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Abstract: This paper presents a review of the research on CO2 capture by lime-based 

looping cycles undertaken at CanmetENERGY’s (Ottawa, Canada) research laboratories. 

This is a new and very promising technology that may help in mitigation of global 

warming and climate change caused primarily by the use of fossil fuels. The intensity of 

the anticipated changes urgently requires solutions such as more cost-effective 

technologies for CO2 capture. This new technology is based on the use of lime-based 

sorbents in a dual fluidized bed combustion (FBC) reactor which contains a carbonator—a 

unit for CO2 capture, and a calciner—a unit for CaO regeneration. However, even though 

natural materials are cheap and abundant and very good candidates as solid CO2 carriers, 

their performance in a practical system still shows significant limitations. These limitations 

include rapid loss of activity during the capture cycles, which is a result of sintering, 

attrition, and consequent elutriation from FBC reactors. Therefore, research on sorbent 

performance is critical and this paper reviews some of the promising ways to overcome 

these shortcomings. It is shown that reactivation by steam/water, thermal pre-treatment, 

and doping simultaneously with sorbent reforming and pelletization are promising 

potential solutions to reduce the loss of activity of these sorbents over multiple cycles  

of use. 
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1. Introduction 

It is widely accepted that climate change is being exacerbated by increasing atmospheric 

concentrations of greenhouse gases, and this is a key problem that requires urgent solutions. Fossil fuel 

combustion electrical generation plants represent a major source of anthropogenic CO2. About a third 

of global CO2 emissions come from the burning of fossil fuels in electricity production. Reduction of 

such emissions may significantly decrease total emissions of greenhouse gases. One possible approach 

is the capture of CO2 from flue gas followed by its sequestration in geological formations [1-3]. The 

purpose of CO2 capture is to produce a concentrated stream of CO2, preferably at high pressure, so that 

it can readily be transported to a storage site. Although, in principle, the entire gas stream containing 

low concentrations of CO2 could be transported and injected underground, the energy requirements 

and other associated costs generally make this approach impractical. 

The capture step for CO2 from large point sources is a critical one with respect to the technical 

feasibility and cost of the overall carbon sequestration scenario. CO2 separation is the first and most 

technically challenging and energy intensive step; therefore, much research has been targeted at 

improving current technologies or developing new approaches to CO2 separation. Important new 

classes of technologies for CO2 separation are based on solid looping cycles [4]. Two types of solid 

looping cycles for CO2 separation are chemical-looping combustion (O2 cycles) and CaO-based CO2 

looping cycles. The common characteristic is the use of solids that circulate between two different 

chemical environments with fluidized bed combustion (FBC) systems as an optimal technology. 

A looping cycle process, which employs a solid CaO-based carrier, is schematically presented in 

Figure 1. It may inexpensively and effectively remove CO2 from combustion gases, allowing it to be 

regenerated as a pure CO2 stream suitable for sequestration [4,5]. The use of solids also means that, in 

many cases, FBC systems represent optimal technology for such processes [6-8] since they permit 

large amounts of solids to be transferred easily from one chemical environment to another [9]. The 

deployment of such technologies has the added advantage that both large (>350 MWe) atmospheric 

and pressurized systems also exist [10,11], and so the technical challenges of developing such systems 

for a number of possible schemes are significantly reduced. Preliminary economic analyses [12-14] 

suggest that such processes are economically attractive, and an important advantage of using CaO is 

that limestone is abundant and a relatively inexpensive material. 

Figure 1. Schematic representation of CaO-based CO2 looping cycles. 

 
 

CO2 capture by CaO-based sorbents is based on the reversible chemical reaction 

(carbonation/calcination): CaO(s) + CO2(g) = CaCO3(s). CO2 separation from flue gas is possible in a 
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multi-cycle process in a dual reactor. This involves reaction of CaO with CO2 from flue gas in a 

carbonator, and regeneration of sorbent in a calciner [8]. In the ideal case, carbonation/calcination 

cycles can be carried out indefinitely with the only limitations due to the kinetics of the reactions and 

thermodynamics of the equilibrium system. The use of the carbonation reaction (exothermic) is limited 

by the maximum temperature that allows CO2 capture at the desired concentration in cleaned flue gas 

and the minimum temperature that allows a practical reaction rate. The calcination reaction is limited 

by the minimum temperature necessary to obtain sufficient CO2 concentration at the calciner outlet. 

Despite the simple chemistry of carbonation/calcination looping cycles, undesirable side reactions 

such as sulphation and processes such as sintering and attrition take place in practice. SO2 from flue 

gas under CO2 looping cycle conditions irreversibly reacts with CaO, forming CaSO4. A portion of the 

CaO sorbent is, therefore, lost as CaSO4, and the CaO reaction surface is covered by this product, 

preventing contact of CaO and CO2 [15,16]. Attrition of sorbent is a significant problem for FBC 

systems, leading to sorbent elutriation from the reactor [17]. The major and most investigated 

challenge for CO2 looping cycles is the decrease of reversibility for the carbonation reaction due to 

sorbent sintering [18,19]. 

A typical TGA multi-cycle run with natural limestone is presented in Figure 2. It can be seen that 

after only 10 cycles, conversion dropped to 40%, half the conversion in the first cycle. The loss of 

activity continues, and it has been shown in long series of cycles (>1,000 cycles) that conversions 

become constant, at the level of 7–8% [20]. It should also be mentioned that most research has been 

performed under ideal experimental conditions, with calcination stages in N2 at lower temperatures, 

while the loss of activity occurs much faster under realistic conditions expected in real FBC  

systems [21,22]. It is typically supposed that during CO2 cycles, the sorbent morphology changes, and 

the sorbent loses surface area and small pores, which are the main contributors to the rapid carbonation 

necessary for practical systems. 

Figure 2. Loss of sorbent (Cadomin limestone, 250–425 µm) activity during 

carbonation/calcination cycles in TGA; 700 ºC isothermally: 60 min carbonation in 15% 

CO2 (N2 balance), 60 min calcination in N2. 
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The improvement of sorbent activity for extended use is imperative because sorbent replacement 

costs strongly influence the overall cost of CO2 capture [14]. Reactivation by hydration currently 

appears to be a promising method for recovery of the sorbent activity [15,23,24]. Another approach is 

thermal pretreatment of the sorbent at high temperatures [25-27]. Here, thermal pretreatment typically 

causes lower conversions during the early cycles, but conversions in later cycles are higher than those 

for the original, untreated sorbents. This phenomenon of increasing conversion with an increasing 

number of reaction cycles has been called self-reactivation [26]. 

Most doping agents enhance sintering, which is also enhanced by the presence of impurities in the 

sorbent [22,28]. However, it has been shown that some compounds in the CaO structure prevent 

sintering. The most investigated are synthetic sorbents with Al2O3 [29-31], but recently it has been 

shown that sorbents containing KMnO4 [32], and TiO2 [33] are also more resistant to sintering. Other 

attempts include modification by acetic acid [34], and impregnation of CaO on mesoporous  

supports [35]. Commercial pure lime nano-sized sorbents [36] or flame-made doped nano-particles 

[37] were also investigated. Nano-sized sorbents were prepared from different precursors [38,39] and 

procedures [27,40,41]. These modified/synthetic sorbents have superior CO2 carrying capacity, but 

their practical use is limited due to their high price and difficulties for their use in FBC systems. 

Therefore, in our laboratory at CanmetENERGY we have put emphasis on procedures and materials 

which could enable commercially competitive CO2 capture by reactivated, modified, or 

synthetic/pelletized sorbents. We have intensely investigated spent sorbent reactivation by steam, 

sorbent pretreatment at elevated temperatures, and doping/pelletization with commercial calcium 

aluminate cements. The results of these investigations are presented in this paper with an emphasis on 

calcium aluminate pellets and their suitability for reactivation and reforming. 

2. Methodology 

A number of limestones were tested, differing in chemical composition, geological origin and 

geographical location. Kelly Rock, Cadomin (formerly called Luscar), Graymont (GR) and Havelock 

(HV) are Canadian limestones; La Blanca is Spanish limestone, and Katowice is Polish (Upper Silesia) 

limestone. Their composition can be found in our published papers [15,22,23,31]. Four commercial 

cements were used for pelletization. CA-14 and CA-25 were produced by Almatis Inc., and have 

Al2O3 contents of 70 and 80%, respectively. Secar 51 and Secar 80 are produced by Kerneos Inc., and 

were chosen because of their wider difference in Al2O3 content, 50 and 80%, respectively. They are 

produced in large quantities and are relatively inexpensive, and are used when refractory properties—

resistance to corrosion and chemicals—and rapid setting are required [42]. This also recommends them 

as potential binders for CaO-based pellets for CO2 capture. The limestone/cement ratio was 9:1, and 

more details on the pellet preparation procedure can be seen elsewhere [31]. 

Three main aspects of sorbent performance enhancement were tested in our studies: 

 In the steam reactivation tests, limestone samples were subjected to calcination/carbonation 

cycles and reactivated in a pressurized steam reactor [15]. 

 Thermal pretreatment of samples has been done in a tube furnace [43] or directly in a 

thermogravimetric analysis apparatus (TGA) [24] before cycles. 

 Original or spent sorbents were pelletized using calcium aluminate cements as binders [31].  
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A Perkin Elmer TGA-7, or a Mettler Toledo TGA/SDTA851e/LF/1100 ºC TGA was usually used 

for the experiments. The sample was in a ceramic or platinum pan (5 mm diameter). The gas flow rate, 

controlled by a flowmeter, was 0.04 dm3/min. Calcination/carbonation cycles were carried out under 

different conditions. The calcination stages were done under milder conditions in an N2  

atmosphere [15,23,25,26,31,43], or at higher temperature in pure CO2, simulating real sorbent 

regeneration conditions [21,44,45]. 

The samples were examined by scanning electron microscope (SEM). A Hitachi S3400 microscope 

with 20 kV of accelerating voltage was used. The samples were usually coated with a 3 nm thick layer 

of gold-palladium. 

3. Results and Discussion 

3.1. Steam Reactivation  

Our research on spent sorbent reactivation was based on experience with reactivation of sorbent 

utilized for SO2 retention [46-48]. Carbonation, like sulphation, is a gas-solid reaction with solid 

product formation at the surface of the reactant; therefore, similar limits and methods for reactivation 

were expected. An important difference is reversibility of carbonation, i.e., the product layer may be 

easily removed to expose sintered sorbent surface area to hydration. Taking into account the above 

analysis, sorbent hydration appears to be the most promising method for reactivation. It is based on a 

simple chemical reaction: CaO + H2O  Ca(OH)2. Considering the hydration technique, hydration by 

steam was chosen because there is no excess water to be removed, sample drying is not required and 

there is no loss of sorbent with liquid reactant [15]. 

Typical results for sorbent reactivation tests are presented in Figure 3. It may be seen that spent 

sorbent had a carbonation degree 35%, regardless of particle size. After reactivation, the sorbent had 

higher activity and final value for the carbonation conversions in the first cycle above 75%, regardless 

of the particle size, which was significantly higher than related values for spent sorbent. 

Figure 3. Steam reactivation effect on sorbent activity during carbonation in the TGA [15]. 

Kelly Rock limestone; 20 cycles (20% CO2, N2 balance, 650 °C, 30 min/100% N2, 850 °C, 

30 min); reactivation by steam (saturated steam, 200 °C, 30 min); and carbonation in TGA 

(15% CO2, N2 balance, 700 °C). 
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The behaviour of reactivated spent sorbent in CO2 capture cycles is shown in Figure 4. It can be 

seen that carbonation in the initial cycles was higher than for the natural sorbent and reactivated 

sorbent displayed significantly better conversions at the end of multi-cycle tests. The final result is an 

average carbonation of 70% during 10 cycles with reactivated sorbent. This analysis shows that 

steam reactivation actually improves sorbent characteristics, and may enable use of the sorbent for 

prolonged times, or at least until attrition phenomena dominate. This can aid in further development of 

the process of CO2 separation by CaO-based sorbents. 

Figure 4. Steam reactivation effect on sorbent activity during CO2 cycles in the TGA. 

Kelly Rock, 0.300–0.425 mm; calcination (100% N2, 850 °C); carbonation (15% CO2, N2 

balance, 650 °C). 

 
 

3.2. Thermal Pretreatment 

The main idea behind thermal pretreatment is to stabilize sorbent morphology, which aids in 

maintaining sorbent CO2 carrying activity along cycles. CO2 looping cycles were performed with 

samples pretreated at different temperatures (800–1,300 ºC) for different durations (6–48 h). It can be 

seen in Figure 5 that the sample treated at 900 °C had 20% lower conversion in the first cycle than 

that of the original sample. However, conversion for the pretreated sample increased and in the third 

cycle was 8% higher than that of the original sample. In subsequent cycles, conversion was typically 

at least 10% greater than that of the original untreated sorbent. Also, experiments performed with 

pretreated hydrated samples show significant increase of conversions for the initial 6–7 cycles. This 

effect we have called self-reactivation. Perhaps the most interesting result is seen for powdered 

samples (<50 μm). It can be seen that self-reactivation occurred for the entire 30 cycles, and the 

highest conversion was obtained for the last cycle (49%). This finding was supported by experiments 

with four Canadian limestones [26]. However, it should be mentioned that there are sorbents that do 

not show enhanced performance after pretreatment at high temperatures, and La Blanca (Spanish) 

limestone is one such example [49]. 
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Figure 5. The effect of sorbent preheating for 24 h on its CO2 carrying capacity in  

TGA [26]. Kelly Rock, 0.300–0.425 mm; calcination (100% N2, 10 min); carbonation 

(50% CO2, N2 balance, 30 min); isothermally at 800 °C. 
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3.3. Calcium Aluminate-Based Pellets 

Calcium aluminate-based pellets are new and one of the most efficient and inexpensive solid 

sorbents for CO2 capture [31]. They can help in mitigation of sorbent sintering, attrition, and 

consequent elutriation. All of these shortcomings are considered to be mitigated by means of 

reactivation/pelletization of fresh/spent/elutriated sorbent before or during its utilization. It has been 

shown that the use of appropriate binders is necessary and calcium aluminate cement is the most 

efficient binder [50]. It is also a source of alumina compounds desirable in the CaO structure, which 

enhance micro- and nano-porosity of the sorbent. However, like other CaO-based sorbents,  

aluminate-based pellets lose their activity, which is especially pronounced at higher temperatures [44] 

necessary during sorbent regeneration in order to produce concentrated CO2 streams. 

The reactivation of aluminate-based pellets by steam or water to recover their activity during 

capture cycles has also been investigated [45]. Moreover, these pellets can be reshaped after 

reactivation by water, which is another advantage. A photograph of pellets is presented in Figure 6. A 

test involving 300 cycles in a tube furnace, followed by reactivation and reshaping of the pellets, was 

continued for a further 350 cycles in the TGA. During this series of 350 cycles, a steam reactivation 

step was applied after 210 cycles. The CO2 capture activity of pellets was determined in a TGA 

apparatus, and Figure 7 presents TGA results from this 350-cycle test. These results illustrate the 

superior performance of aluminate-based pellets, with the added important property that they can be 

reactivated/reformed, resulting in high average conversions, >35%, in series of hundreds of CO2 

capture cycles. 
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Figure 6. Photograph of calcium aluminate-based pellets. 

 
 

Figure 7. Carbonation conversion of reformed aluminate-based pellets (1 mm) enhanced 

by steam reactivation (5 min at 100 °C in saturated steam). Pellets were prepared with 10% 

CA-14 cement and 90% Cadomin limestone [31]. Calcination at 950 °C in 100% CO2; 

carbonation at 700 °C in 20% CO2 (N2 balance) for 30 min. 

 
 

The morphology of pellets was observed by a SEM and obtained images at magnifications of 

2,500× and 20,000× are presented in Figure 8. The images were taken from the interior of broken 

pellet spheres after 30 CO2 cycles. It can be seen that two types of pores are present: large macropores 

on the 1 µm scale and mesopores on the 10–100 nm scale. These nano-sized pores, which did not 

disappear during cycles, are responsible for carbonation conversion because they are the main 

contributor to the sorbent surface area and to the micro- and meso- porosity necessary for storage of 

more voluminous product, CaCO3.  
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Figure 8. Morphology of aluminate-based pellets (SEM). 

 
 

The encouraging property of the pellets prepared here is the high particle strength, noted during 

handling, which is suitable for FBC systems. The use of inexpensive natural materials such as 

limestone (~$10/t) or spent lime-based sorbent provides very low costs for these pellets. The calcium 

alumina cements are also relatively inexpensive when used at the industrial scale ($1,200–1,300/t). 

Moreover, these pellets are suitable for reactivation by water and reuse, which additionally highlight 

their superior performance. 

4. Conclusions 

Solid looping cycles are a rapidly developing technology for CO2 capture. When considering 

thermodynamics and sorbent costs, CaO obtained from limestone is the best candidate for use as a 

solid carrier of CO2 from dilute gases to concentrated streams. The key technology costs are strongly 

connected with the behaviour of sorbent in cycles. The main hurdles for the technology are 

overcoming the loss and deactivation of sorbent through sintering and attrition. The intensive research 

at CanmetENERGY to improve sorbent performance was reviewed in this paper. To date, the most 

promising methods were reactivation by steam, thermal pretreatment, and pelletization with  

aluminate-based cements. Based on the research reviewed here, the combination of these methods 

appears to provide enhanced sorbent performance. 
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