus 
Hemiculter 
eigenmanni 

Youngsan River 59 18 3 Z. platypus Z. temminckii 
Seomjin River 50 19 3 Z. platypus Z. koreanus 

Total 128 49 5 Z. platypus Z. koreanus 

3.2. Relations between Environmental Factors 

Altitude was significantly correlated with all environmental factors (Spearman rank correlation,  

P < 0.05). Forest area (r = 0.50, P < 0.01), slope (r = 0.44, P < 0.01), dry field area (r = 0.17, P < 

0.01), and pH (r = 0.08, P < 0.05) showed positive correlations with altitude, while other factors 

showed negative correlations, especially water quality factors, except for pH (r < −0.10, P < 0.01) 

(Table 3). DFS was highly correlated with stream order (r = 0.86, P < 0.01), but both factors were not 

significantly correlated with land cover types except for forest area (r = −0.17 and −0.21, respectively, 

P < 0.01). Forest area was positively correlated with slope (r = 0.59, P < 0.01), altitude (r = 0.50,  

P < 0.01) and dry field area (r = 0.07, P < 0.05), and negatively correlated with geo-hydrological 

factors such as DFS (r = −0.17, P < 0.05). Meanwhile, TN and TP had significant correlations with all 

environmental factors except for hydrological factors and pH (P < 0.05). 

3.3. Fish Assemblage Patterns  

Through the SOM learning process, the 691 sites were grouped into five clusters (I–V) according to 

the similarities of fish communities (Figure 3). The final quantization and topographic errors were 0.89 

and 0.03, respectively, indicating a good training of the SOM. The clusters were significantly different in 

community composition (MRPP, A = 0.11, P < 0.001). The largest number of sites (181) was grouped 

into cluster IV, followed by cluster I (142), cluster III (138), cluster II (121), and cluster V (109). The 

number of sites in each cluster was visualized as the size of the hexagonal lattice in each SOM unit. 

The distribution of sites in each cluster was highly related to the sites’ geographic locations  

(Figure 3(c–g)). For instance, most sites in cluster I were located in the northeastern part of the Han 

River Watershed, and the sites in cluster III were situated in a mountainous area of the Korean peninsula. 

Sites in cluster IV were widely distributed in the Youngsan and Nakdong Rivers. Most sites in cluster II 

were near the coast and the sites in cluster V were mainly in the tributaries of the Han River. 
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Figure 3. (a–b) Classification of 691 samples into five clusters (I–V) through the training 

of self-organizing map (SOM) and (c–g) the geographical distribution patterns of the 

sampling sites in five clusters, and (h) a digital elevation map (DEM) for comparing the 

relative elevation of each cluster. 
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Table 3. Spearman rank correlation coefficients between 14 environmental factors (* P < 0.05, ** P < 0.01).  

Category Variable 
Geo-hydrological factors Land cover types Physicochemical factors 

Altitude Slope DFS Stream order Urban  Forest  Paddy field Dry field pH EC BOD  TN TP 

Geo-hydrological 

factors 

Slope 0.44 ** 

DFS −0.17 ** −0.22 ** 

Stream order −0.20 ** −0.26 ** 0.86 ** 

Land cover types 

Urban −0.21 ** −0.23 ** −0.05 −0.01          

Forest 0.50 ** 0.59 ** −0.17 ** −0.21 ** −0.42 **         

Paddy field −0.29 ** −0.35 ** 0.02 0.02 −0.16 ** −0.45 **        

Dry field 0.17 ** 0.07 0.04 0.05 0.02 0.07 * −0.17 **       

Physicochemical 

factors 

pH 0.08 * −0.03 0.26 ** 0.25 ** −0.10 ** 0.03 −0.04 0.08 *      

EC −0.45 ** −0.31 ** 0.09 * 0.21 ** 0.22 ** −0.41 ** 0.17 ** −0.06 0.08 *     

BOD −0.37 ** −0.30 ** 0.07 0.13 ** 0.21 ** −0.39 ** 0.20 ** −0.12 ** 0.02 0.55 **    

TN −0.28 ** −0.18 ** −0.07 −0.03 0.21 ** −0.27 ** 0.09 * −0.08 * −0.02 0.46 ** 0.63 **   

TP −0.47 ** −0.29 ** −0.01 0.05 0.24 ** −0.43 ** 0.21 ** −0.12 ** −0.01 0.56 ** 0.74 ** 0.63 **  

Chl−a −0.11 ** −0.13 ** 0.14 ** 0.16 ** 0.12 ** −0.17 ** 0.02 −0.05 0.04 0.23 ** 0.37 ** 0.22 ** 0.28 ** 
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Table 4. Differences in environmental variables among the five clusters defined by the SOM. The number indicates mean (1st quartile–3rd 

quartile) in each clusters. Different letters in each row indicate significant differences for that variable among the clusters based on Dunn’s 

multiple comparison tests (P < 0.05). 

Category Variable 

  SOM cluster   

I II III IV V 

Geo-hydrological  

factors 

Altitude (m) 210.3 (91–281) a 132.7 (15–166) c 106.3 (44–146)b 55.6 (19–76) c, d 41.2 (16–45)d 

Slope (%) 23.1 (4–36) a 17 (1.5–28) b 10.4 (1–15) b 11.2 (1–12) b 4.7 (1–5)c 

DFS (km) 33.8 (12.1–40.8) b 56.2 (5.3–34.4) c 55.1 (16.7–69.5) a 71.1 (14.9–72.6) a 32 (11.4–32.8)bc 

Stream Order 5 (4–6)bc 5 (3–5) c 6 (5–6) a 6 (5–7) a 5 (4–6)ab 

Land cover  

types 

Urban (%) 11.5 (1.8–16.6) b 18.1 (1.3–22.6) b 10.9 (1–14.3) b 14.9 (2.3–15.8) b 34.1 (6–62.9) a 

Forest (%) 47.1 (19.6–76.2) a 39 (5.1–68.8)ab 31.7 (6.9–53.2) b 22.8 (0–38.5) c 8 (0–7.6) d 

Paddy field (%) 18.3 (0–30.6) b 20.3 (0–34.9) b 32.2 (10.8–51) a 31.6 (4.3–49.2) a 35.1 (1.1–63.4) a 

Dry field (%) 15.6 (3–22.9) a 12.5 (0–20.6) a 11.9 (0.8–17.2) a 12.3 (0.8–17.2) a 7.9 (0–14) b 

Physico-chemical  

factors 

pH 8.3 (7.6–9) a 8.1 (7.3–8.9)a, b 8.2 (7.6–8.7) a 8.2 (7.5–8.8) a 7.9 (7.4–8.4) b 

EC (μS/cm) 181.4 (82.9–204.8) d 285.7 (106.0–398.0)b, c 231.4 (133.2–284.9)c 311.9 (171.6–377.5) b 471 (302–542.2) a 

BOD (mg/L) 1.6 (1–2)c 2.5 (1.2–3.2) b 2.7 (1.3–3.4)b 2.7 (1.4–3.4) b 5.6 (3.3–7.2) a 

TN (mg/L) 2 (1.3–2.3) b 2.7 (1.3–3.3) b 2.2 (1–2.9) b 2.5 (1.2–3.3) b 5.7 (3.4–6.7) a 

TP (mg/L) 0.03 (0.01–0.03) c 0.11 (0.02–0.11) b 0.07 (0.02–0.08) b 0.11 (0.02–0.14) b 0.3 (0.1–0.4) a 

Chlorophyll-a (μg/L) 2.3 (0.4–2.6)c 5.6 (0.5–5.4)ab 5.8 (1–7)a 5.4 (0.4–4.7) b 7.8 (1.4–4.5) a 
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3.5. Characteristics of Fish Assemblages 

Community indices, tolerance guilds, and trophic guilds were significantly different among the five 

SOM clusters (K–W test, P < 0.05) (Figure 4). Species richness, the number of individuals, the 

Shannon index, and evenness showed similar patterns. Community indices, except for the number of 

individuals, were significantly higher in cluster III, and the lowest in cluster II (Dunn’s test, P < 0.05). 

The ratio of insectivores to herbivores among the feeding guilds was relatively high in cluster I and 

was the lowest in cluster V (Figure 5).  

Figure 4. Mean differences (±S.E.) in community indices for five clusters defined by the 

self-organizing map (SOM): (a) species richness, (b) number of individuals, (c) Shannon 

index, and (d) evenness. Different letters indicate significant differences between the 

clusters based on Dunn’s test after a Kruskal–Wallis test (P < 0.05). 

 

Figure 5. (a) Differences in tolerance and (b) trophic guilds for five clusters defined by the 

self-organizing map (SOM). 
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The proportion of herbivores showed a similar pattern to that of insectivores, and was 

significantly higher in cluster I than in all other clusters except cluster II (Dunn’s test, P < 0.05). The 

proportion of omnivores was higher in cluster V, whereas that of piscivores was higher in cluster IV 

(Dunn’s test, P < 0.05). 

3.6. Prediction of Fish Assemblages  

All five clusters were well predicted by random forest models (prediction accuracy > 0.75) 

according to several different combinations of environmental factors across multiple spatial scales 

(Table 5). When all 14 environmental factors were considered as independent variables, the prediction 

accuracy was the highest (>0.85). The prediction accuracies were low when only the four land cover 

types were used. Cluster I had higher abundances of Z. koreanus, Coreoleuciscus splendidus, and 

Tridentiger brevispinis, and cluster II had a high abundance of Rhynchocypris oxycephalus (Figure 6). 

Cluster IV was characterized by a relatively high abundance of T. brevispinis and Z. platypus, whereas 

cluster V was represented by Carassius auratus and H. eigenmanni. 

Table 5. Prediction for each cluster using the random forest model with different 

combinations of environmental variables.  

Cluster  Geo Land WQI Geo + land Geo + WQI Land + WQI Total 

I 
Prediction rate 0.89 0.84 0.89 0.89 0.91 0.89 0.92 

Kappa (k) 0.60 0.36 0.62 0.62 0.68 0.62 0.74 

II 
Prediction rate 0.87 0.83 0.85 0.88 0.89 0.84 0.89 

Kappa (k) 0.41 0.00 0.16 0.47 0.49 0.11 0.51 

III 
Prediction rate 0.85 0.81 0.86 0.86 0.88 0.88 0.88 

Kappa (k) 0.37 0.07 0.41 0.42 0.51 0.50 0.53 

IV 
Prediction rate 0.80 0.76 0.77 0.83 0.86 0.81 0.88 

Kappa (k) 0.32 0.14 0.18 0.44 0.58 0.35 0.63 

V 
Prediction rate 0.88 0.88 0.93 0.92 0.93 0.94 0.94 

Kappa (k) 0.32 0.40 0.69 0.60 0.69 0.74 0.74 

Geo: geo-hydrological factors; Land: land cover types; WQI: physicochemical factors; Total: all 14 

environmental factors. 

The occurrences of 15 indicator species (Table 6) were well predicted with 14 environmental 

factors using the random forest model (accuracy rate >0.85). H. eigenmanni and Sarcocheilichthys 

variegatus displayed the highest prediction accuracy (0.96 and 0.95, respectively). Altitude and DFS 

were the most important variables for the prediction of fish occurrence. Forest area, stream order, TP, 

and conductivity were also relatively important for the prediction of fish occurrence. 
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Figure 6. Relative abundance of 25 dominant species in difference clusters. Values were 

obtained from weight vectors of the trained self-organizing map (SOM) (boxplot: - median, 

 25-75% percentiles,  non-outlier range).  

 

Altitude was the most important variable for the prediction of fish community patterns in clusters I, 

III, and IV (Figure 7); while DFS was the most important variable for cluster II and TN was the most 

important for cluster V. 

Figure 7. Importance of environmental variables in each cluster defined in SOM using a 

random forest model. 

 
 

a) b) c)

e)d)
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Table 6. Prediction of fish species and evaluation of variable importance using the random forest model. 

Species Prediction rate Kappa (k) 
Important factors (MDL) Cluster 

1st 2nd Indicator Dominance 

Zacco platypus 0.88 0.63 DFS (100) Altitude (45.7) III III 

Liobagrus andersoni 0.93 0.13 Urban (100) pH (97.1) I I 

Sarcocheilichthys variegatus 0.95 0.55 DFS (100) Conductivity (61.3) III III 

Iksookimia koreensis 0.92 0.66 Altitude (100) DFS (44.3) I I 

Zacco koreanus 0.90 0.76 Altitude (100) TP (42.6) I I 

Cyprinus carpio 0.93 0.68 TN (100) TP (88.2) V V 

Coreoleuciscus splendidus 0.94 0.82 Altitude (100) DFS (78.9) I I 

Koreocobitis rotundicaudata 0.92 0.31 Urban (100) DFS (68.4) I I 

Carassius auratus 0.89 0.75 TP (100) Forest (57.2) V V 

Pseudogobio esocinus 0.91 0.81 DFS (100) Stream order (60.6) III III 

Microphysogobio longidorsalis 0.95 0.58 Altitude (100) DFS (78.4) I I 

Microphysogobio yaluensis 0.90 0.65 Altitude (100) BOD (47.3) III III 

Pungtungia herzi 0.90 0.79 Altitude (100) Conductivity (80.0) I, III III 

Coreoperca herzi 0.93 0.75 DFS (100) TP (66.0) I I 

Squalidus gracilis 0.89 0.54 Altitude (100) Paddy field (79.1) III III 

Rhynchocypris oxycephalus 0.93 0.62 DFS (100) Altitude (65.6) - II 

Hemiculter eigenmanni 0.96 0.62 Altitude (100) Forest (74.3) - V 

Tridentiger brevispinis 0.92 0.22 DFS (100) Stream order (36.4) - I 
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3.7. Theoretical Path Model 

Different species showed different responses to their environment across multiple spatial scales. 

Among geo-hydrological factors, altitude was positively correlated with Iksookimia koreensis, which 

was an indicator species of cluster I, whereas Carassius auratus, which was an indicator species of 

cluster V, displayed a negative correlation (r = 0.37 and r = −0.36, respectively, P < 0.05) (Figure 8). 

Rhynchocypris oxycephalus and S. variegatus showed a highly significant correlation with DFS  

(r = −0.36 and r = 0.29, respectively, P < 0.05). At the local scale, the presence of S. variegatus and 

Opsariichthys uncirostris was positively correlated with the concentration of Chl-a (r = 0.17 and  

r = 0.22, respectively, P < 0.05), whereas other species exhibited a significant relationship with TP  

(r = −0.27 in I. koreensis, r = −0.11 in R. oxycephalus, and r = 0.41 in C. auratus, P < 0.05).  

Figure 8. Path diagrams to estimate the relationship between environmental variables in 3 

different subgroups (geo-hydrology, land cover type, physicochemistry) and prevalence of 

major species in each cluster by the self-organizing map (SOM). (a) Structure of path 

diagram, (b) Iksookimia koreensis (major species in cluster I), (c) Rhynchocypris 

oxycephalus (major species in cluster II), (d) Sarcocheilichthys variegatus (major species 

in cluster III), (e) Opsariichthys uncirostris (major species in cluster IV), and (f) Carassius 

auratus (major species in cluster V). Arrows represent directed relationships. Solid lines 

indicate significantly (P < 0.05) positive relationships and broken lines indicate 

significantly (P < 0.05) negative relationships. R2 values by linear multiple regression are 

shown in bold. 

 

Forest area was the most important land cover variable for evaluating the relationship between the 

appearance of major species in each cluster and environmental variables. Forest area showed a 

negative correlation with O. uncirostris and C. auratus (r = −0.19 and r = −0.36, respectively,  

P < 0.05), while the other three major species exhibited positive correlations.  
  

a) b) c)

d) e) f)
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4. Discussion 

The distribution and abundance of fish communities were characterized with environmental 

variables across multiple spatial scales using SOM, random forest, and theoretical path models. In this 

study, we characterized how Korean fish assemblages on a national scale react to changes in the 

modified longitudinal gradient with various environmental variables at multiple spatial scales, and 

presented the importance of altitude, DFS, and urban areas for predicting fish community patterns and 

the occurrence of fish species. These results could provide necessary information for managing fish 

assemblages and the relationships between changes in fish assemblage and environmental variables. 

SOM revealed differences among fish communities, reflecting environmental gradients such as the 

longitudinal gradient from upstream to downstream, and differences in land cover, water quality, etc. 

For example, sites in cluster I were from small streams (25.7% of the streams less than third order with 

high altitude and short DFS), whereas most sites in cluster IV were located further downstream (39.9% 

of streams were greater than the seventh order with low altitude and long DFS). Species richness and 

abundance were significantly lower at downstream sites, and high values were found at mid-stream 

sites. However, previous studies have reported trends where the lowest species richness and abundance 

is found in headwater streams and the highest levels are downstream at low altitudes [13,60–63]. These 

studies highlighted the importance of habitat size, because the larger area supported higher species 

richness and abundance. However, this concept was primarily applied to areas without disturbances. In 

the current study, the sampling sites showed a wide range of disturbances but general longitudinal 

gradients of fish species richness were observed after excluding severely polluted sites from the 

analysis. Oberdorff et al. [64] support our findings that species richness reached the maximum in 

midsize rivers, and then decreased in large rivers. The proportion of forest area decreased downstream, 

whereas agricultural and urban areas increased, creating an increase in nutrient and pollutant inputs to 

streams [65]. The moderate increase of nutrients in the middle stream led to increased species richness, 

while high nutrients may have reduced the species richness. This supports the intermediate disturbance 

hypothesis [66–68]. 

Trophic guilds as well as species richness changed along the upstream-downstream gradient. This 

result supported the River Continuum Concept [69]. The proportions of herbivores and insectivores 

were significantly higher further upstream than downstream, whereas the proportion of omnivores was 

relatively high downstream (Figure 5). The trophic composition of the fish communities was induced 

by the available food resources [64]. Lowe-McConnell [70] and Rahel and Hubert [71] reported 

similar results; headwater streams had higher proportions of insectivorous species, while omnivores 

were more common in large rivers. These gradients in longitudinal distribution were found at the 

species level (Figure 6). Insectivores such as Iksookimia koreensis, C. splendidus, and Z. koreanus 

were mainly distributed in cluster I, and their relative abundance gradually decrease towards clusters 

III and IV. Piscivores, such as O. uncirostris, showed relatively high abundance in cluster IV, and 

gradually decreased toward cluster I. 

Urbanization was correlated with low fish abundance and richness and urban sites were dominated 

by disturbance-tolerant species [72]. Urbanization can lead to high concentrations of TP and TN [73], 

however, fish diversity and abundances in urban catchments have been found to be dramatically lower 

than in forested catchments [74–76]. This relationship indicates that urbanization can exert a major 
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influence on water quality, habitat, and biological assemblages [65]. Similarly, agricultural 

exploitation can also influence aquatic organisms and their environments. Many studies have reported 

that agricultural activities degrade water quality, affect both riparian and stream habitat quality, and 

alter water flow [65]. Fish and macroinvertebrate biodiversity has been documented to decrease with a 

greater percentage of agricultural land [77–79]. 

Fish assemblages can be influenced by changes in environmental variables such as physical habitat 

and land use [80–83]. Stream gradient, stream order, hydrologic regime, and channel morphology were 

highly correlated with species richness [84–86]. Joy and Death [87] showed that altitude and distance 

from the coast were important in a model predicting regional freshwater fish occurrence in the 

Manawatu–Wanganui region of New Zealand. He et al. [27] also stated that altitude and stream length 

played important roles in driving the observed endemic fish assemblage structure. Altitude and DFS 

were also important variables for the prediction of fish community patterns in this study (Figure 7). 

Especially, altitude was the most important variable for the prediction of fish community pattern in 

Clusters I, III and IV, an indication of longitudinal gradients. 

Altitude and DFS were the most important factors in 11 of the 15 indicator species. These 11 were 

indicator species for clusters I and III, which had relatively high altitude. Coreoperca herzi was an 

indicator species for cluster I, and DFS and TP were relatively important for predicting the occurrence 

of C. herzi. Samples in cluster I were located in upstream locations with a short DFS and a low 

concentration of TP (Table 4). Urban land cover was the most important variable for predicting the 

distribution of Liobagrus andersoni and Koreocobitis rotundicaudata, which were indicator species of 

cluster I. Changes in land use can affect assemblage composition, and lead to changes in the 

contaminant level of streams [88]. TN and TP were the most important variables for predicting the 

distribution of Cyprinus carpio and C. auratus, which were indicator species for cluster V. 

Similarly, the theoretical path model described different responses of species to their environment at 

multiple spatial scales (Figure 8). Geographical attributes persist over a relatively long time and 

influence the development and selection of species’ life history and behavioral traits [89]; and the 

surrounding conditions (e.g., slope and stream order) of a stream can also directly and indirectly affect 

stream habitats [1,90]. The theoretical path model showed significant correlations between geo-

hydrological factors, land cover types, and physicochemical factors. Among land cover types, forest 

area displayed the highest correlation with five dominant species, and Chl-a and TP were the most 

important physicochemical factors for explaining species occurrences, indicating the importance of 

water quality in micro-habitat condition. Li et al. [1] reported similar results on benthic macro-

invertebrates in the same study area. There are many reports of a strong correlation between 

geographical location and stream communities [91,92] and of the importance of altitude [3,93].  

The random forest model is a non-parametric method for predicting and assessing the relationship 

between a large number of potential predictor variables and response variables [47]. Cutler et al. [48] 

reported that the random forest model demonstrated its learning and predicative power as well as its 

explanatory capacities by presenting a high capability for modeling ecological problems involving 

non-linear relationships between data. Random forest models have several advantages compared to 

other statistical methods, such as high classification accuracy, a novel method of determining variable 

importance, and the ability to model complex interactions among predictor variables [48]. Therefore, 

the random forest model offers powerful alternatives to traditional parametric and semiparametric 
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statistical methods for the analysis of ecological data. In addition, He et al. [27] showed that mixed 

models that included both land cover and river characteristic variables were more powerful at 

explaining the endemic fish distribution patterns in the upper Yangtze River, similar to our results. In 

our study, the random forest model was more powerful for predicting fish community patterns using 

all 14 environmental factors than models using either a single variable or another combination of 

environmental variables (Table 5). 

Many studies have been conducted on the relationships between changes in fish community structure 

and environmental variables [71,82,83], and most studies have considered some environmental variables 

such as physical habitat and land use at the local or watershed scale [94]. Although the distribution and 

abundance of species are closely linked to small-scale habitat availability [95], they are also influenced 

by variables at larger spatial scales [91]. Regional variables may operate as “filters” constraining 

species at lower scales through selective habitat forces [22]. Consequently, preservation and 

conservation strategies for maintaining stream integrity will be more effective if they are treated as a 

part of landscape development rather than an isolated entity [1]. Future studies to benefit conservation 

and management may consider the influences of global processes on biodiversity, the interactions 

between these three spatial scales, and the effects of global warming on fish communities.  

5. Conclusions  

The relationships between the distribution and abundance of fish communities and environmental 

variables at multiple spatial scales were evaluated using SOM, random forest, and theoretical path 

models. The SOM explored differences among fish communities, reflecting environmental gradients, 

such as a longitudinal gradient from upstream to downstream, and differences in land cover types and 

water quality. The random forest model for predicting fish community patterns that used all 14 

environmental variables was more powerful than a model using any single variable or other 

combination of environmental variables, and the random forest model was effective at predicting the 

occurrence of species and evaluating the contribution of environmental variables to that prediction. 

The theoretical path model described the responses of different species to their environment at multiple 

spatial scales, showing the importance of altitude in geo-hydrological factors, forest cover types, and 

water quality factors to fish assemblages.  
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