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Abstract: Based on the 40-year follow-up of the Framingham Heart Study (FHS), we used
logistic regression models to demonstrate that different designs of an observational study
may lead to different results about the association between BMI and all-cause mortality. We
also used dynamic survival models to capture the time-varying relationships between BMI
and mortality in FHS. The results consistently show that the association between BMI and
mortality is dynamic, especially for men. Our analysis suggests that the dynamic property
may explain part of the heterogeneity observed in the literature about the association of BMI
and mortality.
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1. Introduction

Obesity is a major health concern in the United States and in the world. More and more evidence
shows that it is related to a high incidence of diseases such as coronary heart disease (CHD), diabetes, and
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cancer, and mortality from those diseases. However, there appears to be no consensus on the relationship
between body weight and mortality in epidemiological studies. For example, conclusions about the
relationship between BMI and all-cause mortality include no association [1–3], a U-shaped [4, 5] or a
J-shaped [1–3, 6–8] relation, a direct association (higher BMI related to higher risk) [9–11], and even an
inverse association [12].

Several factors make it difficult to determine the true relationship between BMI and mortality using
traditional observational studies and analysis methods. These factors include: (1) BMI often changes
during a person’s lifetime but in most studies only BMI at baseline (the beginning of the follow-up
period) is used for analysis; (2) a longer follow-up period covers more long-term effects and the length
of follow-up may vary from several years to several decades; (3) analytic methods vary but have included
cross-tabulations, logistic regression models, and the Cox survival models. Each method gives one or
several numerical values (odds ratio, relative risk, or hazard ratio) summarizing the relationship between
BMI (measured at a particular time point: baseline) and mortality (within a particular follow-up period).

The design of a study about BMI and mortality can be illustrated with Figure 1. The solid bar and box
together denote the typical design used in the literature, where the bar is BMI at baseline and the box is
the follow-up period. A study can be done differently, for example, using BMI at sometime before the
baseline as denoted by the dashed bars in Figure 1, or following the population for a shorter or longer
period of time. If there is a fixed association between BMI (at any time point) and mortality (within any
period), different designs will lead to the same result, otherwise, different designs will naturally lead to
different results.

The objective of this study is to examine and identify the relationship between BMI and mortality from
a dynamic prospective. Our analysis is based on the first cohort of the Framingham Heart Study (FHS),
which has a long follow-up period and a large number of repeated measures to support our analysis. We
first use logistic regression models to demonstrate that different designs on the same population may
lead to different results; then we use dynamic survival models to capture the time-varying relationship
between BMI and mortality in FHS.

2. Materials and Methods

2.1. Framingham Heart Study

The Framingham Heart Study (FHS) is an epidemiologic study funded by the National Heart, Lung,
and Blood Institute (NHLBI). Multiple cohorts have been recruited into the large study. The original
cohort of FHS consists of 5209 men and women between the ages of 30 and 62 from Framingham,
Massachusetts. Extensive examinations were carried out every other year on this cohort since 1948 and
exam 29 began in April of 2006. In this study, we use information of the first 20 exams (about 40 years
of follow-up) of the original cohort for analysis. The exact survival time of each individual is available.
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2.2. Methods

2.2.1. Logistic Regression Models

We first demonstrate that different study designs shown in Figure 1 can lead to different results using
logistic regression models. Three scenarios are created from the FHS: when BMI at a different time point
is used (only the location of the bar in Figure 1 changes), when the length of follow-up changes (only
the length of the box in Figure 1 changes), when the calendar time of the baseline changes (the bar and
the box move simultaneously with calendar time). Within each scenario, a logistic regression model for
all-cause mortality is estimated for each design, and the estimated odds ratios (ORs) of BMI are plotted
together. We are interested in examining whether there is a consistent changing pattern of estimated ORs
within each scenario. The analysis is done separately for men and women since it is likely that there is a
gender difference for the relationship between BMI and mortality.

Figure 1. The design of an observational study about BMI and mortality.

(a) When BMI at a different time point is used

The purpose of this analysis is to show whether the result may be different for a study on the same
group of subjects when BMI at a different time point is used. We choose the time period from year 30
(exam 16) to year 40 of FHS as the follow-up period. Each measurement of BMI from exam 1 to exam
16 is used to model the mortality within the 10-year period with a logistic regression model. The ORs of
BMI of all models within each gender are plotted together against the time difference between the BMI
measurement and the baseline of the follow-up period (year 30 of FHS). Only 1,582 (639 men and 943
women) subjects who were alive at exam 16 and had all 16 BMI measurements (exam 1 to exam 16)
available are included in the analysis. Subjects excluded are 1762 participants who died before exam 16
and 1865 participants who have at least one missing BMI measurement from exam 1 to exam 16. This
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strategy is adopted to make sure that all models within each gender are built upon the same group of
individuals. The comparison of BMI ORs across all models within each gender demonstrates the effect
of using BMI at different time points on the result about the association between BMI and mortality.

(b) When the length of follow-up changes

The purpose of this analysis is to show whether the result may be different for a study on the same
group of subjects when the follow-up length is different. We set the baseline of follow-up at year 0
(exam 1) and increase the length of follow-up from 6 to 40 years. BMI measured at exam 1 is used for
all models. Except 8 subjects with missing BMI measurements at exam 1, 5201 subjects are included
in the analysis. There are 18 logistic regression models estimated for each gender. The comparison of
BMI ORs across all models within each gender demonstrates the effect of the length of follow-up on the
result about the association between BMI and mortality.

(c) When the calendar time of the baseline changes

The purpose of this analysis is to determine whether short studies using the traditional design in
Figure 1 have a common tendency. We fix the length of follow-up as 6 years and move the baseline
(beginning of the follow-up period) from exam 1 to exam 18 to estimate 18 logistic regression models
for each gender. For each model, BMI at baseline is used. Sample sizes for all models within each
gender are different, varying from 2878 to 687. The comparison of the estimated ORs demonstrates the
effect of the calendar time of the baseline on the result about the association between BMI and mortality.

2.2.2. Dynamic Survival Models

The Cox model is a commonly used method in epidemiological studies when survival times are
observed. A Cox model has a hazard function in the following form:

λ(t) = λ0(t) exp{Xβ}. (1)

In the model, all covariates are assumed to have fixed effects. This assumption is called the proportional
hazards (PH) assumption and it is often violated in reality.

When the PH assumption is violated, that means the association between BMI and the risk of death is
not constant but changing within the box in Figure 1. Dynamic survival models can be used to model the
change as a function of follow-up time from baseline to the end of the study. A dynamic survival model
has a hazard function as:

λ(t) = λ0(t) exp{Zγ + Xβ(t)} (2)

where Z denotes all covariates with fixed effects while X denotes all covariates with time-varying
effects. Time-varying coefficients in β(t) describe effects (of corresponding covariates) that change
with the follow-up time t during the entire follow-up period. To estimate such time-varying coefficients,
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a simple method is to add interaction terms between covariates and the follow-up time t into the regular
Cox model [13]. Commonly used software such as SAS and STATA can estimate this type of models.
Another more flexible approach is time-varying coefficient survival model proposed by Gray [14, 15].
This model uses penalized partial likelihood estimates and can be estimated using the “Coxspline”
package of the free statistical software R.

In this part, one model is used to capture the association between BMI and mortality for each gender.
Besides gender and age, smoking status (current smoker, yes or no) and systolic blood pressure (SBP,
mmhg) are also considered in the analysis. The data set with all this information available is the
the original cohort of FHS starting from exam 4 to the end of the 40-year follow-up. The values of
BMI, age, smoking status, and SBP are measured at exam 4. The total sample size is 4526 (2005 men
and 2521 women).

The Cox model is used at first to examine the relationship between BMI and the risk of death for males
and females, separately. The effect of age, blood pressure, and smoking status are controlled. When
the test of PH assumption shows significant results, the two different approaches for dynamic survival
models are applied to model the associations between BMI and mortality as time-varying functions. All
the other variables are allowed to have time-varying coefficients if the PH assumptions for those variables
are violated.

With limited data, this paper focuses on showing some evidence that the association between BMI
and mortality may change with time rather than modeling the exact changes. For all analyses, BMI and
SBP are used as continuous variables and only linear terms are included. The time-varying coefficients
survival model shows the change of the linear association between BMI and mortality with time. From
the the literature, the association between BMI and mortality is likely to be nonlinear rather than linear.
However, a large number of parameters are needed to capture a nonlinear relationship, which leaves
limited flexibility for modeling the change of the relationship with time using this small data set.
The changes of a linear association show some evidence of the changes of the underlying nonlinear
association. This strategy simplifies the analysis and serves the purpose of this preliminary research.
Larger data sets and more sophisticated methods will be used for future analysis.

3. Results

3.1. Logistic Regression Models

The analysis using logistic regression models shows that the result of the association between BMI
and mortality may differ when the design of a study changes, such as using BMI measured at a different
time or changing the length of the follow-up.

(a) When BMI at a different time point is used

Each measurement of BMI at exam 1 to exam 16 is used to model the mortality in year 30 to
year 40 of FHS. Figure 2 presents the estimated ORs (connected lines) of BMI and their point-wise 95%
confidence intervals (dots). The horizontal axis denotes the time difference between BMI measurement
and baseline, the beginning of the 10-year period. A time difference of -30 years means BMI is measured
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30 years before the baseline. Age effect on mortality is controlled by including age at exam 16 (year 30)
as a covariate. For each gender, the same group of individuals are included in all of the 16 models and
the only difference among these models is the time when BMI is measured.

Both plots in Figure 2 show overall downward trends. For women, the ORs for BMI measured more
than 10 years earlier than the baseline are significantly greater than 1 (95% confidence intervals are
above 1), while those for BMI measured within 10 years are not. For men, although most ORs are not
significantly different from 1, the decreasing trend is more obvious than that of women and the ORs for
BMI measured within 6 years to the baseline are even less than 1. Since the only difference among all
the models within each gender is the time when BMI is measured, Figure 2 suggests that a study may get
a different result if BMI measured at a different time point is used. Here, BMI measured earlier means
BMI at younger ages for these individuals. What Figure 2 suggests is that using BMI at younger ages
instead of at the baseline of a study may obtain a different result. For women, using BMI at younger ages
may show stronger direct linear associations. For men, when an inverse linear association is observed
using baseline BMI, using BMI at younger ages may show an opposite result of direct linear association.

Figure 2. The estimated ORs of BMI for all-cause mortality and their 95% pointwise
confidence intervals when measurements made at different time points are used to model
the mortality within year 30 to year 40 of the Framingham Heart Study. Death rates:
male = 265/639, female = 279/943. Time 0 denotes year 30 of FHS, the beginning of
the follow-up period.

(b) When the length of follow-up changes

Figure 3 shows the ORs of BMI measured at exam 1 to model the mortalities of men and women
within 6 years to 40 years after exam 1. There are 18 models in total for each gender. The age effect
is also controlled in all the models using age at exam 1. The same group of individuals are included in
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all models for each gender and the only difference among the 18 models of each gender is the length of
follow-up.

Figure 3. The estimated odds ratios of BMI measured at exam 1 and their 95% pointwise
confidence intervals for all-cause mortality in different follow-up periods. Sample size: 2333
men and 2868 women.

Figure 3 shows overall increasing trends of the ORs for both men and women. For men, the OR is
less than 1 when the length of follow-up is the shortest (6 years), then it increases consistently as the
length of follow-up increases. The same pattern is observed for women except that the change is less
obvious. This analysis suggests that the direct linear association between BMI and mortality may be
stronger if a study has a longer follow-up period. Also, the change for men may be more obvious than
that for women. For men, an inverse linear association may be observed when the length of follow-up
is short.

(c) When the calendar time of the baseline changes

The analysis in part (a) suggests that the more recent BMI is used, the more likely it is to obtain no
linear association for women or an inverse association for men. The analysis in part (b) suggests that
the shorter the length of follow-up, the more likely it is to obtain the same result. We design the third
scenario to examine whether short studies using baseline BMI tend to obtain similar results.

Figure 4 shows the ORs of BMI for 18 models of each gender. Each model uses BMI and age at one
of the first 18 exams as covariates and 6 years after the exam as the follow-up period. In the figure, 14
odds ratios for men and 15 odds ratios for women are less than 1. Compared with those of men, most
odds ratios for women are close to 1. For example, 11 out of the 18 odds ratios are no more than 0.02
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different from 1 for women. None of the ORs is significantly greater than 1 while 4 ORs for men and 2
ORs for women are significantly lower than 1 (95% confidence intervals are below 1).

Figure 4. The estimated odds ratios of BMI for all-cause mortality and their 95% pointwise
confidence intervals when short follow-up periods and baseline (the beginning of each
follow-up period) measurements of BMI are used.

With no obvious changing patterns in either plot of Figure 4, this result suggests that a short study
using baseline BMI to examine the association between BMI and mortality based on FHS tends to
conclude with no linear association for women and an inverse association for men. Since the change
of the baseline also means a study on a population at different ages, Figure 4 suggests that the tendency
for short studies to conclude with no linear association or inverse associations may be true for the FHS
population at both young and old ages.

3.2. Dynamic Survival Models

First a Cox model is used to model the association between BMI and mortality with age, smoking
status, and blood pressure controlled. We tested the proportional hazards (PH) assumptions for each
covariate in the models. The test results using STATA 10 are in Table 1.

In Table 1, the linear effect of BMI in the Cox model for men is insignificant (p = 0.876), but
the test of PH assumption is highly significant (p = 0.0001). The tests of the coefficients in the Cox
model are Wald tests and the test of PH assumption used in STATA 10 was proposed by Grambsch and
Therneau [16]. This result suggests that the hazards ratio of BMI changes significantly with time. The
tests of the PH assumptions for age, SBP, and smoking status are all significant. As for women, the
test of BMI effect in the Cox model is significant (p = 0.011) and the test of PH assumption of BMI
is a borderline case (p = 0.060). The tests of the PH assumptions of age and SBP for women are also
significant while that of smoking status is not significant.



Int. J. Environ. Res. Public Health 2009, 6 3123

Table 1. Cox models and the tests of the proportional hazards assumptions for the
Framingham Heart Study.

Analysis Result for Men

Variables Hazards Ratio p-value Test of PH assumption (p-value)

Age (5 years) 1.57 < 0.001 0.034

sbp (10 mmHg) 1.15 < 0.001 0.026

Smoking 1.42 < 0.001 < 0.0001

BMI 1.00 0.876 0.0001

Analysis Result for Women

Variables Hazards Ratio p-value Test of PH assumption (p-value)

Age (5 years) 1.58 < 0.001 0.001

sbp (10 mmHg) 1.12 < 0.001 0.017

Smoking 1.42 < 0.001 0.570

BMI 1.02 0.011 0.060

Figure 5. The estimated time-varying log hazard ratio functions of BMI. 1) thin lines: Cox
model with interactions with time. 2) thick curves: Time-varying coefficient survival models.
The effects of age, SBP, and smoking status are controlled.
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Our analyses are limited in another way in that only the linear association between BMI and mortality
is under consideration. Our analysis does not show directly, but suggests the change of the shape of the
association between BMI and mortality. In scenario b) with fixed BMI and changing length of follow-
up (Figure 3), because the individuals and BMI measurement are the same for all models within each
gender, the observed changes of the linear association imply the change of the shape of the underlying
association between BMI and mortality. A non-linear relationship, if one exists, would show a much
more complex dynamic pattern than the pattern we have shown in this study. Our future research is to
model how an unspecified nonlinear association changes with time and interpret the changes. Also, more
research will need to be done with other data to verify the dynamic feature observed in FHS.

To our knowledge, despite its limitations, our study is the first study to examine the association of
BMI and mortality from a dynamic prospective that it provides a unified view of the impact of the study
design on the result. If different designs lead to different results, then which design better capture the
causal effect of body weight on mortality? For an observational study about body weight and mortality,
researchers may consider obtaining BMI at multiple time points to compare the differences, having a
relatively longer follow-up period, and applying appropriate alternative models when the proportional
hazards assumption is violated.
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Figure 5 shows the estimated time-varying log hazard ratios of BMI for men and women separately
using the two methods described in the method session. The straight lines are estimates from the
Cox models with linear interaction terms using software STATA 10. The estimated function for men
is −0.58 + 0.0032t and that for women is −0.01 + 0.0013t, where t is the follow-up time (years).
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The smooth curves in Figure 5 are the estimates of the time-varying coefficient survival models using
software R. We used quadratic splines and 10 knots for each model. All the hazard ratios of other
covariates with the PH assumptions violated are allowed to change with time (not shown). From the
figure, we can see that the estimated log hazards ratios using these two methods have similar increasing
patterns, especially for women. Overall, the hazards ratios of BMI increase over time for both men and
women, and the increase for men is more obvious than that for women. In the last 10 years of follow-up,
the hazards ratio for men based on the flexible model decreases, which can not be captured by the Cox
model with linear interactions. The estimated hazards ratio of BMI for men is less than 1 (log hazards
ratio in Figure 5 is less than 0) during the first 15 years of the follow-up period and is greater than 1
afterwards. The hazards ratio for women is close to 1 (log hazards ratio in Figure 5 is close to 0) then
gradually increases with the follow-up time.

The results using dynamic survival models clearly show the changing pattern of the association
between BMI and mortality with the follow-up time, especially for men.

4. Discussions

The purpose of our analyses is to examine and identify some evidence that the association between
BMI and mortality may not be static so that studies with different designs will capture different pictures
of the association of BMI and mortality. We demonstrated, using a single data set, that the relationship
between BMI and mortality is, for this data, a complex dynamic relationship where the results obtained
depend heavily on the designs of the study and that the relationship does not appear to satisfy the
proportional hazards assumption. We also observed from this study that the dynamic feature is stronger
for men than for women. However, the same analysis may not be repeatable in other studies if they do
have have a large number of repeated measures of BMI within a long follow-up period. Our conclusion
is limited to this particular study and population.

There are some findings in the literature that are consistent with our results from different aspects.
Some published studies include all individuals alive at baseline for analysis, while others excluded deaths
within the first several years of follow-up from analysis [17–20]. This strategy of dropping early deaths
sets the real follow-up period to start several years after the time when BMI is measured. Our analysis
suggests that this strategy will lead to overall stronger direct associations between BMI and mortality,
especially for men (as in Figure 2). Allison et al. performed a meta analysis about the effect of dropping
earlier deaths (in 4–6 years) and found that “the effect of excluding subjects who died early was greater
for men than that for women” [21]. According to Figure 2, our analysis also suggests that this changing
relationship may last well beyond 4–6 years. One study in the literature proposed the average-adulthood
BMI rather than baseline BMI [22]. Another study found that dropping early deaths affects the analysis
using BMI at baseline (average age at baseline is 73) but do not affect the analysis when BMI at age 21
is used [20]. All these findings in the literature showed that using BMI measured at different time points
or changing the follow-up period (drop early deaths) may affect the analysis.

Our analyses are limited in another way in that only the linear association between BMI and mortality
is under consideration. Our analysis does not show directly, but suggests the change of the shape of the
association between BMI and mortality. In scenario b) with fixed BMI and changing length of follow-up
(Figure 3), because the individuals and BMI measurement are the same for all models within each gender,
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the observed changes of the linear association imply the change of the shape of the underlying association
between BMI and mortality. A non-linear relationship, if one exists, would show a much more complex
dynamic pattern than the pattern shown in this study. Our future research is to model how an unspecified
nonlinear association changes with time and interpret the changes. Also, more research will need to be
done with other data to verify the dynamic feature observed in FHS.

To our knowledge, despite its limitations, our study is the first study to examine the association of
BMI and mortality from a dynamic prospective that it provides a unified view of the impact of the study
design on the result. If different designs lead to different results, then which design better capture the
causal effect of body weight on mortality? For an observational study about body weight and mortality,
researchers may consider obtaining BMI at multiple time points to compare the differences, having a
relatively longer follow-up period, and applying appropriate alternative models when the proportional
hazards assumption is violated.
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