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Abstract: Concerns about the water quality in Yuan-Yang Lake (YYL), a shallow, 

subtropical alpine lake located in north-central Taiwan, has been rapidly increasing 

recently due to the natural and anthropogenic pollution. In order to understand the 

underlying physical and chemical processes as well as their associated spatial distribution 

in YYL, this study analyzes fourteen physico-chemical water quality parameters recorded 

at the eight sampling stations during 2008–2010 by using multivariate statistical techniques 

and a geostatistical method. Hierarchical clustering analysis (CA) is first applied to 

distinguish the three general water quality patterns among the stations, followed by the use 

of principle component analysis (PCA) and factor analysis (FA) to extract and recognize 

the major underlying factors contributing to the variations among the water quality 

measures. The spatial distribution of the identified major contributing factors is obtained 

by using a kriging method. Results show that four principal components i.e., nitrogen 

nutrients, meteorological factor, turbidity and nitrate factors, account for 65.52% of the 

total variance among the water quality parameters. The spatial distribution of principal 

components further confirms that nitrogen sources constitute an important pollutant 

contribution in the YYL. 
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1. Introduction 

Water quality is the main factor controlling healthly and diseased states in both humans and animals. 

Surface water quality is an essential component of the natural environment and a matter of serious 

concern today. The variations of water quality are essentially the combination of both anthropogenic 

and natural contributions. In general, the anthropogenic discharges constitute a constant source of 

pollution, whereas surface runoff is a seasonal phenomenon which is affected by climate within the 

water catchment basin [1]. Among them, because of the intensive human activities, the anthropogenic 

inputs from a variety of sources are commonly the primary factors affecting the water quality of most 

rivers, lakes, estuaries, and seas, especially for those close to highly urbanized regions.  

Many investigations have been conducted on anthropogenic contaminants of ecosystems [2-4]. 

Because of the spatial and temporal variations in water quality conditions, a monitoring program which 

provides a representative and reliable estimation of the quality of surface waters is necessary. The 

monitoring results produce a large and complicated data matrix that is difficult to interpret to draw 

meaningful conclusions. Multivariate statistical techniques are powerful tools for analyzing large 

numbers of samples collected in surveys, classifying assemblages and assessing human impacts on 

water quality and ecosystem conditions.  

The application of different multivariate statistical techniques, such as principal component analysis 

(PCA), factor analysis (FA), cluster analysis (CA), and discriminate analysis (DA), assists in the 

interpretation of complex data matrices for a better understanding of water quality and ecological 

characteristics of a study area. These techniques provide the identification of possible sources that 

affect water environmental systems and offer a valuable tool for reliable management of water 

resources as well as rapid solution for pollution issues [5-7]. Multivariate statistical techniques have 

been widely adopted to analyze and evaluate surface and freshwater water quality, and are useful to 

verify temporal and spatial variations caused by natural and anthropogenic factors linked to 

seasonality [8,9]. 

Geostatistical mapping is based on field observations. Because field surveys are limited by the cost 

of sampling, only sparse observation data are generally available. Geostatistical mapping or further 

analysis requires the assessment of exhaustive attribution values for an entire study area. Geostatistical 

mapping techniques have been widely applied to different fields including water quality in bays [10] 

watersheds [11], soil properties [12], precipitation [13], river discharges [14], air pollution [15], and so 

on. To the best of our knowledge, geostatistical mapping has not been adopted for studying water 

quality data in lakes.  

The objective of the present study was to analyze 14 physico-chemical water quality parameters in 

water samples collected on monthly basis from 2008 to 2010 in a subtropical alpine lake (Yuan-Yang 

Lake) in Taiwan. The data matrix obtained from field measurement was subjected to the CA, PCA, and 

FA techniques, as well as geostatistical mapping to evaluate information about the similarities between 
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sampling stations and to ascertain the important contributions of nutrient sources among water quality 

parameters in the alpine lake. 

2. Materials and Methods 

2.1. Study Site and Sample Collection 

The Long-Term Ecological Research (LTER) program is one of the core projects of the Global 

Change and Terrestrial Ecosystem program (GCTE), which is under the umbrella of the International 

Geosphere-Biosphere Program (IGBP). An understanding of ecological processes and of mechanisms 

leading to ecologically tragic events is particularly important for the sustainability of Taiwan Island. 

To meet such a requirement, the LTER project was initiated in 1992 on the island. Yuan-Yang Lake 

(YYL) is one of the six LTER sites and the only site associated with a mountain lake ecosystem in 

Taiwan. YYL, a small (3.6 ha) and shallow (4.5 m maximum depth) lake in a mountainous catchment 

1,730 m above sea level, is located in the northeastern region of Taiwan (24°35′ N, 121°24′ E) 

(Figure 1). The lake and surrounding catchment (374 ha) were designated as a long-term ecological 

study site by the Taiwan National Science Council in 1992 and joined the Global Lake Ecological 

Observatory Network (GLEON) in 2004. The lake is an important site for studying physical 

characteristics, water quality, and ecosystems. Recently, the lake has been subject to pollution sources 

from recreational activities, therefore the investigation of water quality is urgent and necessary.  

The steep watersheds are dominated by pristine Taiwan false cypress [Chamaecyparis obtusa Sieb. 

& Zucc. var. formosana (Hayata) Rehder] forest. The average annual temperature is approximately 

13 °C (monthly average ranges from −5 to 15 °C) and the annual precipitation is more than 4,000 mm. 

YYL is subject to three to seven typhoons in summer and autumn each year, during which more than 

1,700 mm of precipitation may fall on the lake.  

The sampling network including eight measured stations was designed to cover a wide range of key 

locations accounting for inflow and outflow (Figure 1). Stations 1 and 2 are located at shallow area 

which is a swamp (shallow) zone. Stations 3 to 8 are located at the middle and deep zones. Station 4 is 

near by water inflow site, while station 5 is close to the site of lake water outflow.  

Water temperatures were measured through the water column at 0.5 m increments using a 

thermistor chain (Templine, Apprise Technologies, Inc. Duluth, MN, USA). Wind speed was 

measured 1 m above the lake by an anemometer (model 03001, R.M. Young, Traverse, MI, USA). 

Precipitation, air temperature and downwelling photosynthetically active radiation (PAR) were 

measured at a land-based meteorological station approximately 1 km away from the lake. Variation in 

water levels was measured using a submersible pressure transmitter [PS 9800(1), Instrumentation 

Northwest, Kirkland, WA, USA] deployed at the lake shore (Figure 1). The attenuation of irradiance 

by the water column, in the 400–700 nm bands, was measured using a Licor underwater quantum flat 

head sensor. The outputs from the senor were stored using Licor data logger in the field, and converted 

to light measurements in the laboratory.  



Int. J. Environ. Res. Public Health 2011, 8         

 

 

1129 

Figure 1. Location of Yuan-Yang Lake (YYL) in Taiwan and eight measurement stations in YYL. 

 

 

The pH, turbidity, and Secchi depth were measured in situ. Dissolved oxygen concentration was 

measured with a dissolved oxygen meter (Yellow Springs Instruments Company USA, Model 550A). 

The water samples, collected using an open water grab sampler equipped with a sample pull-ring that 

allowed for sampling at different water depths, were analyzed and measured in laboratory to obtain 

total suspended solids (TSS), nutrients (nitrate nitrogen, ammonium nitrogen, total nitrogen, and total 

phosphorus), and chlorophyll a concentrations. Chlorophyll a was measured by filtering with 600 cm
3
 

samples through a glass fiber filter. The filter paper itself was used for the analysis. The filtering was 

group up 90% acetone solution and fluorometer is used to read the light transmission, which in turn 

was used to calculate the concentration of chlorophyll a. TSS and nutrients, concentration was 

analyzed using the US EPA standard method 160.1 [16]. 

2.2. Cluster Analysis 

CA is an unsupervised pattern recognition method that divides a large amount of cases into smaller 

groups or clusters based on the characteristics they process. The resulting clusters of objects should 

exhibit high internal (within cluster) homogeneity and high external (between clusters) heterogeneity. 

Hierarchical CA is the most common approach, which starts with each case in a separate cluster and 

joints the clusters together step by step until only one cluster remains and is typically illustrated by a 
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dendrogram (tree diagram). The dendrogram provides a visual summary of the clustering process, 

presenting a picture of the groups and their proximity, with a dramatic reduction in dimensionality of 

original data. The Euclidean distance usually provides the similarity between two samples and a 

distance can be represented by the difference between analytical values from samples. In the present 

study, hierarchical CA was adopted to the standardized data using Ward’s method, with Euclidean 

distance as a measure of similarity. The Ward method applies an analysis of variance approach to 

assess the distances between clusters to minimize the sum of squares of any two clusters that can be 

formed at each step. The spatial variability of water quality in the lake was determined from 

hierarchical CA using the linkage distance [17-19].  

2.3. Principal Component Analysis/Factor Analysis 

Principal component analysis is a data analysis method focused on a particular collection of 

variables. Consider the form of the first principal component. The score for individual i on component, 

1ic , uses weight 
11w , ….., 1pw  in the linear combination: 

1 1 11 2 22 1...i i i ip pc y w y w y w     (1) 

The linear combination is chosen so that the sum of squares of 
1c  is as large as possible subject to the 

condition that 
2 2

11 1..... 1pw w   . The second principal component is another linear combination of yj
:
 

2 1 12 2 22 2...i i i ip pc y w y w y w     (2) 

where the variance 
2c  is the maximal, subject to the conditions that corr(

1c , 
2c )=0 and that 

2 2

12 2...... 1.pw w    The criterion of summarizing the information in p  variables by a few components 

is valuable as a means of reducing the number of variables needed in an analysis [20]. 

FA follows PCA. FA focuses on reducing the contribution of less significant variables to simplify 

even more of the data structure coming from PCA. This purpose can be implemented by rotating the 

axis defined by PCA based on well established rules, and constructing new variables, also called 

varifacrors (VFs). PCA of the normalized variables was performed to extract significant PCs and to 

further reduce the contribution of variables with minor significance; these PCs were subjected to 

varimax rotation (raw) generating VFs [21,22].  

The FA can be written as: 

1 1 2 2 ...ji j i j i jm im ijy f z f z f z e      (3) 

where y  is the measured variable, f  is the factor loading, z  is the factor score, e  is the residual term 

accounting for errors, i  is the sample number and m  is the total number of factors. The multivariate 

statistical technique calculations were implemented using STATISTICA 8 [23] and Microsoft Office 

Excel 2007. 

2.4. Geostatistical Mapping 

Geostatistical mapping can be defined as the analytical production of maps by using field 

observations, auxiliary information and a computer program that generates predictions. The isotropic 

semivariogram are estimated to characterize the relationship between general spatial dependence and 
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distance among the observations. Different semivariogram models, e.g., exponential and Gaussian 

models, nested with nugget effects are selected separately with respect to different principle 

components or factor scores. The optimal parameters for semivariogram models are calculated by the 

weighted least squares method [24]. Despite the concerns about the spatial non-orthogonality, the 

cross-correlations between different principle components or factor scores are calculated [25,26]. It 

shows that the cross-correlations increase as the spatial lags increases; however, the maximum  

cross-correlations are still small and less than 0.4. This study then assumes the spatial orthogonality of 

the principle components as well as the factor scores. The use of simple kriging usually requires the 

knowledge of the underlying space/time trend of the attributes of concern. However, it is not available 

for the modeling of “transformed” variables in this study. In these cases, many studies use 

nonparametric method for the trend modeling. Therefore, in this study, ordinary kriging is used for the 

spatial mapping which considers a non-parametric trend as well the spatial association among the 

attributes concurrently. All the geostatistical analysis computations of this study were performed on 

SEKSGUI, which is freely and publicly available [27].  

3. Results and Discussion 

The measured results of 14 physico-chemical water quality parameters at eight sampling stations 

from August 2008 to June 2010 in the YYL are presented in Table 1. 

3.1. Spatial Similarity with CA 

Cluster analysis was applied to find out the similarity groups between the sampling stations. It 

produced a dendogram (Figure 2), grouping all eight sampling stations into three statistically 

meaningful clusters.  

Figure 2. Dendrogram of cluster analysis for sampling stations accroding to water quality 

paramters of YYL. 
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Table 1. Results of water quality parameters at eight sampling in the YYL. 

Parameter Abbreviation  Station 1  Station 2 Station 3 Station 4 Station 5 Station 6 Station 7 Station 8 

Temperature (oC)  Temp 12.4   2.88 13.63   3.80 14.30   3.41 14.41   3.66 14.67   3.62 13.86  3.24 13.83  3.49 14.47   3.75 

Dissolved Oxygen (mg/L) DO 5.82   0.89 6.49   0.92 6.85   0.75 6.79   1.08 6.57   1.26 6.11   1.40 6.01   1.30 6.78   0.82 

Secchi Depth (m) SD 0.65   0.12 0.86   0.14 1.79   0.39 1.69   0.40 1.79   0.44 1.95   0.41 1.92   0.39 1.84   0.36 

Total Phosphorus (mg/L) TP 0.011  0.005 0.014  0.008 0.012   0.006 0.011   0.006 0.009   0.004 0.009   0.004 0.010  0.004 0.009   0.003 

Total Nitrogen (mg/L) TN 0.528   0.169 0.544  0.219 0.452   0.196 0.427   0.115 0.432   0.144 0.454   0.184 0.448  0.166 0.422   0.169 

Ammonium Nitrogen 

(mg/L) 
NH4-N 0.080   0.112 0.078   0.057 0.074   0.039 0.051  0.037 0.055   0.031 0.097   0.085 0.100  0.102 0.077   0.089 

Nitrate Nitrogen (mg/L) NO3-N 0.111   0.053 0.071   0.038 0.083   0.045 0.092   0.042 0.091   0.044 0.097   0.044 0.095  0.041 0.097   0.045 

Total Suspended Solids 

(mg/L) 
TSS 5.38   4.02 5.87   3.88 3.79   2.73 3.19   1.95 4.18   2.84 3.44   3.07 3.90   3.73 3.57   2.74 

Turbidity (NTU) Turb 14.10   7.60 16.24   7.31 15.18   6.36 15.25   6.95 16.14   7.72 18.23   7.81 18.52   8.65 15.83   6.45 

Chlorophyll a (µg/L) Chl-a 4.20   3.44 7.33   6.68 4.50   3.17 3.49   2.05 3.11   1.98 6.39   5.68 7.78   10.14 3.83   2.35 

pH (pH unit) pH 5.89   0.43 6.30   0.45 6.42   0.39 6.43   0.29 6.49   0.38 6.41   0.29 6.48   0.32 6.48   0.34 

Light attenuation 

coefficient (m−1) 
Ke 4.78   2.52 4.87   2.48 2.68   1.17 2.58   1.30 2.67   1.27 2.84   1.26 2.37   0.87 4.35   1.97 

Wind Speed (m/s) WS 0.744  0.182 0.744   0.182 0.744  0.182 0.744  0.182 0.744   0.182 0.744  0.182 0.744   0.182 0.744 ± 0.182 

Rainfall (mm) R 4.318  7.048 4.318   7.048 4.318  7.048 4.318   7.048 4.318   7.048 4.318  7.048 4.318   7.048 4.318   7.048 

Note: Values represent mean standard deviation. 
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The two measurement stations (1 and 2) are regarded as the cluster 2 which comprises the shallow 

area. Stations 3, 4, 5, and 8 are cluster 1 which corresponds to the middle water depth. Stations 6 and 7 

belonging to the deep zone which constitutes cluster 3. The results show that the CA technique is 

useful for classification of lake waters, hence, the number of sampling sites and respective cost can be 

diminished in future monitoring plans. There are other reports [28-30], with similar water quality 

program results. 

3.2. Principal Component Analysis and Pollution Identification 

Pattern recognition of correlations among 14 parameters was best summarized by PCA/FA. The 

Bartlett test was used on the data set to examine the suitability of these data for PCA/FA. In this study, 

the covariance matrix coincided with the correlation matrix which was presented in Table 2, because 

FA/PCA was applied to normalized data. Overall, the correlations between variables were relatively 

weak. There are some positive correlations between some variables such as TP, NH4-N, TN, TSS,  

Chl-a, and so on. The negative correlations were revealed between some variables such as DO, Temp, 

NH4-N, TN, Chl-a, Turb, and so on. Correlation coefficients of two elements were very useful, because 

they numerically represented the similarity between two elements of the two water quality variables. 

This also indicated that PCA could successfully reduce the dimensionality of the original data set. 

Therefore factor analysis of the present data set further reduced the contribution of less significant 

variables obtained from PCA. 

The Scree plot (shown in Figure 3) was applied to identify the number of PCs to be retained to 

understand the underlying data structure. Based on the Scree plot and the eigenvalues >1 criterion, four 

factors were chosen as principal factors, explaining 65.52% of the total variance in the data set. The 

corresponding VFs, variables loadings, eigenvalues, and explained variance are presented in Table 3. 

Figure 3. Scree plot of the characteristic roots (eigenvalues) of principal component analysis. 
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Table 2. Correlation matrix of water quality parameters of YYL. 

 Temp DO WS R SD TP NH4-N NO3-N TN TSS Chl-a Turb pH Ke 

Temp 1 
             

DO −0.38 ** 1 
            

WS  −0.07 −0.04 1 
           

R  0.1 0.1 −0.77 ** 1 
          

SD −0.12 0.26 * −0.02 0.02 1 
         

TP 0.24 * −0.15 −0.32 ** −0.26 * −0.27 * 1 
        

NH4-N 0.30 ** −0.27 * −0.25 * −0.32 ** −0.18 0.37 ** 1 
       

NO3-N −0.26 * −0.10 0.21 0.22 * 0.13 −0.28 ** 0.04 1 
      

TN 0.26 * −0.46 ** 0.17 −0.21 −0.23 * 0.24 * 0.35 ** 0.16 1 
     

TSS 0.15 −0.23 * −0.33 ** −0.32 ** −0.18 0.51 ** 0.37 ** 0.12 0.25 * 1 
    

Chl-a 0.17 −0.34 ** −0.34 ** 0.28 * −0.14 0.39 ** 0.48 ** −0.10 0.27 * 0.59 ** 1 
   

Turb 0.36 ** −0.48 ** −0.18 −0.20 0.01 −0.14 0.55 ** 0.16 0.36 ** 0.29 ** 0.42 ** 1 
  

pH 0.02 0.36 ** −0.19 0.17 0.38 ** −0.05 −0.11 −0.30 ** −0.37 ** −0.18 −0.09 −0.18 1 
 

Ke −0.11 −0.15 −0.01 0.14 −0.38 ** 0.04 −0.08 0.07 0.24 * 0.11 0.13 −0.08 −0.36 ** 1 

* Values are statistically significant at p < 0.01; ** values are statistically significant at p < 0.05. 
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Table 3. Loading of 14 parameters on significant VFs for water quality data set. 

Parameters 
Four significant PCs 

VF1 VF2 VF3 VF4 

Temp 0.465 0.038 0.309 −0.623 

0.171 

−0.237 

0.218 

0.254 

−0.218 

0.051 

0.704 

−0.105 

0.310 

0.148 

0.110 

−0.214 

0.132 

DO −0.582 0.437 −0.205 

WS −0.409 −0.696 0.201 

R 0.383 0.735 −0.105 

SD −0.367 0.330 0.581 

TP 0.610 0.224 −0.309 

NH4-N 0.718 0.096 0.252 

NO3-N −0.043 −0.460 0.299 

TN 0.536 −0.543 0.118 

TSS 0.698 0.111 −0.163 

Chl-a 0.737 0.133 −0.047 

Turb 0.655 −0.067 0.533 

pH −0.314 0.649 0.217 

Ke 0.162 −0.429 −0.627 

Eigenvalue 3.76 2.53 1.54 1.34 

Percentage of total variance 26.89 18.08 11.02 9.54 

Cumulative percentage  

of variance 
26.89 44.96 55.98 65.52 

 

Liu et al. [31] classified the factor loadings as “strong”, “moderate”, and “weak”, corresponding to 

absolute loading values of >0.75, 0.75–0.50, and 0.50–0.30, respectively. The first factor (VF1), 

explaining 26.89% of total variance, had moderate positive loadings on TP, NH4-N, TSS, Chl-a, and 

Turb (turbidity). Because the NH4-N concentration is a nutrient source for chlorophyll a growth, VF1 

represented nitrogen source. VF2, which explained 18.08% of total variance, had a moderate positive 

loading on R (rainfall), WS (wind speed), TN, and pH and represents meteorological factors. VF3, 

explaining 11.02% of total variance, has a moderate positive loading on Ke, SD, and Turb (turbidity). 

This factor represents the contribution of turbidity effects in the water column. VF4, explaining 9.54% 

of total variance, had a moderate positive loading on NO3-N and water temperature and represented the 

nitrate factor. The analyzed results revealed that FA/PCA can serve as an important means to identify 

the main factors affecting water quality in the alpine lake. 

3.3. Geostatistical Mapping 

Geostatisitcal techniques were used for the mapping of principle components and factor scores over 

the study area. Due to the long period between each observation campaign, the temporal correlation 

among the observations is assumed to be ignorable in this analysis. Table 4 shows that the spatial 

dependence structure varies across the identified contributing factors by the common multivariate 

analysis. It implies the variation of spatial patterns of impacts to water quality from the contributing 

factors. Among them, the impact of nitrogen nutrients changes more significantly over space than 

other contributing factors. The experimental and modeled variograms of PC1 and FA1 are shown in 

Figure 4. The variogram figure in time for PC1 and FA1 is also presented in Figure 5. It is clear that 
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the variogram value approximates to sill in cases of the temporal lags in month among observations 

larger than 0. It implies the low correlation between the observations collected in different months. The 

contaminants from nitrogen nutrient are more localized as shown in Figure 6. On the other hand, the 

effects from the sunlight, organic matter, and nitrate nutrition present much smoother variations across 

the study area. This implies the sources of these contributors are more homogeneously distributed over 

the lake. It is noticeable that the range of the semivariogram model of second principle component is 

excessively larger than those of the models of other factors. It implies that the meteorological effects 

derived from PCA contribute a relatively large scale variation of water quality in space with respect to 

the scale of the study area. 

The spatial distribution of the PC and FA can vary over time. Our analysis shows that the spatial 

distributions of PC (or FA) of the observations collected in the same month are generally similar. As 

for the PC obtained at different months, their spatial distribution can be distinct. This variability can 

result from meteorological condition and physico-chemical characteristics.  

Table 4. Variogram models used for spatial mapping. 

Variables Variogram models 

PC1 Nugget[0.031] + Exponential[0.466, 287.106] 

PC2 Nugget[0.007] + Gaussian[5.004, 1116.3] 

PC3 Nugget[0.036] + Gaussian[1.443, 259.137] 

PC4 Nugget[0.018] + Gaussian[0.305, 215.136] 

FA1 Nugget[0.038] + Exponential[0.157, 65.983] 

FA2 Nugget[0.003] + Exponential[0.080, 185.810] 

FA3 Nugget[0.010] + Gaussian[2.056, 383.165] 

FA4 Nugget[0.010] + Gaussian[0.409, 288.627] 

Note: The notations that Nugget[
1s ] + Exponential(or Gaussian)[

2s ,
2r ] denote the nest 

model of nugget model effect of sill 
1s  and exponential (or Gaussian) model of sill 

2s  and 

range 
2r  in meters. PC: Principal Component; FA: Factor Analysis. 

Figure 4. The experimental and modeled variograms of PC1 and FA1. 
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Figure 5. Variograms in time for PC1 and FA1. 

  

Figure 6. Spatial distribution of (a) first principle component and (b) first factor score at 

the time on the measured data of September 12, 2009. 

(a) 

 
(b) 

 

 

The general characteristics can be seen in Figure 7 in which a clear increasing trend from south to 

north of principle component is shown. 
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Figure 7. Spatial distribution of second principle component by ordinary kriging method 

on the measured data of February 14, 2009.  

 

4. Conclusions 

Water quality data collected from eight monitoring stations located around the subtropical alpine 

Yuan-Yang Lake in Taiwan have been examined by unsupervised pattern recognition (CA) and display 

methods (PCA/FA) to yield correlations between variables and water quality similarity in the lake. 

Cluster analysis confirmed the existence of three types of water quality (i.e., shallow, middle and deep 

zones of the lake). The PCA and FA assisted to extract and recognize the factors or origins responsible 

for water quality variations. PCA/FA identified four latent factors that explained 65.52% of total 

variance, namely nitrogen source, meteorological factor, turbidity effect, and nitrate factor, 

respectively. Geostatisitcal techniques were used for the mapping of principle components and factor 

scores in the lake. The results revealed that the impact of nitrogen nutrients changes more significantly 

over space than other contributing factors. It means that nitrogen sources consist of important 

contribution to affect the water quality of the lake. Thus, this study illustrated the usefulness of 

multivariate statistical and geostatistical techniques for the analysis and interpretation of complex data 

set, water quality assessment, and identification of important contribution in nutrient source in 

the YYL.  
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