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Abstract: Ethanol consumption affects maternal nutrition, the mothers’ antioxidant balance 

and the future health of their progeny. Selenium (Se) is a trace element cofactor of the 

enzyme glutathione peroxidase (GPx). We will study the effect of ethanol on Se 

bioavailability in dams and in their progeny. We have used three experimental groups of 

dams: control, chronic ethanol and pair-fed; and three groups of pups. Se levels were 

measured by graphite-furnace atomic absorption spectrometry. Serum and hepatic GPx 

activity was determined by spectrometry. We have concluded that ethanol decreased Se 

retention in dams, affecting their tissue Se deposits and those of their offspring, while also 

compromising their progeny’s weight and oxidation balance. These effects of ethanol are 

caused by a reduction in Se intake and a direct alcohol-generated oxidation action. 

Keywords: Wistar rats; selenium bioavailability; ethanol; gestation; lactation; glutathione 

peroxidase  
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1. Introduction  

 

It is known that ethanol consumption compromises oxidative stress and nutritional status [1]. 

Patients with chronic alcohol abuse present malnourishment, either because of reduced intake of 

essential nutrients, or because alcohol precludes an appropriate absorption of essential elements. 

Furthermore, metabolic ethanol pathways themselves generate intermediate toxic products 

(acetaldehyde and free radicals) that interfere with the normal metabolism of essential elements, leading 

to cellular damage through oxidation mechanisms and secondary oxidative stress [2] inflammation. 

Only recently have studies begun to investigate the influence of alcohol on nutrition and endocrine 

function during pregnancy. Alcohol-induced changes in maternal endocrine function disrupt  

maternal-foetal hormonal interactions and affect the female's ability to maintain a successful pregnancy, 

thus indirectly affecting the foetus [3]. Moreover foetal ethanol exposure specifically increases ethanol 

avidity, so ethanol abuse has broad implications in the relationship between maternal consumption, child 

development, and postnatal vulnerability [4]. 

As all essential trace elements required by offspring development are transferred from the dam via 

either the placenta or milk, if an insufficient milk intake occurs or if there is a disturbance in pups’ 

intestinal permeability (both effects are provoked by ethanol exposure in pups [5]), the low maternal 

concentration of immunoglobulines and antioxidant nutrients may be transferred [6].  

One of the essential trace elements which could be compromised by ethanol consumption is 

Selenium. Se intake is important to health due to its anti-inflammatory, chemopreventive and 

antioxidant activity via different selenoproteins [7]. The most studied of these is the antioxidant enzyme 

GPx. There is increasing evidence that Se is vital for foetal and neonatal development. This is 

demonstrated by the embryonically lethal consequences of the disruption of the gene coding for the Sec 

tRNA
[Ser]Sec

, suggesting an essential function for one or more selenoproteins in development [8]. 

Moreover neonates have Se deposits but they need Se via milk for an infant’s optimum Se status [9]. 

We have recently observed that pups exposed to ethanol during gestation and lactation have their 

hepatic antioxidant activity altered, provoking a decrease in Se and GPx activity, and an increase in 

carbonyl groups in protein. Administering Se with alcohol to their mothers balances the hepatic 

oxidation process, suggesting that Se could be effective in neutralising the oxidative damage of ethanol 

consumption during gestation and lactation in pups [10]. 

The objective of this study was to examine the bioavailability of Se in both dams exposed to ethanol 

during gestation and lactation and in their progeny. In this context we will evaluate the activity of the 

antioxidant enzyme GPx in pups’ serum and liver, and the relationship with maternal nutrition. 

 

2. Results and Discussion  

 

2.1. Dams  ́Weight Gain and Se Homeostasis 

 

As we observe in Table 1, alcohol and pair-fed dams showed a significant decrease in selenium intake 

during gestation and the lactation period (p < 0.05), this was reflected in their body weights  

(p < 0.01) and in the amount of Se excreted in faeces (p < 0.001). However PD eliminated less Se via 
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urine than the rest of the groups (p < 0.001) but more via claws and hair (p < 0.001), and ethanol dams 

excreted less Se via hair than control ones (p < 0.001). With respect to control dams, alcohol 

consumption does not affect the apparent Se absorption rate, but it significantly decreases the apparent 

Se balance (p < 0.001), although serum Se levels were similar. However, with respect to CD, PD had a 

higher apparent Se absorption rate (p < 0.05) but a lower apparent Se balance and serum Se levels  

(p < 0.001). 

 

Table 1. Dams  ́ weight gain and Se homeostasis: Se intake (g/d) during gestation and 

lactation. Se levels in faeces, urine, claws, hair and serum. Se apparent absorption and 

balance. Signification: CD vs AD *p < 0.05, **p < 0.01, ***p < 0.001; AD vs PD  
 aa

p < 0.01, 
aaa

p < 0.001;
 
CD vs PD 

+
p < 0.05, 

++
p < 0.01, 

+++
p < 0.001.  

 
CD (n:6) AD (n:6) PD (n:6) 

Weight gain (g) 78.3 ± 7.1** 46.6 ± 4.2 49.5 ± 5.1
++

 

Se intake during gestation (g/d) 1.89 ± 0.21* 1.43 ± 0.02 1.45 ± 0.04+ 

Se intake during lactation (g/d) 3.12 ± 0.33* 2.23 ± 0.03 2.22 ± 0.05+ 

Se (g/d) in faeces 0.26 ± 0.02*** 0.14 ± 0.001 0.12 ± 0.01+++ 

Se (g/d) in urine 0.18 ± 0.01 0.23 ± 0.02aaa 0.11 ± 0.01++ 

Se (g/l) in serum 245 ± 15.2 259 ± 21.6aaa 150 ± 5.1+++ 

Se (ng/g dry weight) in claws 30 ± 3.6 30 ± 1.7aaa 66 ± 2.5+++
 

Se (ng/g dry weight) in hair 50 ± 0.5*** 16 ± 1.0aaa 113 ± 8.0+++
 

Apparent Se absorption rate (%) 91.6 ± 0.74 93.3 ± 0.64 94.45 ± 0.55+ 

Apparent Se balance (g/d) 2.67 ± 0.07*** 1.85 ± 0.008aa 2.01 ± 0.013+++ 

 

Confirming our experimental treatments, ethanol and pair-fed dams consume less food and 

consequently less Se, and they also show a lower weight gain. Despite the fact that ethanol consumption 

appears not to change Se absorption, pair-fed dams have a higher apparent Se absorption than control 

ones. With respect to Se intestinal absorption, ethanol per se slightly alters Se absorption, this effect of 

alcohol on intestinal absorption also occurs with other nutrients [5,11]. Isocaloric dams eliminate less 

Se via urine than their ethanol counterparts. This fact, together with the changes in apparent absorption 

means that alcohol-exposed rats have the lowest apparent Se balance. This decrease affects their Se 

tissue deposits. Ethanol does not, however, affect serum Se levels, which decreased dramatically in pair-

fed dams. This might occur because isocaloric rats eliminate much more Se by other excretion routes 

such as claws and hair [12]. Pair-fed dams have nearly twice the Se concentration in claws and hair than 

controls yet alcohol-consuming dams have three times less Se in hair than controls. We have no answer 

for the reason why pair-fed lactating dams and not ethanol-exposed ones excrete less Se via urine and 

lung (two of the greatest Se excretion routes [13]) and more via claws and hair. On the other hand, it is 

assumed that a high hair Se concentration could represent increased absorption or retention while 
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decreasing urinary or faecal excretion appears to be the homeostatic mechanism by which the body 

retains greater amounts of Se [14]. However, our pair-fed dams have lower serum Se levels. In any case 

it is clear that ethanol per se, and not only malnutrition affects Se bioavailability in dams and therefore 

their Se deposits. 

 

2.2. Pups  ́Weight at Birth and After Breastfeeding, and Pups  ́Se Homeostasis 

 

Looking at Table 2, no detrimental effects were observed on body weight at birth, but in spite of a 

normal birth weight, alcohol (p < 0.01) and pair-fed (p < 0.05) treatment during lactation was 

responsible for a growth deficit which was more exacerbated in AO than in PO (p < 0.05). Ethanol but 

not isocaloric diet, decreases the number of pups per litter. Se in milk and the amount of milk consumed 

during the suckling period was drastically reduced in AO and PO groups (p < 0.001) and consequently 

their Se intake also decreased. This intake was even lower in AO than in PO (p < 0.001). There were no 

differences in the amount of Se excreted via faeces, but the PO excrete less Se via urine than the rest of 

the groups (p < 0.001), and more via hair than AO (p < 0.001). These changes in Se excretion alters 

serum Se levels, therefore AO had higher serum Se levels than CO (p < 0.01) and PO (p < 0.001), while 

PO levels lower than those of CO (p < 0.001) (Table 2). 

 

Table 2. Pups  ́weight at birth and at 21 days. Number of offspring per litter. Se in milk 

(ng/ml), milk intake in 30 min suckling (ml), Se intake during 30 min suckling (ng), Se 

levels in faeces, urine, hair and serum. Signification: CO vs AO *p < 0.05, **p < 0.01; 

***p < 0.001; AO vs PO 
a
p < 0.05, 

aaa
p < 0.001; CO vs PO 

+
p < 0.05, 

+++
p < 0.001. 

 
CO (n:8) AO (n:8) PO (n:8) 

Weight at birth (g) 5.53 ± 0.09 5.02 ± 0.18 5.14 ± 0.16 

Weight at 21 days (g) 31.60 ± 1.05** 22.00 ± 1.67a 27.80 ± 1.15+ 

Nº of offspring/ litter 11.0 ± 0.9* 7.8 ± 0.6 9.0 ± 0.8 

Se (p.p.m.) in milk 20  1.2*** 12.6  0.6 13.7  0.7+++ 

Milk intake during 30 min suckling (mL) 0.85  0.045*** 0.54  0.03 0.60  0.04+++ 

Se intake during 30 min suckling (ng) 17.05  0.1*** 6.85  0.03aaa 8.63  0.04+++ 

Se (ng/d) in faeces 14 ± 0.1 18 ± 0.1 13 ± 0.1 

Se (ng/d) in urine 15 ± 0.1 18 ± 0.1aaa 5 ± 0.05+++ 

Se (g/L) in serum 117 ± 3.4** 137 ± 6.9aaa 71.01 ± 1.5+++ 

Se (ng/g dry weight) in hair 88 ± 0.7* 67 ± 0.5 aaa 108 ± 0.7 

 

The changes provoked in the dams’ Se bioavailability by ethanol, especially ethanol’s action over the 

mammary gland (where it decreases Se concentration), affect their progeny’s Se balance. Though AD 

has fewer pups per litter than CD, ethanol consumption does not alter their progeny weight at birth. 

However, at the end of the suckling period the body weight of pups whose mothers consumed less Se 
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was lower, especially among those exposed to ethanol. This is provoked by a lower Se intake during the 

lactation period, itself caused by a decrease in Se milk content and a decrease in the amount of milk 

consumed during the breastfeeding process. Therefore the effect of Se malnutrition is more severe in 

pups than in their progenitors: ethanol and isocaloric dams consume 30% less Se than the control ones, 

but their progeny consumed 50%, nearly 60%, less than in the case of ethanol-exposed pups. Again, 

pair-fed pups excreted less Se via urine and more via hair than ethanol ones, and yet again they have 

lower Se serum levels. However, ethanol pups showed higher serum Se levels, even higher than control 

pups. It is known that in humans, hair Se concentration is higher in newborn babies than in their 

mothers by about 1.73-fold [15], in our control rats the same also occurs. However, in ethanol exposed 

rats the ratio increase to nearly 4.2-fold, and in pair-fed this increase is only 1-fold. We assumed that 

one of the mechanisms that changes Se bioavailability in ethanol pups, apart from the lowest Se intake, 

is the action of ethanol on urine and hair Se concentration. So despite the fact that some authors defend 

that hair and claw Se concentration are a reflection of dietary Se status [16,17], our results agree with 

Salbe et al. [18], who suggest that factors other than dietary Se intake affect hair and claw Se content 

and that these tissues should be used with caution for Se status assessment purposes. 

 

2.3. Selenium Deposits in Different Tissues of Dams and Offspring (g/g Dry Weight) 

 

Tissue Se distribution in dams was altered by ethanol consumption (Table 3). Alcohol-receiving 

dams had significantly higher Se levels than the rest of the groups in heart, liver and spleen; and 

significantly lower Se levels than control ones in muscle (p < 0.01) and mammary glands (p < 0.05). PD 

have lower Se levels than control dams in muscle (P < 0.001), mammary gland (p < 0.05), lung  

(p < 0.05), kidney (p < 0.001) and heart (p < 0.001). Se distributions in offspring organs were lower in 

those exposed to malnutrition (AO and PO), with lower Se levels in heart, liver and kidney, in the last 

two tissues PO had significantly lower Se levels than AO (p < 0.001).  

 

Table 3. Selenium deposits in different tissues of dams and offspring (g/g dry weight). 

Signification: C vs A *p < 0.05, **p < 0.01, ***p < 0.001; A vs P 
a
p < 0.05, 

aa
p < 0.01, 

aaa
p < 0.001;

 
C vs P

 +
p < 0.05, 

+++
p < 0.001. 

Se levels 

(g/g dry 

weight) 

 

CD (n: 6) 

 

AD (n: 6) 

 

PD (n: 6) 

 

CO (n: 8) 

 

AO (n: 8) 

 

PO (n: 8) 

Heart 0.22 ± 0.03** 0.27 ± 0.05aaa 0.14 ± 0.02+++ 0.24 ± 0.01** 0.19 ± 0.01 0.13 ± 0.01+++
 

Liver  0.21 ± 0.02* 0.28 ± 0.02 a 0.23 ± 0.01 0.39 ± 0.02*** 0.30 ± 0.01aaa 0.15 ± 0.01+++ 

Kidney  0.66 ± 0.04 0.63 ± 0.04aaa 0.37 ± 0.0+++
 0.46 ± 0.01*** 0.37 ± 0.02aaa 0.26 ±  0.01+++

 

Lung 0.14 ± 0.008 0.13 ± 0.003 0.12 ± 0.007+
 0.29 ± 0.02 0.29 ± 0.02 0.33 ± 0.02 

Spleen 0.28 ± 0.01* 0.37 ± 0.02aa 0.26 ± 0.01 0.24 ± 0.02 0.24 ± 0.02 0.24 ± 0.01 

Muscle 0.15 ± 0.01** 0.12 ± 0.003 0.1 ± 0.006+++
    

Mammary 

gland 

0.18 ± 0.01** 0.13 ± 0.005 0.14 ± 0.005+
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The Se levels in the organs of control dams were, in order of decreasing concentrations:  

kidney > spleen > heart, liver > mammary gland, muscle and lung. The lower Se retention provoked by 

alcohol consumption decreases Se levels in mammary gland and muscle. However, ethanol increases Se 

levels in spleen, heart and liver. It appears, therefore, that ethanol decreases Se levels in the tissues with 

lower Se deposits while sequestering Se to the spleen, heart and liver. According to a different 

bibliography [19-21], we thought that ethanol-exposed dams tended to maintain more Se in spleen, 

heart and liver at the expense of other tissues in order to improve their oxido-reduction balance, 

oxidation status and immunity, all of which are altered by ethanol consumption. Isocaloric lactating 

dams do not sequester Se to any of the studied organs, and they have lower Se levels than control ones 

in all of the tissues except the liver and spleen. 

The order of decreased concentrations of Se deposits in the organs studied is different in dams and 

their offspring. In control pups the order was: kidney > liver > lung > spleen and heart, it seems that the 

Se requirements of tissues change with age, especially in the liver and lung. In these two organs Se 

deposits were higher in offspring than in their mothers; it seems that during development Se in liver and 

lung play an important role. Therefore the changes provoked by ethanol consumption in dams were 

different to those in their progeny. In suckling pups ethanol consumption decreases Se deposits in heart, 

liver and kidney, but it maintains the tissue order in decreasing Se concentration. However pair-fed 

offspring having lower Se levels in the same organs as ethanol treated ones: heart, liver and kidney, they 

showed lower Se levels in liver and kidney than ethanol pups. In this case the Se levels in their organs in 

order of decreasing concentrations were different to control and ethanol pups, being: lung > kidney > 

spleen > liver > heart. In these pups the levels of Se were especially compromised in liver and kidney. 

Curiously, in pups’ lung, Se levels were higher than in dams, nearly 1.3-fold. Excretion of Se can occur 

in the exhaled air [22], so lung, as hair and claw, are alternative tissues for the excretion of Se. It would 

appear that in pups, alternative routes (different to urine and faeces) participate more actively than 

during the adulthood in the elimination of Se. 

 

2.4. Offspring Hepatic Glutathione Peroxidase Activity (A) and Serum Glutathione Peroxidase  

Activity (B) 

 

With respect to serum and hepatic GPx activity in offspring (Figure 1), alcohol-exposed pups 

showed higher serum GPx (p < 0.05) and lower hepatic GPx activity than control ones. PO pups had 

the lowest GPx activity in serum (PO vs AO p < 0.001 and PO vs CO p < 0.05) and in liver  

(p < 0.001). 

Ethanol administered to pregnant mice disturbs embryogenesis by oxidative stress. This effect is 

more pronounced in the offspring of mice with a low antioxidative capacity [23]. As Se decreased 

oxidative stress through the GPx enzyme, mothers who had optimal levels during gestation and 

breastfeeding were able to prevent this effect. In this study we have found that AO have higher Se levels 

in serum and higher GPx activity than those found in the rest of the groups. It would appear that 

ethanol sequesters Se to the blood, perhaps in order to keep a high GPx activity in the serum, something 

that could play an important role in the first line of defence against ethanol-provoked oxidative stress. 

This hypothesis agrees with Payne and Southern [24], who suggested that Se stored in tissues could be 
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utilized to maintain plasma GPx activity during periods of low Se intake. The action of ethanol on the 

GPx activity in liver was opposite to that which occurs in serum; it decreases hepatic Se levels and GPx 

activity, making it evident that oxidative stress is affected in pups whose mothers drank ethanol during 

gestation and lactation, and that this effect is related to Se levels. In pair-fed pups Se levels and GPx 

activity were drastically reduced in serum and liver. It is clear that ethanol per se alters both Se 

bioavailability and the oxidative balance in the offspring. 

 

Figure 1. Offspring hepatic glutathione peroxidase (A) and serum glutathione peroxidase 

(B) activities (mU/mg protein). Signification: CO vs AO *p < 0.05, ***p < 0.001; AO vs 

PO 
aaa

p < 0.001; CO vs PO 
+
p < 0.05, 

+++
p < 0.001. 

 

 

3. Experimental Section  

 

Animals: Male and female Wistar rats (Centro de Producción y Experimentación Animal, 

Vicerrectorado de Investigación, Universidad de Sevilla), weighing 150–200 g, were randomised into 

three groups of dams: Control (CD), alcohol (AD), and pair-fed dams (PD) as a nutritional control of 

alcohol-associated malnutrition. CD: water and basic diet were given ad libitum during the entire 

experimental period. AD: ethanol and basic diet ad libitum. PD: water and an isocaloric diet with the 

diet of ethanol rats. These animals were used as parents. Male and female rats were mated to obtain the 

first generation offspring. Pregnant rats were housed individually in plastic cages. The day of parturition 

was designated as Day 1 of lactation, day 21 being the end of the lactation period. The offspring number 
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was reduced to 8 per mother at parturition. The experiments were performed on dams and on their 

offspring at 21 days postpartum. The suckling pups were divided into three groups: CO: control, AO: 

pups exposed to ethanol during gestation and lactation, and PO: pair-fed offspring, born and suckled by 

their pair-fed dams. During the breastfeeding period, the pups had free access to the nipples. Ethanol 

treatment: Ethanol was administered in tap water at 20% v/v by a previously-described chronic  

method [25], during induction (4 weeks after 3 weeks naturalization), gestation (3 weeks) and lactation 

(3 weeks) periods. Diets: Diets were prepared according to The Council of the Institute of Laboratory 

Animal Resources (ILAR, 1979) which details the known nutrient requirements for most of the 

common laboratory animals (g/Kg of diet): Casein: 200; Granulated sucrose: 510; Cornstarch: 140; 

Fibre, cellulose: 50; Corn oil: 50; AIN-76 mineral mix: 35 (Albus; Córdoba, Spain) ; AIN-76 vitamin 

mix: 10 (Cecofar, Seville, Spain); Choline bitartrate: 2; DL-methionine: 3. Diet ingredients, including 

mineral and vitamin components, were mixed and homogenised in the laboratory in a double-cone 

blender (Rest Haan, Germany). The diet was offered to the animals in pellet form. The dams’ daily food 

consumption was determined by weighing the food offered and that remaining on a daily basis. Each 

measurement was taken at 9:00 AM to avoid changes due to circadian rhythms. Se intake 

measurement: Knowing the amount of food consumed and that the diet’s Se content 0.1ppm, we can 

calculate the amount of Se consumed. Samples: At the end of the experimental period, the rats were 

fasted for 12 hours and anesthetised with intraperitoneal 28% w/v urethane (0.5 mL/100 g of body 

weight). The abdomen was opened by a midline incision and different organs were removed, debrided of 

adipose and connective tissue in ice-cold saline, and weighed. Samples were immediately stored at  

–80 ºC prior to determinations. Blood was collected by heart puncture and then centrifuged. Faeces and 

urine samples were collected using individual metabolic cages. Milk samples: In order to obtain the 

maximum amount of milk without modifying the physiological conditions of the subjects with 

anaesthetics on day 2 L of lactation, 3 h after removing the litters from their mothers, dams were 

sacrificed by decapitation and milk samples were immediately collected. Milk was obtained by gently 

massaging the area around each of the 12 mammary glands and then pressing upward from the base of 

the gland toward the nipple. Milk consumption: The amount of milk consumed was estimated by 

subtracting the weight of the pups obtained just prior to returning them to the dam from the weight at 

the end of 30 min of suckling. Indexes: The apparent Se absorption rate was calculated as  

[(I-F)/I] × 100 and the apparent Se balance as I-(F+U), where I = Se intake, F = Se faecal excretion and 

U = Se urinary excretion. Selenium analysis: Se levels were determined by graphite-furnace atomic 

absorption spectrometry. Equipment: We used a PerkinElmer AAnalyst™ 800 high-performance atomic 

absorption spectrometer with WinLab32 for AA software, equipped with a Transversely Heated 

Graphite Furnace (THGA) with longitudinal Zeeman-effect background corrector and AS-furnace 

autosampler (PerkinElmer, Ueberlingen, Germany). The source of radiation was an Se electrodeless 

discharge lamp (EDL). The instrumental operating conditions and the reagents are the same that we 

have used in the previous paper by Ojeda et al. [10] with slight modifications in the mineralization step: 

ramp time and temperature were different between tissues depending on their matrix content. Samples: 

serum samples were diluted fivefold in 0.2% v/v HNO3 and 0.2% Triton X-100 solutions and urine 

samples were diluted 1:2 v/v. After 72 h at 100 ºC dry temperature, faeces, milk and different tissue 

samples were weighed and digested in a sand bath heater (OVAN) with nitric acid during 72 h, and 
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added perchloric acid and chloridric acid (6N). After washing in Milli-Q water + acetone + acetone + 

acetone + Milli-Q water, claws and hair were treated in the same manner as the rest of the tissues. 

Biochemical analysis. Liver tissue samples were homogenized (2,500 rpm/min for 1 min, 1:10 w/v) 

(Pobel 245432, Spain) in a sucrose buffer (15 mM TRIS/HCl, pH 7.4, 250 mM sucrose, 1 mM EDTA, 

and 1 mM DTT) in an ice bath. The homogenate was centrifuged at 3,000 rpm for 10 min at 4 ºC. The 

resulting supernatant was employed for the biochemical assay. Serum and hepatic samples were used to 

measure GPx activity. GPx activity was determined by spectrometry using Lawrence and Burk’s 

method [26] which based on GPx, catalyses the oxidation of glutathione by hydrogen peroxide. The 

protein content of the samples was determined by the method of Lowry et al. [27], using bovine serum 

albumin as the standard. Statistical analyses: The results are expressed as a mean ± SEM. The data 

were analysed using a statistical program (GraphPad InStat 3) by analysing the ANOVA parametric 

variance test followed by Tukey-Kramer tests. A p value of <0.05 was considered to be statistically 

significant. 

 

4. Conclusions 

 

We have concluded that ethanol decreased Se retention in Wistar rat dams, affecting their tissues’ Se 

deposits and those of their offspring. It also compromised the weight and the oxidation balance of their 

progeny. These effects of ethanol are caused by a reduction in Se intake and a direct alcohol generate-

oxidation action. 
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