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Abstract:  Environmental exposures, including some that vary seasonally, may play a role in the development of 
many types of childhood diseases such as cancer.   Those observed in children are unique in that the relevant period of 
exposure is inherently limited or perhaps even specific to a very short window during prenatal development or early 
infancy.  As such, researchers have investigated whether specific childhood cancers are associated with season of 
birth.  Typically a basic method for analysis has been used, for example categorization of births into one of four 
seasons, followed by simple comparisons between categories such as via logistic regression, to obtain odds ratios 
(ORs), confidence intervals (CIs) and p-values.  In this paper we present an alternative method, based upon an iterative 
trigonometric logistic regression model used to analyze the cyclic nature of birth dates related to disease occurrence.  
Disease birth-date results are presented using a sinusoidal graph with a peak date of relative risk and a single p-value 
that tests whether an overall seasonal association is present.  An OR and CI comparing children born in the 3-month 
period around the peak to the symmetrically opposite 3-month period also can be obtained.  Advantages of this 
derivative-free method include ease of use, increased statistical power to detect associations, and the ability to avoid 
potentially arbitrary, subjective demarcation of seasons.   
 
Keywords: Sinusoidal logistic regression, season of birth, childhood cancer 
 

 
Introduction 
 

Cancer researchers have sought to demonstrate 
whether a link exists between season of birth and 
childhood diseases such as cancer [1-13].  An early 
narrow window of susceptibility during prenatal 
development [14-15] or perhaps infancy is believed to 
exist for childhood cancer.  These periods are 
characterized by rapid cell growth and division and a yet 
undeveloped immune system. Oncogenic viruses [16-18] 
and chemicals [19-20] have been shown under laboratory 
conditions to readily induce cancers when applied during 
specific periods in development versus adulthood.  
Therefore, evidence of an association between childhood 
cancer and season of birth may suggest a role for a 
seasonally variable environmental exposure in its etiology.  
Exposure to infectious agents, pesticides, indoor 
environmental tobacco smoke and other sources of 

polycyclic aromatic hydrocarbons, and use of 
antihistamines are a few examples of environmental 
factors that conceivably may follow a seasonal pattern.  
Other factors of interest to consider in the study of 
childhood cancer and seasonality include harmonic 
variation in population mixing, diet, temperature, 
humidity, sunlight/photoperiod, levels of vitamin D3 and 
endogenous hormones.  

A number of statistical tests for the analysis of 
harmonic data have been presented in the literature [21-
42]. This paper presents a novel and easy to use adaptation 
of earlier methods that is suitable for analyzing season of 
birth as a risk factor for diseases such as childhood cancer.   

 
Methods 

 
Logistic regression is used to estimate the probability 

for disease in relation to potential risk factors and 
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confounding variables [43].  The technique has been 
widely used in epidemiologic studies, including case-
control studies to examine the etiology of childhood 
cancer.  Letting x1,…,xr denote a study participant’s values 
for the (r) predictor variables in a logistic regression 
model, the probability for disease (D) is computed as:     
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where 1̂
ˆˆ, , , ra b bK are the intercept and coefficients 

estimated from the data using maximum likelihood 
methods.  In a case-control study, the odds ratios (ORs) 
can be determined from the logistic regression model and 
are the exponentiated values of e by the corresponding 

estimated regression coefficients 1̂
ˆ, , rb bK .  A p-value for 

a specific predictor variable may be determined by taking 
twice the logarithm of the ratio of the likelihood of the 
data under the model including the variable to the 
likelihood without the variable.  The resulting value is 
compared to a χ2 statistic with 1 degree of freedom.   

 A predictor variable in the simplest case may be 
expressed as a dichotomous variable, e.g., whether birth 
occurred in summer.  However, more complex forms may 
be appropriate.  A variable such as date of birth (DOB, 
coded as an integer from 1 to 365) may be expressed as a 
trigonometric function [44-45].  In this example, let  
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where ξMAX is determined iteratively by finding the 

value from 1 to 365 that maximizes the coefficient 1̂b .  
The maximum 3-month seasonal period of risk is found by 
taking the 91.25 day-wide interval centered on ξMAX . 
Analogously, the minimum risk period is found by taking 
the symmetrically opposite 3-month interval centered on 
ξMIN. The seasonal association is visualized by plotting 

1 1b̂ x  (i.e., harmonic displacement) against DOB over the 
range 1 to 365.  A single p-value can be obtained as 
described above for this predictor variable to test whether 
a seasonal pattern exists.  An OR for disease in the 
maximum versus minimum 3-month seasonal period and 
corresponding 95% confidence interval (CI) also may be 
computed, using standard methods [43].  In the case of a 
leap year, the 29th day of February is recoded as calendar 
day 59 so that the respective year consists of 365 days.      

 
Example 

     
Using hypothetical childhood cancer birth-date data 

from a case-control study (Appendix 1), we conducted 

analyses using the methods described above, and for 
comparison, the typical, more basic method to examine 
whether there is a seasonal pattern in children’s DOB.  
The identification of an underlying sinusoidal trend would 
be consistent with the hypothesis of a seasonally varying 
exposure (e.g., viruses, use of pesticides) as a possible 
etiologic risk factor for childhood cancer. 

In this example, no significantly increased OR for 
childhood cancer (all p>0.05) was observed for pair-wise 
seasonal comparisons when defined in simple 
categorizations, here as fall (September, October, 
November), winter (December, January, February), spring 
(March, April, May), and summer (June, July, August), 
although the lower confidence limit for ‘winter versus 
summer’ was just slightly less than unity (Table 1).  
However, when applying equation (2) to the data in a 
logistic regression model, a statistically significant (p = 
0.0165) seasonal pattern was observed, with peak risk 
occurring in early February at day 33 (Figure 1).  The 
respective OR for childhood cancer when comparing the 
maximum versus minimum 3-month seasonal period was 
2.2 (95% CI=1.2-4.1). 

 
Table 1: Odds ratios for childhood cancer by season of 
child’s birth using hypothetical data (Cases n = 134, 
Controls n = 261)  

ÞSpring = {March, April, May}; Summer = {June, July, 
August}; Fall = {September, October, November}; Winter 
= {December, January, February}. 
 
 

 
Figure 1:  Sinusoidal logistic regression model for 
hypothetical childhood cancer – birth date data. 

Season of birthÞ Odds ratio 95% Confidence 
interval

Winter vs. Spring 1.2            (0.68-2.1)

Spring vs. Fall 1.0            (0.56-1.8)

Winter vs. Fall 1.2            (0.67-2.2)

Winter vs. Summer 1.8            (0.99-3.3)

Spring vs. Summer 1.5            (0.84-2.7)

Fall vs. Summer 1.5            (0.82-2.8)
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Appendix 1: Hypothetical case-control data (Cases n=134, Controls n=261) 
 

Day of 
birth 

No. of 
cases 

No. of 
controls 

Day of 
birth 

No. of 
cases 

No. of 
controls

Day of 
birth 

No. of 
cases 

No. of 
controls

Day of 
birth 

No. of 
cases 

No. of 
controls 

Day of 
birth 

No. of 
cases

No. of 
controls

1 1 1 77 1 0 139 0 1 212 0 2 288 0 1
3 1 2 78 1 0 140 1 2 213 0 1 289 1 0
4 1 0 79 1 1 141 0 3 214 1 0 290 1 0
5 0 2 80 1 0 142 1 1 215 0 2 291 0 1
6 0 1 81 0 1 143 1 1 216 0 2 293 1 0
7 0 1 83 0 1 144 0 2 217 0 1 294 0 1
8 2 1 85 0 1 146 2 0 221 1 1 296 1 0
12 0 2 86 1 1 147 0 2 223 2 1 297 1 4
15 1 1 87 0 1 148 0 1 224 0 1 298 0 1
17 0 2 88 0 2 150 0 1 225 0 1 299 1 2
18 2 0 89 0 2 152 0 1 226 3 3 300 1 0
19 1 0 90 1 0 154 1 1 227 0 2 301 0 1
21 1 1 91 1 0 155 0 1 228 0 1 303 1 0
22 1 1 92 0 2 157 1 0 230 0 1 304 2 0
23 1 1 93 1 1 159 0 2 231 1 2 305 0 1
24 1 0 94 2 1 160 0 1 232 0 1 306 0 1
26 0 1 96 0 1 161 0 1 234 1 1 307 0 3
27 1 1 97 1 1 164 1 0 235 0 2 308 0 1
29 0 1 99 1 0 166 0 2 236 0 2 309 1 2
32 0 2 100 0 2 167 1 0 237 1 1 311 1 2
33 1 1 102 1 2 168 2 0 239 0 1 312 1 0
35 1 0 103 0 1 169 0 1 240 0 1 313 1 2
36 0 1 107 1 0 170 0 1 242 0 2 314 1 1
39 2 2 108 0 1 172 0 1 245 0 1 316 1 0
40 1 1 109 1 1 174 1 1 246 0 1 320 0 1
42 1 1 110 1 0 175 1 2 248 2 0 322 2 1
43 0 2 111 0 4 176 0 1 249 0 1 323 1 0
45 0 1 112 1 1 177 0 1 251 2 3 324 1 1
46 1 0 113 0 1 179 2 0 252 0 1 325 0 1
47 1 1 114 1 1 180 0 1 253 1 2 327 0 1
48 0 1 115 0 1 182 0 2 255 0 1 328 1 0
49 0 1 116 1 0 184 1 0 256 1 2 329 0 1
50 1 0 117 1 0 186 1 1 257 0 1 331 1 0
51 0 1 118 0 1 187 0 2 262 1 0 336 1 0
53 1 0 119 0 2 188 0 2 263 1 1 338 1 1
54 1 1 120 1 0 190 0 2 264 0 1 340 0 1
56 1 0 122 1 1 191 0 1 265 0 2 341 0 1
57 1 1 123 0 1 194 0 1 266 1 1 342 0 1
58 1 0 124 0 2 195 0 1 267 0 1 345 0 1
59 1 1 125 1 0 196 0 2 269 1 0 346 1 1
60 0 2 126 2 0 197 1 0 270 0 1 347 0 1
62 2 0 127 0 1 198 1 1 273 0 1 349 1 0
63 0 1 129 0 1 199 0 1 274 0 1 351 0 1
66 1 0 130 1 0 200 1 1 276 0 1 356 0 2
68 0 2 131 0 2 202 1 1 277 0 2 358 0 1
69 1 2 132 1 0 203 0 2 278 0 1 359 2 1
70 0 1 133 0 1 204 1 1 279 0 1 361 0 1
71 1 0 135 1 0 208 0 1 282 1 2 362 0 3
73 0 1 136 0 2 209 0 2 284 0 1 364 0 1
75 0 1 138 0 1 210 0 1 287 0 1 365 1 1
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Discussion 
 

We have presented a simple, iterative logistic 
regression-based method to analyze seasonal data.  The 
method represents a generalization of earlier trigonometric 
models yet is easier to apply and interpret. A novel aspect 
of the technique is its ability to optimally fit a sinusoidal 
curve to the underlying data by plotting harmonic 
displacement against calendar time.  An additional key 
feature of this approach is the ability to obtain an overall 
p-value and an OR for disease in the “maximum versus 
minimum” 3-month seasonal period and a corresponding 
95% CI.  Whereas no single method provides a universal 
solution to handle harmonic data, the current method 
accommodates varying length of months, different 
populations at risk, adjustment for potentially confounding 
variables, and is fairly robust when used for small 
samples.  The associated statistical test inherently will 
have greater family-wise power to detect a sinusoidal 
pattern when compared to chi-square methods or 
performing multiple pair-wise tests for seasonality.  
Analogous to a dose response relationship based upon a 
best-fitting monotonic model and a priori mechanism of 
action, multiplicity correction is not necessary for 
sinusoidal logistic regression because there is only one 
parameter and one statistical test.  Furthermore, it takes 
into account the order of events (e.g., consecutively 
high/low time periods) and in contrast to pair-wise 
seasonal comparisons, the underlying definition of season 
in the current model is not arbitrary for a start and end 
date, but is determined via the model algorithm.   

Several limitations may apply to the use of sinusoidal 
logistic regression.  For example, parameter estimates may 
be biased if there is a discrepancy between observed 
values and values expected under the model.  
Accordingly, the data should be examined for goodness-
of-fit using a standard procedure such as the Hosmer-
Lemeshow test [46].  Erroneous results may occur in the 
case of multiple within-year cycles or competing out-of-
phase cycles resulting in a cancelling of effects (e.g., 
opposing seasonal effects by histologic subgroup). A 
minor modification can be made to the sinusoidal function 
to allow for multiple cycles [25-26, 34, 40].  For example, 
a lunar cycle having multiple peaks per year may be 
modeled by substituting “365” in the denominator of 
equation (2) with “29.53” (i.e., the number of days in the 
lunar cycle).  When appropriate, stratification is advised in 
the latter situation as a means to minimize “cancelling of 
effects.”  Further, the lack of a seasonal effect does not 
necessarily rule out the etiologic importance of putative 
risk factors that vary in the environment seasonally.  
Conversely, the seasonal association of a specific risk 
factor with childhood cancer does not necessarily imply 
causality.  As with any statistical test, the results of this 
method should be carefully interpreted in light of 
underlying limitations and biologic plausibility.    
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