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Abstract: Katrina (a tropical cyclone/hurricane) began to strengthen reaching a Category 5 

storm on 28th August, 2005 and its winds reached peak intensity of 175 mph and pressure 

levels as low as 902 mb. Katrina eventually weakened to a category 3 storm and made a 

landfall in Plaquemines Parish, Louisiana, Gulf of Mexico, south of Buras on 29th August 

2005. We investigate the time series intensity change of the hurricane Katrina using 

environmental modeling and technology tools to develop an early and advanced warning 

and prediction system. Environmental Mesoscale Model (Weather Research Forecast, 

WRF) simulations are used for prediction of intensity change and track of the hurricane 

Katrina. The model is run on a doubly nested domain centered over the central Gulf of 

Mexico, with grid spacing of 90 km and 30 km for 6 h periods, from August 28th to 

August 30th. The model results are in good agreement with the observations suggesting 

that the model is capable of simulating the surface features, intensity change and track and 

precipitation associated with hurricane Katrina. We computed the maximum vertical 

velocities (Wmax) using Convective Available Kinetic Energy (CAPE) obtained at the 

equilibrium level (EL), from atmospheric soundings over the Gulf Coast stations during the 

hurricane land falling for the period August 21–30, 2005. The large vertical atmospheric 

motions associated with the land falling hurricane Katrina produced severe weather 
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including thunderstorms and tornadoes 2–3 days before landfall. The environmental 

modeling simulations in combination with sounding data show that the tools may be used 

as an advanced prediction and communication system (APCS) for land falling tropical 

cyclones/hurricanes. 

 

Keywords: environmental modeling; tropical cyclone/hurricane prediction and 

communication 

 

1. Introduction  

Over the last decade, there has been an overall increase in the number of Atlantic hurricanes and 

those making landfall in the United States [1]. The 2005 hurricane season serves as a prime example 

with 27 named systems, three Category 5 hurricanes and unprecedented loss of life (>1,000 fatalities) 

and damage (>$100 billion) in the United States. Severe weather is an unusual circumstance that has 

the potential for significant destruction and loss of life. Thunderstorms, tornadoes, and hurricanes are 

commonly associated with severe weather. Each year, on an average, ten tropical storms (of which six 

become hurricanes) develop over the Atlantic Ocean, Caribbean Sea, or Gulf of Mexico. However, the 

formation region of most hurricanes that affect the United States is the Gulf of Mexico or Atlantic 

Ocean. The hurricane season is generally during June–November. 

Hurricanes usually develop over the warm ocean waters with sea surface temperatures (SST) 

exceeding 26 C. Hurricanes get their energy from evaporation over large expanse of warm tropical 

water. Evaporation from warm sea surface produces water vapor that condenses and releases latent 

heat, which intensifies the storm. The formation region of most hurricanes that affect the United States 

is the Atlantic Ocean, including the Gulf of Mexico. The region of formation is from 5 to 30 north 

and south of latitudes. This region is not only characterized by warm ocean temperatures, but also has 

sufficient Coriolis acceleration to cause the storm to rotate. Therefore, sea surface temperature is 

considered a major force behind the development of a hurricane. Ocean-atmospheric interactions play a 

prevalent role in exchanging heat, momentum and moisture fluxes [2,3]. The structure of a matured 

hurricane consists of spiral bands of individual convective cells organized into regions of rising and 

sinking air parcels, associated with small scale cumulus convection [4,5]. 

During the development of storms, the convective available potential energy or CAPE, is used as an 

index for large scale disturbances leading to severe weather. CAPE is a measure of the amount of 

buoyant energy that would be available to speed up air parcel vertically and can be used to estimate the 

maximum vertical speed [4,5]. Therefore, high CAPE values are required for the development of 

thunder storms, and higher the CAPE the more energy would be available for the growth of the storm. 

A CAPE of about 2,500 J/kg may give rise to an environment to trigger a moderately unstable 

atmosphere. Numerical modeling investigations have been used to simulate thunderstorms for 

understanding various dynamical and physical processes taking place within them [6,7], though earlier 

numerical simulations suggest that CAPE has less significance on hurricane intensity [6], but the 
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signatures of the intensifying storm from CAPE values may be used for assessing pre-land fall effects 

to formulate an early warning and prediction of the situation.  

The history of hurricanes reveals large scale disaster that they can cause in terms of human life, 

property damage on top of the disruption of normal life. In particular, the damage hurricane Katrina 

caused is a reminder for preparedness of the people, and demands the need to developing an early 

warning and advanced prediction and communication system (APCS). Human tendency does not give 

greater attention to long term preparation required of the effects of natural disasters more than on the 

disaster mitigation management. Hurricane Katrina has initiated the concept of preparedness to  

natural disasters. 

In the present study, we propose a model of APCS as shown in Figure 1 by combining 

environmental modeling (WRF model) and atmospheric sounding data. The weather modeling 

simulations will be used to obtain hurricane intensity change, sea level pressure, precipitation, and 

tracking. The atmospheric soundings provide information on large scale convective instability of the 

atmosphere, CAPE, and maximum vertical velocities [4,5,8]. The results of the two techniques will be 

used to see signatures of pre-land fall effects during hurricane land-falling. An early warning prediction 

and preparedness will give a better crisis planning and emergency management that may reduce loss of 

life, property, and revenue in the event of high flood surge and inundation apart  

from others.  

Figure 1. The proposed scheme of Advanced Prediction and Communication System 

(APCS) for Tropical Cyclone/Hurricanes. 

 

2. Experimental Section  

2.1. History of Hurricane Katrina 

 

The storm developed as an inner core that evolved into a deeper cyclone on 24 August 2005, and 

came under the influence of a strengthening middle to upper troposphere ridge over the northern Gulf 
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of Mexico and southern United States. This ridge turned Katrina westward on 25 August toward 

southern Florida. Katrina generated an intense burst of deep convection over the low-level center 

during the afternoon of 25 August while positioned over the northwestern Bahamas. Further 

strengthening ensued, and Katrina is estimated to have reached hurricane status on 25 August 2005 at 

around 2100 UTC, less than two hours before its center made landfall on the southeastern coast  

of Florida [9,10].  

 

2.2. Mesoscale Modeling 

 

The surface characteristics of hurricane Katrina were simulated using NCAR Weather Research 

Forecast (WRF) model (Figure 2). The model is based on fully compressible non-hydrostatic equations 

and the prognostic variables include the three dimensional wind, perturbation quantities of potential 

temperature, geo-potential, surface pressure, turbulent kinetic energy and scalars such as water vapor 

mixing ratio, cloud water. The details of Advanced Research WRF (ARW) model are described by 

Skamarock et al. [11] and also available for the users at the UCAR public domain website [12,13].  

Figure 2. Flowchart for the WRF Modeling System, and the major Program Components 

consists of (1) The WRF Preprocessing System (WPS), (2) WRF-Var, (3) ARW Model 

solver, and (4) Post-processing graphics tools. The program units are described in the text, 

and details are available in the user guide [12]. 
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2.2.1. Description of the flow chart 

 

As described in the WRF user guide [11-13], the WRF Modeling System consists of four major 

programs: (1) The WRF Preprocessing System (WPS), (2) WRF-Var, (3) ARW solver, and (4) Post-

processing graphics tools.  

1. WPS: The WPS program is used primarily for real-data simulations. Its major functions include: 

(1) defining simulation domains; (2) interpolating terrestrial data (such as terrain, landuse, and soil 

types) to the simulation domain; and (3) degribbing and interpolating meteorological data from another 

model to this simulation domain. WPS takes the WRF terrestrial data/Gridded data as the input, and its 

output goes to the real data initialization. 

2. WRF-Var: The WRF-Var program is used to ingest observations into the interpolated analyses 

created by WPS. It can also be used to update WRF model's initial condition when WRF model is run 

in cycling mode. This program is optional, and is not used in the present work. 

3. ARW Solver: The unit is the key component in the modeling system, and is composed of several 

initialization programs for idealized, and real-data simulations, and the numerical integration program. 

ARW Model Solver takes the input from the initialization unit, and the model output is given to the 

visualization program. The model is fully compressible nonhydrostatic equations with hydrostatic 

option on a staggered Arakawa C grid. The wind components u, v, and w are recorded at the respective 

cell interfaces. The vertical velocity coordinate is a terrain following hydrostatic pressure coordinate. 

The solver uses the Runge-Kutta 3rd order time integration scheme and 5th order advection options 

along horizontal direction and the 3rd order in vertical direction. The other key features of the WRF 

model include: 

 complete coriolis and curvature terms  

 two-way nesting with multiple nests and nest levels  

 map-scale factors for conformal projections:  

o polar stereographic  

o Lambert-conformal  

o Mercator  

 time-split small step for acoustic and gravity-wave modes:  

o small step horizontally explicit, vertically implicit  

o divergence damping option and vertical time off-centering  

o external-mode filtering option  

 lateral boundary conditions  

o idealized cases: periodic, symmetric, and open radiative  

o real cases: specified with relaxation zone  

 full physics options for land-surface, PBL, radiation, microphysics and cumulus 

parameterization  

 grid analysis nudging and observation nudging  

4. Graphics Tools: Several programs are supported, including RIP4 (based on NCAR Graphics), 

NCAR Graphics Command Language (NCL), and conversion programs for other readily available 

graphics packages: GrADS and Vis5D. Graphic Tools facilitate visualization of the model output and 

we have used GrADS in the present work. The details of these programs are described in the chapters 

of the user’s guide [12]. 
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2.2.2. ARW model configuration 

 

The ARW model with data assimilation was run for a period of three days, August 28–30, 2005 for 

six hour periods. Two domains of dimensions 81 × 47 and 100 × 67 are used for simulation over the 

Gulf of Mexico. The doubly nested domains used for the model runs are shown in Figure 3. Horizontal 

grid spacing of 90 km and 30 km are fixed over the Gulf of Mexico and Florida region at central 

latitude of 30.2N and longitude of 89.6W. Real Data was taken from UCAR’s NCEP Global Analyses 

for initial and lateral boundary conditions. We have noted from the previous studies that best 

agreement with the observations is obtained with the following schemes of different physical 

processes: Simple ice mixing (Microphysics), Blackadar planetary boundary layer parameterization, 

Cloud-resolving radiation, Grell cumulus parameterization [14-22]. The various options of the physics 

and grid configuration used in running the ARW model is given in Table 1. 

Figure 3. WRF model doubly nested domains fixed over the Gulf of Mexico and Florida 

region. Two domains of dimensions 81 × 47 and 100 × 67 are used with horizontal grid 

spacing of 90 km and 30 km respectively. 
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Table 1. Details of the physics and grid configuration used in WRF (ARW) model. 

 

For the purpose of model validation, the surface characteristics will be compared with the observed 

data provided by NOAA [9,10]. The location of Katrina (latitude and longitude), sea level pressure, 

precipitation, and wind speeds are collected for the period August 23–31, 2005. The observed data 

along with the intensity changes are given in the Table 2.  

  

2.3. Atmospheric Sounding and CAPE 

 

The radiosonde datasets are provided by the University of Wyoming’ department of atmospheric 

sciences and is available for public at their website [23]. For each radiosonde station, the dataset listing 

summarizes comprehensive station information and sounding indices. The atmospheric sounding data 

is taken over the Gulf Coast, for the period August 23–30, 2005. From the sounding indices, the 

corresponding CAPE values at the equilibrium level (EL) are collected and listed in the Table 2. Using 

the observed CAPE, maximum vertical velocities (Wmax) are calculated from the following equations:  

Wmax = 2 √ (CAPE) 

where the Convective Available Potential Energy (CAPE) is defined as: 

dzTTTgCAPE envienvi

lcl

el

parcel )/)((    

where, Tparcel: temperature of the parcel,  

Tenvi: temperature of the environment 

g : acceleration due to gravity,  

dz: differential vertical height  

el: equilibrium level 

lcl: level of condensation 

The computed maximum vertical velocities (Wmax) over the Gulf Coast during the period August  

23 –31, 2005, are given in Table 2.  

Dynamics of Vertical 

Resolution 

Primitive equation, no-hydrostatic 

35 levels 

Domains Domain 1 Domain 2 

Horizontal Resolution 

Grid Points 

Domains of integration 

90 km 

81 × 47 

126 W–53 W 

5 N–46 N 

30 km 

100 × 67 

105.6 W–75.6 W 

20.2 N–40.2 N 

Initialization 

Radiation 

 

Surface Processes 

Boundary Layer 

Radiation Scheme 

Cumulus Scheme 

Explicit Scheme 

NCEP Global analysis data; 2 way 

Dudhia [18] scheme for short wave radiation, Rapid radiative 

transfer model (RRTM) for long wave radiation [17] 

5 layer soil diffusion scheme [21] 

Blackadar Planetory Boundary Layer Parameterization [22] 

Cloud-resolving radiation,  

Grell cumulus parameterization [15,16] 

Simple ice mixing (Microphysics) scheme [14,20] 
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Table 2. The observed time series (8/23/2005 to 8/31/2005) data of hurricane Katrina is taken from NHC [9,10]—Intensity level, location, 

wind speed, sea level pressure, and precipitation. Observed CAPE values are from the atmospheric sounding indices [23], and the maximum 

vertical velocity (Wmax) is computed from the observed CAPE. 

Time Series Data of Katrina Observed Satellite Data Observed CAPE, and Computed Wmax 

Date Intensity Level Time 
Latitude 

° North 

Longitude 

° West 

Wind Speed 

(knots) 

Sea Level Pressure 

(mBars) 

Precipitation 

inches 

CAPE 

(J/kg) 

Maximum 

Vertical Velocity 

(m/s) 

8/23/2005 
Tropical 

Depression  
21Z 23.2 −75.5 30 1,007 - 1,889.01 61.5 

8/24/2005 

Tropical 

Depression  
00Z 23.4 −75.7 30 1,007 - 1,913.42 61.9 

Tropical Storm  12Z 24.4 −76.6 35 1,006 5.90 1,515.57 55.1 

8/25/2005 
Tropical Storm  00Z 26 −77.7 45 1,000 3.07 2,811.67 75.0 

Tropical Storm  12Z 26.2 −79 55 994 1.63 1,014.24 45.0 

8/26/2005 
Hurricane-1  00Z 25.9 −80.3 70 983 7.40 1,749.6 59.2 

Hurricane-1  12Z 25.1 −82 75 979 7.71 1,656.01 57.6 

8/27/2005 
Hurricane-3  00Z 24.4 −84.7 100 942 0.33 816.18 40.4 

Hurricane-3  12Z 24.8 −85.9 100 941 6.94 1,209.98 49.2 

8/28/2005 
Hurricane-5  00Z 25.7 −87.7 145 909 2.16 1,900.4 61.7 

Hurricane-5  12Z 26.3 −88.6 150 902 0.44 57.74 10.7 

8/29/2005 
Hurricane-4  00Z 28.2 −89.6 125 913 14.02 1,070.05 46.3 

Hurricane-3  12Z 29.5 −89.6 110 923 10.05 161.98 18.0 

8/30/2005 

Tropical Storm  00Z 32.6 −89.1 50 961 3.52 197.49 19.9 

Tropical 

Depression 
12Z 35.6 −88 30 985 0.71 33.61 8.2 

8/31/2008 Extratropical 00Z 38.6 −85.3 30 994 - 121.32 15.6 
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3. Results and Discussion  

Being spotted as a tropical depression on 23 August 2005, Hurricane Katrina began to strengthen 

until reaching a Category 5 on 28 August 2005. It’s winds reached peak intensity of 175 mph and the 

pressure fell to 902 mb before making landfall in Plaquemines Parish, Louisiana, Gulf of Mexico just 

South of Buras on 29th August 2005 [9,10]. The best track positions (Figure 4), and sea level pressure 

changes (Figure 5), and GOES satellite visible image during land fall (Figure 6) associated with 

Hurricane Katrina are taken from National Hurricane Center, NOAA [9,10]. At the time of landfall, the 

observed values of sea level pressure, wind speed, and precipitation are 927 mb, 55.8 m/s,  

and 10” respectively.  

Figure 4. Best track positions for Hurricane Katrina, 23–30 August 2005 taken from  

NHC [9,10].  

 

Figure 5. Sea Level Pressure variations of Hurricane Katrina during 23–30 August 2005. 

Selected pressure observations and best track minimum central pressure curve taken form 

NHC [9,10]. 
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Figure 6. GOES-12 visible image by NHC [9,10] of Hurricane Katrina, over the central 

Gulf of Mexico at 1745 UTC 28 August 2005, as a category 5 near the time of its peak 

intensity of 150 kt. 

 

 

The WRF model simulations of Hurricane Katrina showed sea surface temperatures of around 34 C 

over a larger area of Gulf of Mexico. The model simulations of sea level pressure, wind velocity, and 

cumulative precipitation at the time of landfall are shown in Figures 7, 8, and 9.  

Figure 7. Modeling simulations of Sea Level Pressure on 28 August 2005 of 930 mb, at the 

time of Hurricane Katrina Land Fall.  
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Figure 8. Modeling simulations of Wind Velocity of hurricane Katrina with a peak 

intensity of 59 m/s (175 mph), at the time of Land Fall on 28 August 2005. 

 

Figure 9. Modeling simulations of cumulative precipitation of hurricane Katrina with a 

maximum of 253 mm, at the time of Land Fall on 28 August 2005. 
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The simulated sea level pressure (930 mb), wind speed (59 ms-1), and precipitation (9.9” / 253 mm) 

data output were in good agreement with the observational data. Precipitation value was within the 

range of the rainfall forecast. Further, the model prediction revealed a storm surge of 18 ft, and 

flooding along with widespread thunderstorms, tornadoes.  

The track and intensity changes were close to the observational data recorded by NOAA National 

Hurricane Center [9,10]. Reddy et al. [24,25] adopted numerical models (NCUR MM5, and WRF) to 

simulate the surface features, intensity change and track forecasting of land falling hurricanes, over the 

Gulf of Mexico. This study is corroborating to support the above modeling investigations including 

intensity change maximum sustaining winds and precipitation.  

On analyzing the data given in Table 2, the atmospheric soundings on the Gulf Coast showed 

maximum CAPE values were of the order of 1800–3000 J/kg during the period August 23–25, 2005. 

For the two days (25th, and 26th of August 2005) before Katrina landfall, the observed soundings are 

shown in Figures 10 and 11. The maximum vertical velocities of the order of 75 m/s were noticed on 

25 August 2005, in association with the initiation of Katrina as tropical depression spotted on 23 

August 2005, and as a category 5 hurricane on 28 August 2005.  

 

Figure 10. The atmospheric soundings over the Lake Charles station on 25 August 2005, 

from the data provided by the University of Wyoming’ department of atmospheric  

sciences [23]. The observed sounding indices showed a maximum value of 2811 J/kg for 

the CAPE at the equilibrium level (EL) about three days before the hurricane  

Katrina Landfall. 
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Figure 11. The atmospheric soundings over the Lake Charles station on 26 August 2005, 

from the data provided by the University of Wyoming’ department of atmospheric  

sciences [23]. The observed sounding indices showed still higher values of 1746 J/kg for 

the CAPE at the equilibrium level (EL) about two days before the hurricane  

Katrina Landfall, 

 

 

The maximum CAPE and vertical motion values were noticed as a signature, two to three days 

before the pre-existence of the hurricane Katrina. The severe weather including thunderstorms, 

tornadoes, and heavy precipitation were associated with the above CAPE and vertical velocities before 

and during landfall. A multiscale numerical studies by Lou et al. [26], and Lu et al. [27], simulating 

land falling typhoons over Japan [28,29], have further supported the present results. Reddy et al. [30], 

and Tuluri et al. [31] have noticed heavy precipitation associated with maximum CAPE and vertical 

velocities for land falling tropical storms and hurricanes over the Gulf Coast.  

The ability of the thunderstorms to grow primarily depends on environmental conditions favorable 

for the occurrence of deep convection and the corresponding atmospheric instability as measured by 

CAPE [4,5]. When the thunderstorms are initiated they can self-sustain in an unstable environment 

with strong wind shear and fueled by the latent heat released during condensation of moisture air drawn 

aloft from the boundary layer. Several numerical modeling have been used to simulate thunderstorms 

for understanding various dynamical and physical processes taking place within them [6,7]. Though, 

earlier numerical simulations suggest that CAPE has less significance on hurricane intensity, our study 

shows signs of intensifying storm may be utilized as an early warning and prediction for the pre-fall 

hurricane situation [6]. The CAPE as measured by atmospheric sounding is at the coast, provides a 

precursor to the environmental conditions hostile to the development of storm, while the hurricane is in 

the process of development over the sea far away from the coast. The hurricane development is a 

complicated process whose dynamics is still not understood completely, much so in the case of 
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Katrina. We suppose that the simulated CAPE may not represent the real situation of the environmental 

conditions prevailing on the coast.  

4. Conclusions  

We have developed an advanced prediction and communication system (APCS) using 

environmental modeling (WRF model) and environmental technology (atmospheric sounding) tools 

and applied to hurricane Katrina. The APCS has shown large values of CAPE and vertical velocities as 

pre-existing landfall effects two to three days before land fall. The model simulations predicted low 

pressure of 930 mb, rainfall of 253 mm, storm surge of 18 ft, and flooding along with widespread 

thunderstorms and tornadoes. The model predictions are in good agreement with the observations. The 

APCS system will help to make a better emergency planning and management for early preparedness 

of the locals in the event of flood surge and inundation.  
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