
Citation: Li, X.; Patel, V.; Duan, L.;

Mikuliak, J.; Basran, J.; Osgood, N.D.

Real-Time Epidemiology and Acute

Care Need Monitoring and

Forecasting for COVID-19 via

Bayesian Sequential Monte

Carlo-Leveraged Transmission

Models. Int. J. Environ. Res. Public

Health 2024, 21, 193. https://doi.org/

10.3390/ijerph21020193

Academic Editors: Michael Chaiton,

Laura Rosella and Elham Dolatabadi

Received: 1 September 2023

Revised: 24 December 2023

Accepted: 3 February 2024

Published: 7 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

International  Journal  of

Environmental Research

and Public Health

Article

Real-Time Epidemiology and Acute Care Need Monitoring and
Forecasting for COVID-19 via Bayesian Sequential Monte
Carlo-Leveraged Transmission Models
Xiaoyan Li 1,* , Vyom Patel 1 , Lujie Duan 1, Jalen Mikuliak 1, Jenny Basran 2 and Nathaniel D. Osgood 1

1 Department of Computer Science, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada;
vyom.patel@usask.ca (V.P.); lujie.duan@usask.ca (L.D.); jalen.mikuliak@usask.ca (J.M.);
nathaniel.osgood@usask.ca (N.D.O.)

2 Saskatchewan Health Authority, Saskatoon, SK S7K 0M7, Canada; jenny.basran@saskhealthauthority.ca
* Correspondence: xiaoyan.li@usask.ca; Tel.: +1-306-966-4886

Abstract: COVID-19 transmission models have conferred great value in informing public health
understanding, planning, and response. However, the pandemic also demonstrated the infeasibility
of basing public health decision-making on transmission models with pre-set assumptions. No
matter how favourably evidenced when built, a model with fixed assumptions is challenged by
numerous factors that are difficult to predict. Ongoing planning associated with rolling back and
re-instituting measures, initiating surge planning, and issuing public health advisories can benefit
from approaches that allow state estimates for transmission models to be continuously updated in
light of unfolding time series. A model being continuously regrounded by empirical data in this way
can provide a consistent, integrated depiction of the evolving underlying epidemiology and acute
care demand, offer the ability to project forward such a depiction in a fashion suitable for triggering
the deployment of acute care surge capacity or public health measures, and support quantitative
evaluation of tradeoffs associated with prospective interventions in light of the latest estimates of the
underlying epidemiology. We describe here the design, implementation, and multi-year daily use for
public health and clinical support decision-making of a particle-filtered COVID-19 compartmental
model, which served Canadian federal and provincial governments via regular reporting starting in
June 2020. The use of the Bayesian sequential Monte Carlo algorithm of particle filtering allows the
model to be regrounded daily and adapt to new trends within daily incoming data—including test
volumes and positivity rates, endogenous and travel-related cases, hospital census and admissions
flows, daily counts of dose-specific vaccinations administered, measured concentration of SARS-CoV-
2 in wastewater, and mortality. Important model outputs include estimates (via sampling) of the
count of undiagnosed infectives, the count of individuals at different stages of the natural history
of frankly and pauci-symptomatic infection, the current force of infection, effective reproductive
number, and current and cumulative infection prevalence. Following a brief description of the
model design, we describe how the machine learning algorithm of particle filtering is used to
continually reground estimates of the dynamic model state, support a probabilistic model projection
of epidemiology and health system capacity utilization and service demand, and probabilistically
evaluate tradeoffs between potential intervention scenarios. We further note aspects of model use in
practice as an effective reporting tool in a manner that is parameterized by jurisdiction, including the
support of a scripting pipeline that permits a fully automated reporting pipeline other than security-
restricted new data retrieval, including automated model deployment, data validity checks, and
automatic post-scenario scripting and reporting. As demonstrated by this multi-year deployment of
the Bayesian machine learning algorithm of particle filtering to provide industrial-strength reporting
to inform public health decision-making across Canada, such methods offer strong support for
evidence-based public health decision-making informed by ever-current articulated transmission
models whose probabilistic state and parameter estimates are continually regrounded by diverse
data streams.
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1. Introduction

A novel coronavirus and accompanying infectious disease were reported to the World
Health Organization (WHO) in Wuhan, China in December of 2019 [1]. The WHO declared
this outbreak a Public Health Emergency of International Concern in January of 2020,
designating this new coronavirus disease COVID-19 [1]. Global travel and endogenous
spread across hundreds of countries have yielded a worldwide pandemic, with rapidly
rising totals of over 752 million confirmed cases and over 6.8 million confirmed deaths
through 30 January 2023 [2].

During the COVID-19 pandemic, ongoing public health order planning and replanning
associated with rolling back and reinstituting measures and conducting timely messaging
has benefited from the availability of empirical time series—often holding evidence of
shifts in epidemiology, availability of acute care resources, and changes in behaviour with
regards to risk, testing, vaccination uptake, and clinical presentation. At the same time,
decision-making has relied heavily on a variety of types of dynamic models.

Several previous studies [3–7] showed success in monitoring, estimating, and pre-
dicting the transmission of infectious diseases by stochastic filtering of mathematical
epidemiology models using observed datasets via sequential Monte Carlo (SMC) machine
learning algorithms. SMC methods were introduced in the early 2000s [8,9], and commonly
go by the name of particle filtering (PF). Such studies have demonstrated that projections
forward from dynamic models in health and health care offer substantial additional value
if they can be informed by up-to-date, grounded estimates of the current situation. The
particle filtering method—together with several variants—has also been used for COVID-
19 [10–15] in the last two years since this new infectious disease emerged. Most of these
studies used public health surveillance data—such as daily reported cases and daily hos-
pitalized admission patients—to track the transmission dynamics. After the SARS-CoV-2
virus was confirmed detected in untreated wastewater [16–25], several researchers [14]
used wastewater surveillance data to ground the mathematical epidemiology models via a
partially observed Markov processes (POMP) model. These methods use Markov chain
Monte Carlo and sequential Monte Carlo (particle filtering) methods.

This paper presents the use of PF with a model deployed by the health system and used
internally for routine provincial-level reporting and decision-making since the fourth month
of the pandemic. Such PF incorporated a COVID-19 compartmental transmission model
and a wide variety of observed daily datasets from both public health surveillance data
and wastewater surveillance data. Within this context, the COVID-19 model provides an
integrated characterization of disease transmission, a natural history of infection including
both frankly symptomatic and oligo-/pauci-symptomatic pathways, distinct passive and
active case-finding systems for the occurrence of travelling cases, basic COVID-19 related
acute care flows and occupancy, characterization of two dose-specific vaccination stages,
and mortality. Important model outputs include estimates (via sampling) of the effective
reproductive number, the count of undiagnosed infectives, and the count of individuals at
different stages of the natural history of infection along both pathways. Since July 2020,
the model further incorporated a representation of SARS-CoV-2 fecal viral shedding, and
when wastewater evidence is available, the PF framework makes use of a likelihood term
comparing the empirical viral concentration of SARS-CoV-2 in wastewater with model
expectations for that concentration.

The model was built in concert with the Saskatchewan Health Authority and has
been in production use for regular health system reporting since June 2020, with some
model findings informing understanding of the evolving epidemiological context as early
as April 2020. Since that time, and beyond its use for reporting to the Saskatchewan
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Health Authority and Saskatchewan Ministry of Health, the model has been used to
deliver reporting contracts with the Public Health Agency of Canada (for each Canadian
province), First Nations and Inuit Health Branch (FNIHB). The resulting reports have
proven particularly key in day-to-day instituted health system reporting and informing
planning for the Canadian midwestern province of Saskatchewan. In this paper, we
characterize the structure of the model and present the results of applying the model to
the population of the city of Saskatoon in the province of Saskatchewan, Canada, during
the period of wild type SARS-CoV-2 and the alpha variant [26] from 22 February 2020 to
31 July 2021.

2. Methods
2.1. Deterministic Compartmental Model

We describe here the compartmental model used within this system, which character-
izes the total population as divided into different compartments distinguished by different
pathways of natural progression, severity of illness, diagnosis, and acute care use. For
simplicity, our description of the model omits discussion of the evolution of that model,
pausing only to note that the vast majority of the model as described here was in use at the
start of regular reporting in June 2020. We also exclude from this section a characterization
of variants of that model, differing particularly in the levels of stratification involved. We
further exclude discussion of variant-specific adjustment of values of some parameters
otherwise treated as constant and the model structure adjusted to accommodate further
variants in the application.

The structure of the COVID-19 compartmental model is shown in Figure 1 and em-
ploys a time unit of days. The compartments of the model are introduced as follows. The
model contains a largely orthogonal characterization of progression along two possible
natural histories of infection (on one hand) and diagnosis status (on the other). Specifically,
the model dichotomizes both the infective (compartments denoted by names prefixed by I
or H) and recovered (compartments prefixed by R) populations into diagnosed (subscripted
by D) and undiagnosed (subscripted by U) status, depending on whether an individual has
been diagnosed via lab-confirmed PCR testing. The infective population in the model was
further divided into two groups: hospitalized individuals (compartments HNICU and HICU)
and those in the community (subcompartments of the supercompartment I). Supercom-
partment I of infectives in the community is characterized by dividing it into three groups
based on the stage of the natural history of infection—presymptomatics (compartments
IAU and IAD) and those at a later stage along each of the two parallel pathways of infection
distinguished by degree of symptomaticity. Specifically, the model treats infected indi-
viduals as proceeding from the (infectious) presymptomatic phase to one of two possible
natural histories of infection: a frankly symptomatic pathway and an oligosymptomatic
route of progression, which accept fractions 1 − fPA and fPA, respectively, of undiagnosed
individuals proceeding from presymptomatic compartment IAU . The frankly symptomatic
pathway starts at an early stage in which individuals have not yet had the opportunity
to exhibit complications (compartments IYU and IYD) and symptoms are assumed to be
mild. The progression of an individual from the first to the second symptomatic stage
marks the point where any complications emerge, with a specified fraction (denoted as
fH) of progressing individuals (regardless of erstwhile diagnosis status) developing se-
vere or critical complications. Such individuals suffering complications are presumed to
lead to presentation for care and hospitalization. Frankly symptomatic individuals absent
complications proceed on to a stage involving symptomatic individuals beyond the risk
of complications (compartments IYNU and IYND). In contrast to the frankly symptomatic
pathway, the oligosymptomatic pathway proceeds from the presymptomatic stage through
a natural history of infection in which infected individuals remain infective but never
develop symptoms sufficient to motivate care-seeking; compartments along this pathway
are denoted by an A subscript. Like their symptomatic counterparts, oligosymptomatic in-
fectives are characterized as proceeding through two subsequent compartments of IA, with



Int. J. Environ. Res. Public Health 2024, 21, 193 4 of 40

the timing of progression identical to the frankly symptomatic stages—oligosymptomatic
stage 1 (compartments IA2U and IA2D) and oligosymptomatic stage 2 (compartments of
IA3U and IA3D). The model also considers the vaccinated population, where only suscep-
tible individuals are assumed to be administered vaccines. Compartment V1 represents
the persons who have only received one dose of a COVID-19 vaccine, and V2 represents
the persons who have received two vaccine doses. As is detailed further below, vaccinated
individuals are treated as remaining subject to some vaccine-efficacy-moderated risk of
infection (denoted e1 for only having one dose and e2 for having two doses).

Figure 1. Transmission model structure.

2.1.1. Diagnosis and Case Finding

In this COVID-19 compartmental model, infected patients can be diagnosed both by
passive case finding via presentation for care and (separately) via active case finding, such
as through contact tracing, screening, and mass testing [27]. Passive case finding is treated
as diagnosing symptomatic infectives who present for care and is treated as endogenously
driven within the model. Such presentation-driven diagnosis is represented by red flows in
Figure 1 and proceeds from compartments of undiagnosed symptomatic infectives that have
not yet exhibited complications IYU to the next stage compartment of diagnosed individuals
IYND. In contrast, reflecting the fact that active case finding can identify individuals not
yet exhibiting symptoms, active case finding within the model is represented by flows (the
orange arrows in Figure 1) from a broader set of compartments of undiagnosed exposed
and infective individuals to the corresponding next stage diagnosed compartments of the
model. It is to be noted that because of the multi-day time lag commonly associated with
test results in the province, for both passive and active case finding, we let the flows of
undiagnosed infectives proceed to the next stage diagnosed compartments instead of the
directly corresponding diagnosed stages; thus, for example, those diagnosed from stage IYU
flow into the next stage compartments of IYND, rather than into IYD.
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The daily flow of cases being diagnosed by passive testing, but not leading to hospital-
ization, is mainly governed according to the endogenous model calculations IYU( fY)/tIY ,
where fY is the fraction of undiagnosed symptomatic infected individuals with complica-
tions that do not require hospitalization during their course of infection, and tIY is the mean
days to develop or avoid complications; this is bounded by the empirical data (denoted
as Em) of total test volume presenting other than due to hospitalization or international
travel. Em can be calculated by the difference between the daily total test volume (denoted
as Vt) and the three-way sum of daily admitted COVID-19 patients to ICU and non-ICU
hospitalizations (denoted as VHICU and VHNICU , respectively) and new likely exogenous
cases (denoted as ExD ). This difference reflects the known use of tests for hospitalization
and the fact that out-of-province cases were carefully estimated for the opening weeks of
the pandemic, and each required tests.

The model characterization of daily diagnosed cases identified specifically by active
case finding—conducted via activities such as contact tracing, screening, and drive-through
testing—is designed to capture the fact that in such forms of case finding, testing tends to
drive the count of individuals diagnosed and identifies infected individuals at all stages
of the natural history of infection. To represent the fact that test count drives the count
of cases diagnosed with an efficiency limited by the number of infected individuals, we
made use of a previously published testing model [28]. Within this model, the count of

infectives identified by testing is characterized as IU βT(1 − e−α V
IU ), where V is the total test

volume, IU is the total count of undiagnosed infectives, α is a measure of test efficiency, and
βT ∈ [0, 1] represents an upper limit on the fraction of infectives that could be identified

via active case finding. In this test model, the term βT(1 − e−α V
IU ) characterizes the fraction

of all infectives that are diagnosed. Reflecting the fact that active case-finding efforts are
incomplete in their reach, βT represents the fraction of infectives that would be diagnosed
via active-case finding if the total test volumes V were to be arbitrarily large (i.e., the
asymptomatic fraction of infected individuals who would be located as the ratio of test
volume to infections approaches infinity); given the broad reach of contact tracing within
the province, this work treated βT as 1. α is a measure of testing efficiency. When βT is
1 (as it is here), for a small active test volume V, this can be seen roughly corresponding
to the product of the test positivity rate and test specificity: For every test performed,

α infectives will on average be discovered. The saturating exponential term (1 − e−α V
IU )

assumes that as the volume of tests performed for active case finding rises, a greater
number of tests is needed to find a given infective. Thus, while more tests will identify
additional infectives, doubling the count of tests performed will not double the count of
infectives identified. By employing this test model to calculate the cases diagnosed by
active case finding in this project and recognizing the priority placed on presentation-
driven tests that drive passive case finding, the model assumes that the total volume
of tests performed for active finding is given by the difference between the total testing
volume (Em) and the volume of tests performed for passive case finding (min( IYU fY

tIY
, Em)),

and thus, Vactive = Em − min
(

IYU fY
tIY

, Em

)
. At any time, the total count of undiagnosed

infectives can be calculated by summing all of the undiagnosed compartments, which is
IU = EU + IAU + IA2U + IA3U + IYU + IYNU . Thus, the model gives the diagnosed cases

found by active testing as Vp = IU βT(1− e−α
Vactive

IU ). And the daily count of diagnoses from
active case finding for different compartments (e.g., EU , IAU , IA2U , IA3U , IYU , and IYNU)
—depicted as orange arrows in Figure 1—is treated as simply being split proportionally
according to the count of people in each undiagnosed infective compartment.

2.1.2. Acute Care Utilization

Undiagnosed or diagnosed symptomatic individuals who develop severe or critical
COVID-19 complications [29] at the time of transitioning from the early-stage symptomatic
period (leaving IYU and IYD) are presumed to present for care and enter into the hospi-
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talization stocks either for acute but non-critical care (compartment HNICU) or for critical
care (HICU)—the purple flows in Figure 1. The fraction of all individuals progressing
from diagnosed early- to diagnosed late-stage symptomatic state who are treated as not
developing severe or critical COVID-19 complications is treated as 1 − fH . The fraction of
all individuals progressing from undiagnosed early- to diagnosed late-stage symptomatic
state diagnosed by passive testing is fY. And the fraction of individuals progressing from
undiagnosed early- to undiagnosed late-stage symptomatic state diagnosed by passive
testing is 1 − fH − fY. Of the fraction fH of such progressors requiring hospitalization, the
fractions that transition to the ICU (HICU) and non-ICU (HNICU) are given by the parame-
ters f ICU and 1− f ICU , respectively. Individuals in both such hospitalization compartments
are further subject to mortality, with deceased individuals transitioning to compartment
D at the time of passing, as indicated by the grey flows in Figure 1. Given the overall
COVID-19 case fatality rate for hospitalized patients requiring ICU care or not in need of
such care (denoted by ϕICU and ϕNICU , respectively), the model characterizes the corre-
sponding daily mortality rates as −ln(1 − ϕICU)/tICU and −ln(1 − ϕNICU)/tNICU , where
tICU and tNICU are the mean durations of ICU-hospitalized and non-ICU-hospitalized
patient stays before death, respectively. As a simplifying assumption and to lower the
count of compartments required and the resulting size of the state space, the model does
not seek to explicitly model continued hospital residence amongst some patients prior to or
following ICU discharge.

2.1.3. Exogenous/Endogenous Infections

The model considers infectives as originating from both endogenous sources (via
infection through contact with other infectives in the modeled population) and exogenous
sources (where infectives arrive in the population via out-of-province (and particularly
international) arrivals), which are flows represented by the magenta arrows in Figure 1. This
exogenous flow is driven by the empirical time series of daily travellers infected outside of
the population and was of strong importance for accounting for patterns in the opening
two to three months of the pandemic, on account of the importance of international arrivals
in driving subsequent endogenous transmission. Endogenous infections are calculated by
the transmission system of the model.

2.1.4. Vaccination System

The model considers two levels of vaccination-induced protection for the popula-
tion [30]. This characterization reflects the fact that Saskatchewan’s vaccination campaign
employed only two-dose vaccines, namely, Pfizer/BioNTech BNT-162b2, Moderna mRNA-
1273, and AstraZeneca ChAdOx1. With the BNT-162b2 vaccine being responsible for
approximately 74.86% of all vaccines delivered within the province, and conscious of the
adverse impact on model state space size and—by extension—machine-learning inference
accuracy, we made the simplifying assumption of characterizing vaccinated individuals by
two levels of vaccine protection, rather than with further levels and/or via stratification
with respect to each vaccine product. Two flows of daily vaccinated cases from the suscep-
tible (compartment S) to the first level of vaccination-induced protection (compartment
V1) and from the first-dose vaccinated to a higher level of protection (compartment V2)
(represented by green arrows in Figure 1) are driven by the empirical time series of daily
receipt of first-dose vaccines and second-dose vaccines. Because of limited evidence con-
cerning the duration of vaccine protection [30], this model currently assumes the vaccines
confer permanent protection. Individuals with both one and two doses of vaccines remain
subject to the risk of infection, with the relative risk of infection in each dose-count-specific
compartment compared to an unvaccinated symptomatic being given by one minus an
estimate of vaccine efficacy against infection with that dose count. The vaccine efficacy
against infection of the vaccines used within Saskatchewan is reported based on clinical
trial data [31] that differ from vaccine to vaccine, notably against different COVID-19
variants of concern (VoCs). Reflecting the mixed vaccination regime and the presence
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of multiple VoCs over the timeframe of the study, the vaccine efficacy against infection
considered in this project for a single dose (denoted as e1) and two doses (denoted as e2)
are 0.8 and 0.95, respectively, based on the vaccines used in Canada—Pfizer, Moderna,
and Astra-Zeneca [31]. While COVID-19 vaccines routinely offer greater efficacy against
hospitalization and mortality than against infection, motivated in part by the desire to
avoid the adverse effects on model inference of enlarging the state space of the model and
lacking ready empirical data on breakthrough infections at the time of formulation, the
model treats breakthrough infection as placing an individual into the same pathways of
infection as are used for an infected unvaccinated individual.

2.1.5. Infectious Transmission System

The force of infection parameter λ characterizes the hazard rate of infection—the
probability density with which a fully susceptible (e.g., a person in the stocks of S) is subject
to infection from an infective and is governed by mass action principles [32]. The force of
infection parameter λ is calculated by cβpe, where c is the contact rate among the popula-
tion per unit time, β is the probability of transmitting COVID-19 per discordant contact,
and pe is the effective prevalence of infectives in the mixing community. The construct
of the effective prevalence of infectives in the mixing community, pe, is designed to take
into account the mixing implications of the symptoms, diagnosis, and acute care status of
infective individuals; we refer to a relative-mixing-level-adjusted size of a subpopulation
as the “effective” size of that subpopulation. The effective prevalence of infectives in the
mixing community pe is represented by the fraction of the effective infectives among the
effective population in the community. We assume that undiagnosed oligosymptomatic in-
dividuals (in compartments IAU , IA2U , and IA3U) have full social contacts and undiagnosed
symptomatic individuals (in compartments IYU and IYNU) exhibit a relative reduction
in the level of social mixing, as given by the fraction ρU , measured relative to full social
contacts (themselves as assumed to be associated with a relative mixing rate of 1), and
non-hospitalized diagnosed patients (in compartments IAD, IA2D, IA3D, IYD, and IYND) in
the community have a similar proportional reduction in mixing, denoted ρD. Hospitalized
patients are treated as not engaging in mixing and thus do not contribute to the size of
the effective mixing populations and carry a relative mixing rate of 0. It is important to
emphasize that such values represent relative mixing rate characterizations; secular changes
in contact rate across the population (such as those that might be caused by public health
orders) are characterized by another element of the formulation detailed below. There are
three flows in the model reflecting the force of the infection process—the infection from
stocks S, V1, and V2, which are associated with rose-coloured flows in Figure 1.

2.1.6. Municipal Wastewater Surveillance Characterization

Municipal wastewater refers to sewage containing waste from households, work-
places, and other sources served by municipal infrastructure [33]. In a public health context,
wastewater surveillance (WWS) describes the process of sampling and analyzing wastewa-
ter to monitor phenomena such as the prevalence of conditions, use of pharmaceuticals,
and occurrence of viral outbreaks in communities [33]. Medema et al. [34] demonstrated a
significant correlation between COVID-19 virus SARS-CoV-2 concentrations in wastewater
and the prevalence of COVID-19. This finding suggested that wastewater surveillance
of SARS-CoV-2 could offer a tool to monitor the trends of COVID-19 prevalence in cities.
Moreover, wastewater surveillance offers a significant advantage, since the concentration of
SARS-CoV-2 in the wastewater sampling is representative of the entire population served
by the sewage shed, regardless of health status, propensity for care-seeking behaviour, or re-
ported infection status [33]. Moreover, because of the high shedding levels seen in the early
stages of infection by SARS-CoV-2, wastewater assays can often identify presymptomatic
or oligosymptomatic populations.

This project involved the design, implementation, deployment, and routinized use
of a particle-filtered compartmental model to estimate the epidemiological and health
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system state using time series including wastewater concentrations of SARS-CoV-2. Due
to the dynamics of viral load, fecal shedding in a SARS-CoV-2-infected individual varies
across natural histories of infection, such as between symptomatic/asymptomatic, and
over stages of progression [35–37]. We made use of a weighted shedding model reflecting
the fact that individuals in the early stages of infection shed at far higher rates than do
those at later stages of infection. Hoffman et al. [37] estimated that the shedding profile
modulates viral concentrations in faecal samples over time. Figure 1 of [37] illustrates
a generally exponential decrease in the shedding virus load over time, with the exception
of the very early stage, when the virus load is relatively lower. Based on this figure, we
conducted a rough estimation of the shedding virus load: we posit that the virus load is
highest during the presymptomatic stage, and approximated the weight at 0.5; during the
exposed and the early symptomatic and cotemporal stages of oligosymptomatic stages,
we assume a weight of 0.2; during the symptomatic stages without complications and
cotemporal stages of the oligosymptomatic stage, the virus load continues to decrease,
and we assumed a weight of 0.1. The estimated weights of viral concentration of different
stages based on this research are shown in Table 1. In light of the weighted shedding profile
for individuals and the larger shedding populations of interest, we assume a constant
of proportionality γ that relates the (weighted) value of the shedding population to the
daily concentration of SARS-CoV-2. The value of γ is estimated by the PMCMC model,
which can be referred to [38]. Reflecting the fact that the focus of wastewater monitoring
within Saskatchewan was on cities exhibiting separated storm-water and wastewater
infrastructure marked by short (≤8 h) toilet-to-municipal wastewater treatment plant
transit times and the use of autosampling from the primary inflow into the treatment
plant, we treated the concentration of COVID-19 wastewater samples for a given city as
indicative of the current—rather than the lagged—epidemiology for that city. Finally, this
paper primarily provides a concise introduction to the virus-shedding model, as our group
is in the planning stages of another paper that will provide a detailed explanation of how
wastewater data can be incorporated into COVID-19 models.

Table 1. Table of constant parameters.

Parameters Description Value Source Unit

ρU
Relative mixing rate amongst
undiagnosed symptomatics 0.6 [39] 1 1

ρD
Relative mixing rate amongst diagnosed
in community 0.36 [39] 2 1

ExD Daily travel imported case count of diagnosed Surveillance data SHA primary data Persons/Day

EVacc1
Daily count of persons administered the
first-dose vaccination Surveillance data SHA primary data Persons/Day

EVacc2
Daily count of persons administered the
second-dose vaccination Surveillance data SHA primary data Persons/Day

Vt
Daily count of persons undergoing PCR
(nasopharyngeal swab)-based testing Surveillance data SHA primary data Persons/Day

VHICU
Daily count of COVID-19 patients admitted
into the ICU Surveillance data SHA primary data Persons/Day

VHNICU
Daily count of COVID-19 patients admitted
into the non-ICU Surveillance data SHA primary data Persons/Day

fS
Fraction of arriving symptomatics identified
upon arrival 1/3 expert estimation 1

fHICU
Fraction of admitting ICU among
hospitalized patients 0.23 SHA primary data 1

tE Mean latent period 2.9 PHAC data Day
tI Mean incubation period following infectivity 2.72 [40] Day
tIY Mean time to develop or avoid complications 6.0 [41] Day
tR Mean recovery time following symptoms 9.5 PHAC data Day

tH
Mean duration of hospital stay for non-ICU
patients before recovery 12.0 SHA primary data Day
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Table 1. Cont.

Parameters Description Value Source Unit

tICU
Mean duration of ICU stay before move to
hospital wards, discharge, or death 6.0 SHA primary data Day

tNICU Mean duration of non-ICU stay before death 4.57 SHA primary data Day
fpA Fraction of persistent asymptomatics 0.4 [42] 1
ϕICU Case fatality rate amongst ICU patients 0.45 SHA primary data 1

ϕNICU
Case fatality rate for cases not requiring
ICU care 0.08 SHA primary data 1

e1 Vaccine efficacy for dose 1 0.8 [31] 1

e2
Vaccine efficacy for those completing two-doses
primary series 0.95 [31] 1

γ
Ratio of model shedding measure to viral
concentration in wastewater 10.374 PMCMC model [38] copies/100 mL/Person

wE Viral shedding weight in exposed stage (EU) 0.2 [37] 1

wIA
Viral shedding weight in presymptomatic stage
(IAU , IAD) 0.5 [37] 1

wIY

Viral shedding weight in early symptomatic
stage with complications and cotemporal stages
of oligosymptomatic infection (IA2U , IA2D, IYU ,
IYUD, HICU , HNICU)

0.2 [37] 1

wIN

Viral shedding weight in symptomatic stage
(absent complications) and cotemporal stage of
oligosymptomatic infectives (IA3U , IA3D, IYNU ,
IYND)

0.1 [37] 1

βT
Upper limit on fraction of infectives found by
active testing 1.0 Reflective of full

extent of unit range 1

1 We assume that 50% undiagnosed symptomatics reduce their contacts to 20% of normal, while the rest carry
on as normal, and ρU = 0.5 × 0.2 + (1 − 0.5)× 1 = 0.6. 2 We assume most diagnosed individuals in community
totally isolated themselves but 20% not at all, and ρD = 0.8 × 0.2 + (1 − 0.8)× 1 = 0.36.

2.1.7. Model Parameters

Table 1 gives the value and units for constant parameters of the deterministic COVID-
19 model; readers interested in further detail regarding the formulations involving these
parameters are referred to Appendix A.

2.2. Calculation of Variables of Interest from the COVID-19 Model

Figure 1 shows the system of ODEs governing the behaviour of the deterministic
COVID-19 model. As detailed in Section 2.3.1, the stochastic version of this model serves as
the state space model for particle filtering. We detail here a set of derived quantities whose
formulation is identical for both forms of the model.

A variety of COVID-19 outcomes of interest can be derived from the ODEs shown
in Equation (A1) in Appendix A, including those relevant for epidemiological and acute
care decision-making. From the standpoint of public health planning and epidemiology,
important quantities include a dynamic characterization of the effective reproductive
number (denoted as Rt), the count of undiagnosed infectives in the community with time
(denoted as NU), and the force of infection (λ). Each of these quantities provides information
important for understanding the evolution of the current pandemic situation and played
a central role in the reporting undertaken from the model. Such measures are especially
useful in indicating the evolution of the epidemiological situation, anticipating incipient
outbreaks, assessing the performance of current intervention strategies, and informing
decisions to be made in the near future, such as those involving relaxation or re-imposition
of public health orders.

Some of the model-derived values are of foremost value in the sphere of projection,
rather than in the historic time horizon. From the standpoint of acute care and surge
planning, the model offers particular value by virtue of its capacity to project forward
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acute care demand, both in the form of new admissions for COVID-19 to the intensive care
unit (ICU) and non-ICU hospital needs and, in terms of census counts for both of those
levels of acute care services. Particularly when the stochastic version of the model is used
with particle filtering, such information can aid in decisions involving the triggering of
surge capacity.

2.2.1. Calculation of the Evolving Effective Reproductive Number

The basic reproductive number (denoted as R0) and effective reproductive number
(denoted here as Rt) are widely used concepts in mathematical epidemiological mod-
els. The basic reproductive number (R0) is the average number of secondary infections
transmitted by a typical infective individual in a completely susceptible surrounding pop-
ulation [43]. While an understanding of this quantity is of great value, in the context of
an evolving outbreak, with a population of evolving susceptibility, behavioural and public
health measure-induced changes in the contact rate, and changing variant ecology, greater
day-to-day attention typically rests on the effective reproductive number (Rt). Rt is the
average number of secondary infections transmitted by a typical infective individual in
a population composed of both susceptible and non-susceptible persons and reflective
of the current epidemiology, including mixing patterns and public health, institutional
and personal protective practices at present, vaccine effectiveness, population turnover,
and currently circulating variants. As a general rule, if Rt(t) > 1, the count of infected
individuals will increase over time; if Rt(t) = 1, the count of infected patients will remain
roughly constant; if Rt(t) < 1, the number of individuals infected will decline over time.

The model detailed here uses two methods to calculate the effective reproductive
number (Rt): a simplified original method and a method that takes into account the differ-
ential mixing rates between undiagnosed and diagnosed individuals and the case-finding
process that leads individuals to transition from the former to the latter. Both methods
played prominent roles in daily reporting using the model throughout different stages of
the pandemic. The original method is based on an assumption that all infectives exhibit
full—not reduced—mixing with the susceptibles throughout their full duration of infectiv-
ity (i.e., until recovery). Recalling that e1 and e2 represent the vaccine effectiveness given
one or two administered doses, respectively, and that ρU and ρD denote the relative rates
of mixing amongst symptomatic but undiagnosed individuals and diagnosed individuals,
respectively, the original values of R0 and Rt(t) in this COVID-19 model are characterized
as follows:

R0 = Cβ(tI + tIY + tIYN )

Rt(t) = R0 · fSusc(t)

fSusc(t) =
S(t) + (1 − e1)V1(t) + (1 − e2)V2(t)

N(t)
(1)

N(t) = (S + EU + IAU + IA2U + IA3U + RU + V1 + V2) + ρU(IYU + IYNU)+

ρD(IAD + IA2D + IA3D + IYD + IYND + RD)

However, in real-world scenarios (and in this model), infection spread is governed
by other factors besides those captured in the equations above. Specifically, the degree of
infection spread from an infective is affected by the relative mixing levels between undiag-
nosed symptomatics and diagnosed infectives. Whilst the characterization in Equation (1)
considers those factors inasmuch as they affect the fraction of contacts that are made with
susceptibles, it fails to consider them in terms of the behaviour of the infective individual
over the course of their illness. Considering the effective duration infectives spend in
different infected stages leads to a new formulation for each of the basic and effective
reproductive numbers, denoted R′

0 and R′
t, respectively:

R′
0 = CβtE f f ective
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tE f f ective =
1
IE

[
(IA + ρD IAD)(tI + tIY + tIYN )+

(IA2 + ρD IA2D + ρu IYU + ρD IYUD)(tIY + tIYN )+

(IA3 + ρD IA3D + ρu IYD + ρD IYND)tIYN

]
(2)

IE = (IA + IA2 + IA3) + ρu ∗ (IYU + IYN) + ρD ∗ (IAD + IA2D + IA3D + IYUD + IYND)

R′
t(t) = R′

0 · fSusc(t)

In this contribution, we employ the latter method, which considers the effective time
of infectives to estimate and predict the effective reproductive number Rt.

2.2.2. Count of Undiagnosed Infectives in the Community over Time

Given the underlying structure of the model, the count of undiagnosed infectives in
the community NU(t) can be calculated by summing the count of undiagnosed persons in
each infective compartment as follows:

NU(t) = IAU + IA2U + IA3U + IYU + IYNU (3)

2.2.3. Daily Effective Prevalence of Infectives in the Mixing Community

The point prevalence of COVID-19 is the proportion of individuals in a population
who have COVID-19 at a specified point in time [44]. Thus, the equation of the standard
prevalence is as follows:

pst =
IAU + IA2U + IA3U + IYU + IYNU + IAD + IA2D + IA3D + IYD + IYND

S + EU + IAU + IA2U + IA3U + V1 + V2 + IYU + IYNU + IAD + IA2D + IA3D + IYD + IYND
(4)

In the model, we use the effective prevalence instead of the standard prevalence.
The effective prevalence considers the weight of contact coefficients of the undiagnosed
infectives (ρU) and the weight of contact coefficients of the diagnosed infectives (ρD). Thus,
the daily effective prevalence of infectives in the mixing community can be calculated by
the fraction of the effective infectives in the total effective population in the community.
The formulation is as follows:

pt =
(IAU + IA2U + IA3U) + ρU(IYU + IYNU) + ρD(IAD + IA2D + IA3D + IYD + IYND)

(S + EU + IAU + IA2U + IA3U + V1 + V2) + ρU(IYU + IYNU) + ρD(IAD + IA2D + IA3D + IYD + IYND)
(5)

2.2.4. Force of Infection

Section 2.1.5 introduced the model’s use of the force of infection (λ). This quantity can
be calculated as the product of what we term the transmission rate—itself the product of
the contact rate and probability of transmission per discordant contact—and the fraction of
the mixing population that is infectious:

λ = cβpt (6)

where pt is the daily effective prevalence of infectives, as characterized by Equation (5).

2.2.5. Cumulative Prevalence of Infections

Period prevalence is the proportion of individuals in a population who have had
COVID-19 over a specified period of time [44]. Thus, the cumulative prevalence of COVID-
19 infections can be calculated by the fraction of the initial population who have ever been
infected by COVID-19. The formulation of the cumulative prevalence of infections at time
T is as follows:

pc =

∫ T
0 λ[S + (1 − e1)V1 + (1 − e2)V2] dt

N0
(7)
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2.2.6. New Hospital Admissions and Census Count for Non-ICU and ICU Needs

A key motivator for the construction of the COVID-19 model characterized in this
project is to estimate and predict acute care demand and capacity utilization. This includes
considering hospital admissions—including ICU admission and non-ICU admission cases
—and the daily number (census) of ICU and non-ICU hospital patients. The daily hos-
pitalized census for ICU and non-ICU at any given time is simply characterized by the
values of the compartments HICU and HNICU , respectively. Recalling that the time unit
of the model is days, the per-day rate (daily count) of new admissions of ICU patients is
given by the sum of two flows into the HICU compartment, representing the development
of critical symptoms by both previously diagnosed (IYD) and (separately) previously
undiagnosed (IYU) symptomatic infectives. Similarly, the daily new hospital admissions
of patients not requiring ICU care is the sum of two flows into the HNICU compartment,
representing the development of severe symptoms by both previously diagnosed (IYD)
and undiagnosed (IYU) individuals. Thus, the daily new admissions of ICU and non-ICU
patients are as follows:

dHICU =
(IYU + IYD) fH fHICU

tIY

dHNICU =
(IYU + IYD) fH(1 − fHICU)

tIY

(8)

2.3. SMC Algorithm Incorporation of the Stochastic COVID-19 Model

The prominent sequential Monte Carlo (SMC) method of particle filtering is a contem-
porary state inference and identification methodology that supports filtering of general
non-Gaussian and non-linear state space models in light of time series of empirical obser-
vations [3,5,8]. This approach estimates, via sampling, the time-evolving internal state of a
dynamic system (here, the COVID-19 model) in which random perturbations are present
and where information about the state is obtained via noisy measurements made at each
observation time. The state space model characterizes the processes governing the time
evolution of the internal state of the system with stochastics consisting of random perturba-
tions. The state of the state space model is assumed in general to be latent and unobservable.
Information concerning the latent state is obtained periodically via a noisy observation
vector. The particle filtering method can be viewed as undertaking a “survival of the fittest”
of varying hypotheses as to the current location of the system in state space, with each
such hypothesis being represented by a particle, the fitness of which is determined by the
consistency between what is observed empirically at each observation time point and what
would be expected given the state of the particle (the hypothesized state) at that time point.
Interested readers are referred to a more detailed treatment in [5,8,9].

2.3.1. State Space Model

The state space model depicts the processes governing the time evolution of the
state—both latent and observable—of a noisy system. In this paper, the state space model
consists of a stochastically embellished variant of the deterministic COVID-19 model de-
picted in Figure 1 and whose equations are given in Equation (A1) of Appendix A. Reflecting
the fact that effective use of particle filtering requires an underlying state equation model
exhibiting stochastic variability, we characterize here an extension of the deterministic
model that incorporates random perturbations in dynamic processes—including several
stochastically evolving parameters—so as to reflect stochastic time evolution in the external
world. The extended stochastic model introduced in Figure 2 then serves as the basis for
an accompanying particle filter.

The state vector of the particle filtering model is given by:[
S, EU , IAU , IAD, IA2U , IA2D, IA3U , IA3D, IAU , IAD, IYU , IYD, IYNU , IYND, HICU , HNICU ,

RU , RD, D, logit(Cβ), logit(α), logit( fH), logit( fY)
]T

.



Int. J. Environ. Res. Public Health 2024, 21, 193 13 of 40

Figure 2. The model structure of the stochastic particle filtering model.

Dynamic Processes

We consider stochastic processes to characterize the arrival of undiagnosed travel-
imported symptomatic cases, contact and care-seeing behaviour, and test positivity rates
associated with active screening. Moreover, Poisson processes are used to reflect the
stochastics associated with the occurrence of a small number of cases over a small unit of
time—denoted as ∆t (carrying the value of 0.001 days in the COVID-19 model) [3,5]. The
stochastic process characterizing undiagnosed travel-based importation of symptomatic

infectives is given by
Poisson

(
ExD∆t 1− fS

fS

)
∆t .

Dynamic Parameters

There are a set of quantities that might commonly be regarded as parameters, but
whose values evolved in notable ways over the course of the COVID-19 pandemic, par-
ticularly with the evolution of human behaviour and variant ecology, due to changes in
active case-finding efforts and the arrival of the pathogen in vulnerable demographics and
communities. Such quantities are termed “dynamic parameters” herein. The dynamic
parameters of the deterministic COVID-19 model are listed in Table 2.
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Table 2. Table of dynamic parameters.

Parameters Meaning Min (a) Max (b) STD Unit

Cβ Transmission contact rate 0 0.4918 1 10.0 Persons/Day

fH
Fraction of symptomatic individuals who proceed on to require hospi-
talization 0.04 0.06 0.1 1

fY
Fraction of undiagnosed symptomatics who proceed on to seek care
but who are not hospitalized 0.1 0.821 0.5 1

αt A measure of test efficiency 0.01 0.25 5 1
1 Equivalent to a basic reproductive number R0 = 6.

2.3.2. Likelihood Function

Our formulation of the overall likelihood function and sub-likelihood functions for
this work drew inspiration from our past success in employing negative binomial-based
likelihood functions in a diverse set of particle filtering applications in communicable
disease [3–6] and by others in MCMC-based approaches for H1N1 influenza [45]. Moreover,
for simplicity and in line with formulations used successfully in multiple of our past
contributions [3,4,6], the current model characterized the overall likelihood function for
the particle filtering model as the product of sub-likelihood functions, each considering
a distinct subset of the empirical datasets employed to ground the model:

L = LNewReportedEndogenousCases ×LCumulativeReportedEndogenousCases

×LCumulativeICUAdmissions ×LCumulativeNICUAdmissions (9)

×LICUCensus ×LNICUCensus

×LCumulativeDeaths ×LViralConcentrationsinwastewater

Each sub-likelihood function is characterized by one of two distinct parametric sta-
tistical distributions—a negative binomial distribution or gamma distribution. Such sub-
likelihood functions characterize the likelihood of observing the empirical datum, given an
underlying model state specified by the particle state. Those two forms of sub-likelihood
functions are introduced as follows:

• The value of each sub-likelihood function based on a negative binomial distribution is
given as follows:

LNegativeBinomial =

(
y + r − 1

r − 1

)
pr(1 − p)y (10)

where y is the observed datum, x is the model value corresponding to that datum
(integer rounded), r is the dispersion parameter associated with the negative binomial
distribution, and p = x

x+r . In this project, the value of the dispersion parameter r was
chosen to be 5.

• The value of the sub-likelihood function based on a gamma distribution is given
as follows:

LGamma =
βαy(α−1)e−βy∫ ∞
0 zα−1e−zdz

(11)

where y is the observed datum, x is the model value corresponding to that datum, k
is the shape parameter, α = x

k−1 , and β = k
x . Such likelihood functions within this

project assumed a value of k = 5.

It is important to note that while the likelihood function employed here is designed
to be used with each of the types of data shown in Table 3, the likelihood formulation is
moreover designed to be robust in the context of missing data for several of those types of
data. Data that can be accommodated as missing include hospitalized admission data—ICU
and non-ICU, hospitalized census data—ICU and non-ICU, and viral concentration in
wastewater data. When a datum is not available for these types of observations, the
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corresponding sub-likelihood function will be treated as holding a value of unity (1.0).
Thus, given missing data of this sort, the overall likelihood function will still carry the
value of the product of the sub-likelihood functions for which data are available. Moreover,
the model’s form can be readily extended to accommodate the handling of delayed data.
Our other work [4] also demonstrates that even lower-quality data can, at times, contribute
significantly to the model’s predictive accuracy.

Table 3. Table of sub-likelihood functions.

Likelihood Name Empirical Dataset Model Value Mathematical Form

LNewReportedEndogenousCases
New reported endogenous
COVID-19 cases VP +

IYU( fH+ fY)
tIY

Negative Binomial

LCumulativeReportedEndogenousCases
Cumulative reported endogenous
COVID-19 cases

∫
(VP +

IYU( fH+ fY)
tIY

) Negative Binomial

LCumulativeICUAdmission
Cumulative hospitalized ICU ad-
mission patients

∫
dHICU Negative Binomial

LCumulativeNICUAdmission
Cumulative hospitalized non-ICU
admission patients

∫
dHNICU Negative Binomial

LICUCensus
Daily hospitalized ICU census pa-
tients HICU Negative Binomial

LNICUCensus
Daily hospitalized non-ICU census
patients HNICU Negative Binomial

LCumulativeDeaths Cumulative COVID-19 deaths D Negative Binomial

LViralConcentration
Measured concentration of SARS-
CoV-2 virus in wastewater

γ[wEEU + wIA(IAU + IAD) +
wIY(IA2U + IA2D + IYU + IYUD +
HICU + HNICU) + wIN(IA3U +
IA3D + IYNU + IYND)]

Gamma Distribution

2.4. Data Sources

Since June 2020 and through early 2022—and with prior episodic use—this model has
served in a production capacity for the whole of Saskatchewan, and for varying periods for
particular regions, municipalities, and small-area geographies within Saskatchewan. For
the period October 2020–October 2021, via a contract with the Public Health Agency
of Canada (PHAC), it was further used for reporting and projections multiple times
a week for all provinces of Canada. Beyond that, via a contract for reporting to the
First Nations and Inuit Health Branch of Health Canada (FNIHB), the model was used in
the period November 2020–March 2022 for biweekly reporting and projections for First
Nations Reserves in six Canadian provinces. Most such uses have exercised subsets of
the likelihood functions considered, with hospital census data and wastewater data being
restricted to subsets of jurisdictions.

For a given jurisdiction, empirical datasets are fed into the particle filtering model
to estimate and predict the evolution of the epidemiological and acute care state of that
jurisdiction. The empirical datasets employed in the model can be divided into two
categories: a set incorporated in the likelihood function for training the particle filtering
model and another that serves as an exogenous input to the differential equation model.

The following empirical datasets were considered in the likelihood function:

• Daily count of new reported incident confirmed or suspected cases.
• Cumulative reported incident confirmed or suspected cases from the inception of

the pandemic.
• Cumulative reported deaths from COVID-19.
• Daily count of COVID-19 patients admitted into the ICU.
• Daily COVID-19 patients admitted into hospital for non-ICU care.
• Daily midnight census (count) of COVID-19 patients in the ICU.
• Daily midnight census of COVID-19 patients in the hospital for non-ICU care.
• Weekly average virus SARS-CoV-2 concentration in wastewater.
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The following empirical datasets were incorporated as exogenous inputs directly into
the dynamic model:

• Daily new likely exogenous cases, which represent arrivals into the jurisdiction believed
to be infected while outside the jurisdiction, with an emphasis on international travel.

• Daily count of persons undergoing PCR (nasopharyngeal swab)-based testing.
• Daily count of COVID-19 patients admitted into the ICU.
• Daily count of COVID-19 patients admitted into hospital for non-ICU care.
• Daily count of persons who received their first vaccination dose.
• Daily count of persons who received their second vaccinate dose.

It is important to note that the empirical datasets of “Daily count of COVID-19 patients
admitted into the ICU” and “Daily COVID-19 patients admitted into hospital for non-ICU
care” are used in both the likelihood function and in driving the model directly.

2.5. Characterizing Model Fidelity to Empirical Data

A key driver for the evolution of the particle filtering approach applied here was
the ongoing critical assessment of the fidelity between outputs from the particle-filtered
model and the above empirical data sources. As a primary metric for assessing such
fidelity in this project, we employed a discrepancy function. The discrepancy between
the particle filtering model results and each empirical dataset specified here is the mean
of the normalized RMSE (root mean square error) across the whole time frame of the
model incorporating the empirical data; as such, smaller discrepancies are considered
favourable. To accommodate the different scales of multiple empirical datasets, we employ
the normalized RMSE to measure the difference between the model-estimated/predicted
values and the observed data of each empirical dataset on each day having observed data.
The mathematical formulation for the normalized RMSE is specified in Appendix D.

3. Results

This section characterizes the COVID-19 particle filtering model results and (empirical
data availability permitting) associated discrepancies for both day-to-day estimates of the
epidemiological state and projection of quantities such as the future daily infected cases,
force of infection, and ICU and non-ICU admissions and census.

3.1. Particle Filtering Model Results with Incorporating Empirical Datasets

Although the particle filtering model characterized here at various intervals provided
reporting for 17 different jurisdictions, for the sake of simplicity, we focus here on the
results for a jurisdiction offering wastewater data and served by one of the longest spans of
data—Saskatoon, Saskatchewan. In the application examined here—which is emblematic
of simulations conducted on this jurisdiction over long periods of time—the COVID-19
particle filtering model takes in daily incoming empirical data to produce daily reporting.
The model runs start on 22 February 2020, when the empirical data became available from
the appropriate public health agency (here, the Saskatchewan Health Authority); testing
for COVID-19 began on 25 February 2020, and the first reported infected cases occurred
on 11 March 2020. The simulation here proceeds to 31 July 2021, prior to the widespread
appearance of the Delta variant of concern. Particle filtering was conducted with a particle
count of 150,000.

Table 4 presents the mean discrepancy, with five runs of the model. For comparison
in scale, the table further provides the 95% confidence interval of each empirical dataset
incorporated in the likelihood function to ground the model. As a reminder, the lower the
discrepancy, the better the results sampled from the particle filtered model reproduce the
empirical dataset.
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Table 4. Table of discrepancies (normalized root mean square error (NRMSE)) of all empirical datasets
compared with model estimated results (with 5 realizations).

Dataset Mean 95% Confidence Interval

Count of daily reported cases 0.8429 (0.8343, 0.8515)
Cumulative reported cases 0.2750 (0.2558, 0.2943)
Cumulative death cases 0.4981 (0.4842, 0.5121)
Daily virus concentration in wastewater 0.5734 (0.5511, 0.5957)
Cumulative hospitalized non-ICU admissions 0.1306 (0.1223, 0.1389)
Cumulative hospitalized ICU admissions 0.5372 (0.5313, 0.5431)
Daily hospitalized non-ICU census 0.4181 (0.4117, 0.4245)
Daily hospitalized ICU census 0.6545 (0.6492, 0.6598)
Sum of total 3.9300 (3.8980, 3.9617)

Figures 3–10 show the particle filtering COVID-19 model’s (the results of the minimum
discrepancy among those five runs) estimated results compared with empirical data. The
comparison between the model results and empirical data indicates that the particle filter-
ing COVID-19 model can estimate the daily COVID-19 transmission and hospitalization
status. As an important caveat, for data confidentiality reasons, precise empirical data
are only provided here for empirical data publicly available through the Saskatchewan
Health Authority COVID-19 dashboard [46]. For depiction of the two types of data not
publicly available (ICU and non-ICU hospital admissions) in those figures, we ensure data
confidentiality by showing synthetic data in the figure instead of actual data. Specifically,
for each of ICU and (separately) non-ICU hospital admissions, the data shown in the
figures for a given day are Poisson-distributed pseudo-empirical data. That is, for day
t with an actual count of nt hospital admissions, the synthetic datapoint is drawn from
poisson(max(nt, 0.05)).

Figure 3. Daily new reported confirmed or suspected infective cases between particle filtering model
results (boxplot) and empirical data (superimposed red scatterplot).

Figure 4. Cumulative reported infective cases in the community between particle filtering model
results (boxplot) and empirical data (superimposed red scatterplot).



Int. J. Environ. Res. Public Health 2024, 21, 193 18 of 40

Figure 5. Daily count of COVID-19 patients hospitalized in the ICU between particle filtering model
results (boxplot) and empirical data (superimposed red scatterplot).

Figure 6. Daily count of COVID-19 patients hospitalized but not in the ICU between particle filtering
model results (boxplot) and empirical data (superimposed red scatterplot).

Figure 7. Daily count of COVID-19 hospitalized deaths between particle filtering model results
(boxplot) and empirical data (red scatter plot).

Figure 8. Daily wastewater viral concentration of SARS-CoV-2 (N2 copies per 100 mL) between
particle filtering model results (boxplot) and empirical data with missing days (red scatter plot).
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Figure 9. Daily count of hospitalized ICU-admitted patients between particle filtering model results
(boxplot) and pseudo-empirical synthetic data (superimposed red scatterplot).

Figure 10. Daily count of hospitalized non-ICU-admitted patients between particle filtering model
results (boxplot) and pseudo-empirical synthetic data (superimposed red scatterplot).

3.2. Estimation of Latent Dynamic Variables

Through ongoing incorporation of the empirical datasets to ground the COVID-19 dy-
namic model, the particle filtering process estimates the latent states and dynamic variables
to inform the COVID-19 transmission. Figure 11 shows the model-estimated daily effective
reproductive number (the method and underlying mathematical formulation can be found
in Section 2.2.1). Figure 12 shows the model-estimated daily undiagnosed infectives (with
details on formulation found in Section 2.2.2). Figure 13 shows the model-estimated force
of infection (λ) (with details on formulation found in Section 2.2.4). Figure 14 shows the
model-estimated daily effective prevalence of infectives in the mixing community (with
details on formulation found in Section 2.2.3). And Figure 15 shows the cumulative preva-
lence of infections for each day (with details on formulation found in Section 2.2.5). Readers
interested in the estimated latent state of the COVID-19 particle filtering model are referred
to Appendix D.

Figure 11. The daily estimated effective reproductive number.
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Figure 12. The daily estimated count of undiagnosed infectives.

Figure 13. The daily estimated force of infection.

Figure 14. The daily estimated effective prevalence of infectives in the mixing community.

Figure 15. The daily estimated prevalence of cumulative infection.

3.3. Projection Results

While the COVID-19 particle filtering model offers strong performance in monitor-
ing and estimating COVID-19 transmission, throughout its use across jurisdictions, such
estimates of current epidemiological state have routinely been accompanied by 14-day
projections of COVID-19 transmission and hospitalization.
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To assess the predictive capacity of the COVID-19 particle filtering model herein, we
employed it to perform 1-day, 7-day and 14-day predictions for each day starting from day
100 in Saskatoon and continuing for the remainder of the time horizon considered here.
Within the projection period (e.g., 7 days), no further particle filtering is performed, the
model is simply run forward without any incorporation of the observed data. Mirroring
the process seen in de facto use of the model, such a projection is performed from each
successive day. It is essential to recognize that while the projection itself does not incorpo-
rate any new data, between each day on which the projection is launched, new data arrive and are
incorporated by the particle filtering. The updated estimate of the latent state of the system
afforded by this incorporation of the new data by particle filtering allows the next projection
(looking into the “future”, as obtained from the standpoint of that day) to be made on the
basis of the refined and updated understanding of the current epidemiological context.

Table 5 shows the predictive discrepancy between the model-predicted results and the
empirical data. By comparing the average discrepancy of the three projection runs—1 day,
7 days, and 14 days ahead—we can see that the relative accuracy of the projections de-
creases with longer prediction timeframes. It bears emphasis that while discrepancies are
computed here to compare the model results against empirical data, during the projection
timeframes launched from each day, the empirical data are only used for comparison with
the model-projected results. However, as noted above, new data are taken into account
before undertaking each successive projection.

Table 5. Discrepancies for 1-day, 7-day, and 14-day projection run projected data against
empirical datasets.

Dataset Mean Projection Discrepancy
1-Day 7-Day 14-Day

Count of daily reported cases 0.7051 0.8301 0.9433
Cumulative reported cases 0.1591 0.1636 0.1769
Cumulative death cases 0.4098 0.4164 0.4293
Cumulative hospitalized non-ICU admissions 0.1617 0.1582 0.1734
Cumulative hospitalized ICU admissions 0.8705 0.8734 0.8838
Daily hospitalized non-ICU census 0.7131 0.7506 0.8308
Daily hospitalized ICU census 1.1541 1.1846 1.2364
Sum of total 4.1734 4.3767 4.6738

Figures 16–21 depict a comparison between the model-predicted results and the
empirical datasets (or, for confidentiality of hospital admissions, the empirically inspired
synthetic data noted above). To understand the results, it is to be emphasized that for
every day, we perform three predictive runs (1-day, 7-day, and 14-day). When shown
in boxplots in the figures, the values for (one-)day-ahead predictions of the model will
be shown directly in comparison with the corresponding day-ahead empirical data. In
contrast, for the 7-day projection results, for each day the figures visually compare the
average model-predicted value over that 7-day interval with the corresponding average
of the empirical data over that same 7-day interval. As above, it is to be emphasized that
within each such projection from a given day, no particle filtering is occurring, and the
empirical data are only compared with the model results, not incorporated into the model.
As noted above, as would and did occur in day-to-day practice of a deployed system such
as this, with the passage of each successive day, new data are incorporated by the particle
filtering mechanism to update the estimate of the system state, allowing the next projection
to be made on the basis of that updated state estimate.

Those figures show that the preponderance of observed data (blue points in the
diagrams) fall within the 50% inter-quartile range of the boxplot, demonstrating relatively
accurate model predictions for up to 14 days in advance to inform public health agencies
and governments, as in estimates informed by data up to the point of projection. For
example, the prediction of daily new reported cases can produce a picture of the trends in
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future transmission, as informed by the system state estimated by the particle filtering. In
a similar manner, the prediction of daily hospitalized ICU, non-ICU admission, and census
patients can inform public health agencies’ mobilization of surge capacity, anticipation of
capacity utilization, and service demands, and more broadly, support judicious allocation
of hospital resources over the multi-week timeframe.

Finally, readers interested in the sensitivity analysis of the model parameters, please
refer to a previous study [47] by our group that evaluated the particle filtering infectious
disease models’ prediction accuracy with the influences of the frequent observations of
empirical data, the parameters of the negative binomial dispersion parameters, and rates
with which the contact rate could evolve.
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Figure 16. The projection results (boxplot) of the daily reported cases compared with empirical data
(the blue points, not incorporated in the model). (a) The next-day projection results. (b) The 7-day
time-window-averaged projection results versus corresponding time-window-averaged empirical
data. (c) The 14-day time-window-averaged projection results versus corresponding time-window-
averaged empirical data.
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Figure 17. Cont.
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Figure 17. The projection results (boxplot) of the daily count of patients in the non-ICU compared with
the empirical data (the blue points, not incorporated in the model). (a) The next-day projection results.
(b) The 7-day time-window-averaged projection results versus corresponding time-window-averaged
empirical data. (c) The 14-day time-window-averaged projection results versus corresponding time-
window-averaged empirical data.
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Figure 18. The projection results (boxplot) of the daily count of patients hospitalized in the ICU
compared with the empirical data (the blue points, not incorporated in the model). (a) The next-day
projection results. (b) The 7-day time-window-averaged projection results versus corresponding
time-window-averaged empirical data. (c) The 14-day time-window-averaged projection results
versus corresponding time-window-averaged empirical data.
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Figure 19. The projection results (boxplot) of the daily count of deaths compared with the empirical
data (the blue points, not incorporated in the model). (a) The next-day projection results. (b) The 7-day
time-window-averaged projection results versus corresponding time-window-averaged empirical
data. (c) The 14-day time-window-averaged projection results versus corresponding time-window-
averaged empirical data.
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Figure 20. The projection results (boxplot) of the daily count of non-ICU-admitted patients with
empirically mimicking synthetic data (the blue points, not incorporated in the model), with the latter
being employed to preserve confidentiality. (a) The next-day projection results. (b) The 7-day time-
window-averaged projection results versus corresponding time-window-averaged synthetic data.
(c) The 14-day time-window-averaged projection results versus corresponding time-window-
averaged synthetic data.
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Figure 21. The projection results (boxplot) of the daily count of ICU-admitted patients with the
empirically mimicking synthetic data (the blue points, not incorporated in the model), with the latter
being employed to preserve confidentiality. (a) The next-day projection results. (b) The 7-day time-
window-averaged projection results versus corresponding time-window-averaged synthetic data.
(c) The 14-day time-window-averaged projection results versus corresponding time-window-
averaged synthetic data.

3.4. Intervention Results

In the previous sections, we showed that the particle filtering algorithm can estimate
the state space of the COVID-19 model. Beyond supporting the projection methods ex-
amined in the previous session, the capacity to perform such state estimation also confers
benefits for conducting simulations of tradeoffs between intervention strategies, despite
their counterfactual character. As for projection scenarios discussed in the previous section,
during the time horizon of a given intervention run (e.g., 14 days), the particle filtering is
disabled, and the dynamic model is run forward with no empirical data being incorporated.
But, as for the projection methods above, with each successive day of operation, particle
filtering incorporates a new day’s worth of data. The accuracy of the intervention runs
conducted forward into the future from a given day following the particle filter update
from the previous day benefits from the updated state estimate made possible by particle
filtering’s incorporation of a new day’s worth of data.

In this section, we show two intervention experiments to simulate stylized public health
intervention policies. The stylized intervention strategies are characterized abstractly for
demonstration purposes, but are emblematic of the sort of more textured interventions exam-
ined during use of the model and provide a flavour of what could be achieved with other
interventions. In each case, the scenarios are run forward for 14 days from each successive day
with the intervention mechanisms in place. Such a scenario run undertaken from a given day
depicts the posited result of undertaking the associated intervention starting on that day.

For a given such day, a single boxplot for that day depicts, on the basis of the state
estimate as of that particular day as updated by particle filtering for that day, the average
outcome over the 14-day intervention time horizon. It bears emphasis that, in each case,
the intervention scenario is counter-factual—the intervention is not put into effect from
day to day; rather, each 14-day intervention scenario projects what the impact of such
an intervention would be, were it to be undertaken starting on the current day.
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The two interventions considered here are predominantly focused on actions under-
taken during two outbreak waves:

• The first stylized intervention exhibited here focuses on elevating hygiene-oriented per-
sonal protective measures, such as might be exemplified by a regional mask mandate.
For simplicity, the examination here characterizes such interventions as multiplying
the effective contact rate by a coefficient in the range (0, 1). Figure 22 depicts the
results of such a counterfactual scenario occurring, focused on the first outbreak wave
in Saskatoon. For simplicity, this scenario posits an aggressive hygiene-enhancing
intervention that reduces the contact rate by 50% specifically for the window between
day 220 and day 310 (inclusive).

• In the second intervention type, we examine the outcomes from a stylized outbreak-
response immunization campaign elevating vaccination rates for the 14-day defined
period. This effect is achieved by using a coefficient to increase the effective vaccination
rate in the model over that timeframe. As an example, Figure 23 shows the results
of elevating the effective vaccination rate by 50% during the third outbreak wave in
Saskatoon, with those elevated rates being in place from day 390 to day 510, inclusive.

The baseline comparator for the intervention runs—no intervention policies
performed—can be found as the normal projection runs in Figures 16–21.
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Figure 22. Model-based projections of the effects, for each successive day, of the average outcome of
an intervention reducing the effective contact rate over the next 14 days, starting on that day.
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Figure 23. Model-based projections of COVID-19 for the next 14 days’ average results when simu-
lating an outbreak-response immunization campaign. This is realized by characterizing a stylized
elevated vaccine-induced protection level among 50% of the population.

4. Discussion and Limitations

As demonstrated in its use to support reporting for 17 jurisdictions across Canada for
a period of a year or more, the COVID-19 particle filtering model can monitor COVID-19
transmission and hospitalization, estimate the daily latent states and important dynamic
variables, and predict future daily transmission and hospitalization status over a multi-
week timeframe, all in light of daily updates to the estimated system state. When running
the model daily, the daily estimates for COVID-19 transmission, hospitalization status,
projections, and intervention results reflect the latest sets of empirical data—including both
health system and wastewater data—to provide a current understanding to inform public
health and healthcare system decision-making.

This work suffers from a number of limitations. A key one concerns changes in variant
ecology. Reflective of the high amounts of transmission experienced globally, the virus
SARS-CoV-2 causing COVID-19 has exhibited marked evolution. For most of the period for
which data are considered in this paper (early 2020 to the end of July 2021), the wild type
of SARS-CoV-2 was the uniform lineage in place in Canada, with the Alpha variant [26]
appearing in Canada in the final week of 2021 (and in Saskatchewan by February 2021),
followed by Beta, Gamma, and Delta. With respect to the jurisdictions considered in
our example runs here (Saskatoon), the highly distinctive Delta variant [26] became the
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dominant variant of SARS-CoV-2 following July 2021 driving the next wave of outbreaks.
Our COVID-19 particle filtering model is capable of simulating changes in the virus ecology
by adjusting the characteristic parameter values (e.g., to reflect virulence, transmissivity,
fraction of cases that are symptomatic, or vaccine effectiveness). For example, to change
from simulating the Alpha to the Delta variant, we increased the maximum value of the
“transmission contact rate” (denoted cβ in this paper) and decreased both of the two doses’
vaccine efficacy (denoted e1 and e2). However, the dynamic model assumes the presence
of a single variant at a time and is not suitable for characterizing processes requiring
representation of multi-variant ecologies, such as those involving competition between
multiple lineages. It is also not well-suited for capturing variant cross-reactivity with
respect to immunological protection.

Although the structure of the COVID-19 model has demonstrated effectiveness in
simulating COVID-19 transmission and hospitalization across diverse jurisdictions from the
beginning of the first infected individual occurrence until the end of 2021, there are a number
of key shortcomings in the existing structure of the model. Likely the single most important
such limitation relates to the failure of the model to adequately characterize the differential
impact of vaccination on protection from infection vs. protection from severe disease and
death. The model’s existing characterization of COVID-19 vaccination characterizes its
impact of vaccination only as mediated by an impact on transmission. While individuals in
the model can be infected regardless of vaccination status, once a breakthrough infection
of a vaccinated individual occurs, the model lacks existing mechanisms for retaining
information on that individual’s vaccination status. As a result, conditional on infection, the
model grossly unrealistically characterizes a vaccinated individual as having an identical
risk of hospitalization, ICU admission, and death to a non-vaccinated individual. While
the model parameters associated with such outcomes can be modified to reflect a high
prevalence of vaccination uptake, the model urgently needs a means of characterizing
different types of protection conferred by vaccines. Such a representation is particularly
urgent in light of the need to capture the evolution of variant ecology emphasized above.
However, it is notable that the model presented in this manuscript possesses the capability
to capture, to a certain extent, the protective effects of vaccination against severe disease
and death. A dynamic variable, denoted the “daily fraction of symptomatic individuals
who proceed on to require hospitalization” (represented as fH), is defined in the model.
This variable undergoes dynamic changes on a daily basis (with the time unit of the
model being “day”) and is estimated using the particle filtering algorithm incorporating
empirical datasets. Beyond this foundational modification, the model requires the capacity
to represent the impact of successive booster vaccines.

Beyond the key change required for the characterization of vaccine-induced protection,
the model depicted in this paper exhibits a need to adapt to the updated epidemiological
context and evolved understanding of SARS-CoV-2. Most important is the need to take
into account the extensively evidenced phenomenon of waning of both natural immunity
(acquired from exposure to the disease through infection) and vaccine-induced immunity.

The COVID-19 model structure characterized here is only applied to an aggregate
population. Important gains in insight can be secured by the incorporation of key elements
of heterogeneity via stratification. Given the marked differences in risk of severe disease
and hospitalization, vaccine uptake, assortative mixing, and risk behaviour, stratification by
age group is a key priority. Particularly in light of the pronounced rural–urban disparities
in vaccination and risk behaviour and opportunities for incorporation of data drawn from
SARS-CoV-2 wastewater concentration assays across varying municipalities, stratification
by multiple regions could also confer notable benefits.

Most of the needs covered in this section have subsequently been successfully incor-
porated into newer versions of the particle filtered dynamic model than those presented
here, but coverage of this expanded model and particle filtering framework lies outside
this presentation. For instance, model structure modifications were made to the vaccina-
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tion parts, such as adding the third booster vaccination dose and incorporating waning
immunity, during simulation of the Omicron variants.

Also left for separate coverage is our refinement and expansion of the model covered
here into a particle Markov chain Monte Carlo model offering additional capabilities and
sophistication in sampling of static parameters [38], closer examination and evaluation
of the incorporation, and support for drawing insight from wastewater data. Details of
the extensive and articulated distributed computation framework used to provide nearly
fully automated day-to-day running and reporting of the model results across diverse
jurisdictions and data sources at scale are also covered elsewhere.

Last but not least, a notable limitation of the particle filtering model lies in the potential
impact of the size of the model’s state space on its results. While extending an aggregated
population compartmental model to include multiple stratifications is both insightful and
straightforward, it is crucial to recognize that the model’s state space will also significantly
expand. Managing a larger-state-space particle filtering model often poses challenges
in testing and tuning. Additionally, increased computational resources, such as a larger
number of particles, are also a challenge due to a larger state space model. To effectively
ground and estimate the state space model, more empirical datasets become necessary.
Therefore, multi-dimensional stratified population particle filtering models (for instance,
those stratified by multiple age groups or geographical regions, incorporating multiple sim-
ulated virus variants in the entire model, or accounting for individuals’ vaccination history
during post-infection periods) do not consistently ensure improved results compared to
aggregate population models.

5. Conclusions

This study characterizes the design and multi-year deployment of a production-quality
particle filter model that played a central role in informing public health decision-making
starting in the opening months of the pandemic. By cross-leveraging particle filtering,
dynamic (transmission) modeling, and diverse health system and wastewater data sources,
the system presented here and close variants offered important initial findings by April
2020 and served to deliver daily updated COVID-19 situational analyses and short-term
forecasts for Saskatchewan for the period of June 2020 through December 2021, multiple
times a week for each Canadian province for the Public Health Agency of Canada until
November 2021. and weekly to First Nations across six Canadian provinces via FNIHB
through March 2022.

Particle-filtered dynamic models confer strong benefits by virtue of their ability to in-
corporate diverse incoming empirical data streams—here including both regularly reported
health system data and episodically sampled wastewater data—to perform day-to-day
probabilistic estimation and reporting of latent epidemiological and health system quanti-
ties of interest. Quantities routinely reported from the model described here include—but
are not limited to—COVID-19 cases, testing volumes, hospitalization admissions and
census, deaths, force of infection, undiagnosed individuals, and other factors. This fur-
ther includes a more sophisticated estimate of the effective reproductive number, taking
into account incomplete reporting, asymptomatic transmission, diagnosis, isolation, and
other considerations. Beyond supporting updated estimation of such quantities and other
elements of the system state whenever new data arrive, our extensively deployed particle-
filtered framework uses each new system state estimate as the basis for probabilistically
projecting forward the evolution of epidemiology and acute-care demand, which can read-
ily support the triggering of surge capacity mobilization, motivate the institution of public
health measures, or prepare for higher health capacity utilization. Similar methods can and
were used to support the reporting of results from prospective counterfactual intervention
scenarios, with each undertaken in light of the latest empirical observations.

As demonstrated by its widespread adoption for continually regrounded reporting and
scenario analysis for diverse Canadian jurisdictions, the sequential Monte Carlo approach of
particle filtering offers a compelling tool for evidence-based public health decision-making.
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The capacity of particle filtering to keep transmission models and the resulting probabilistic
state estimates and scenario projections continually updated with the latest data offers
compelling advantages over earlier generations of techniques such as the extended Kalman
filter, and the computational demands of this technique are well-balanced with the velocity
of contemporary data streams of relevance. Systems employing particle filtering offer
strong advantages well-matched to the urgent need for public health surveillance and
decision-making in the coming years.
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PF Particle Filtering
WHO World Health Organization
PMCMC Particle Markov Chain Monte Carlo
PHAC Public Health Agency of Canada
SHA Saskatchewan Health Authority
FNIHB First Nations and Inuit Health Branch
PCR Polymerase Chain Reaction
ICU Intensive Care Unit
WWS Wastewater Surveillance
ODE Ordinary Differential Equation
MCMC Markov Chain Monte Carlo
RMSE Root Mean Square Error

NRMSE
Normalized Root Mean Square Error

Appendix A. The ODEs of the COVID-19 Mathematical Model

The mathematical equations of the compartmental model are listed as follows:

dS
dt

= −λS − EVacc1

dV1

dt
= EVacc1 − EVacc2 − λ(1 − e1)V1

dV2

dt
= EVacc2 − λ(1 − e2)V2

dEU
dt

= λS + λ(1 − e1)V1 + λ(1 − e2)V2 −
EU
tE

− Vp
EU
IU

dIAU
dt

=
EU
tE

− IAU
tI

− Vp
IAU
IU

IAD
dt

= Vp
EU
IU

− IAD
tI

dIA2U
dt

= fpA
IAU
tI

− IA2U
tIY

− Vp
IA2U
IU

dIA2D
dt

= fpA
IAD
tI

− IA2D
tIY

dIA3U
dt

=
IA2U
tIY

− Vp
IA3U
IU

− IA3U
tIYN

dIA3D
dt

=
IA2D
tIY

+ Vp
IA2U
IU

− IA3D
tIYN

dIYU
dt

= ExD
1 − fS

fS
+ (1 − fpA)

IAU
tI

− IYU(1 − fY)

tIY

− Vp
IYU
IU

− min
(

IYU fY
tIY

, Em

)
dIYD

dt
= ExD + (1 − fpA)

IAD
tI

+ Vp
IAU
IU

− IYD
tIY

dHICU
dt

= IYU
fH fHICU

tIY

+ IYD
fH fHICU

tIY

− HICU
tICU

−
(

HICU
−ln(1 − ϕICU)

tICU

)
(A1)

dHNICU
dt

= IYU
fH(1 − fHICU)

tIY

+ IYD
fH(1 − fHICU)

tIY

+
HICU
tICU

−
(

HNICU
−ln(1 − ϕNICU)

tNICU

)
− HNICU

tH

dIYNU
dt

= IYU
1 − fH − fY

tIY

− min
(

IYU fY
tIY

, Em

)
− IYNU

tIYN

− Vp
IYNU

IU
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dIYND
dt

= Vp
IYU
IU

+
IYD(1 − fH)

tIY

+ min
(

IYU fY
tIY

, Em

)
− IYND

tIYN

dRU
dt

=
IYNU
tIYN

+
IA3U
tIYN

dRD
dt

=
IYND
tIYN

+
HICU

tH
+

IA3D
tIYN

+ Vp
IYNU

IU
+ Vp

IA3U
IU

dD
dt

=

(
HNICU

−ln(1 − ϕNICU)

tNICU

)
+

(
HICU

−ln(1 − ϕICU)

tICU

)
IU = EU + IAU + IA2U + IA3U + IYU + IYNU

tIYN = tR − tIY

N = S + V1 + V2 + EU + ED + IAU + IAD + IA2U + IA2D + IA3U + IA3D + IYU + IYD + IYNU + IYND + RU + RD

+ HICU + HNICU + D

λ = cβ
(IAU + IA2U + IA3U) + ρU(IYU + IYNU) + ρD(IAD + IA2D + IA3D + IYD + IYND)

(S + V1 + V2 + EU + IAU + IA2U + IA3U) + ρU(IYU + IYNU) + ρD(ED + IAD + IA2D + IA3D + IYD + IYND)

Em = max(0, Vt − VHICU − VHNICU − ExD )

Vremain = Em − min
(

IYU fY
tIY

, Em

)
Vp = Vremainβ

(
1 − e−α

Vremain
IU

)
The meaning of each stock:
S: The number of susceptible individuals
V1: The number of individuals who have received the first vaccination dose
V2: The number of individuals who have received two vaccination doses
EU : The number of undiagnosed susceptible individuals
IAU : The number of undiagnosed temporarily asymptomatic infected individuals
IAD: The number of diagnosed temporarily asymptomatic infected individuals
IA2U : The number of undiagnosed persistently asymptomatic infected individuals
IA2D: The number of diagnosed persistently asymptomatic infected individuals
IA3U : The number of undiagnosed persistently asymptomatic infected individuals

with progression from IA2U
IA3D: The number of diagnosed persistently asymptomatic infected individuals with

progression from IA2D
IYU : The number of undiagnosed symptomatic infected individuals with complications
IYD: The number of diagnosed symptomatic infected individuals with complications
IYNU : The number of undiagnosed symptomatic infected individuals without compli-

cations
IYND: The number of diagnosed symptomatic infected individuals without complica-

tions
HICU : The number of hospitalized critical infected individuals
HNICU : The number of hospitalized acute infected individuals
RU : The number of undiagnosed recovered individuals
RD: The number of diagnosed recovered individuals
D: The number of individuals who died of COVID-19

Appendix B. The Mathematical Deduction of the Dynamic Parameters

If parameter β varies over the range [0, 1], we characterize the logit of β (transfer from
interval [0, 1] to (−∞,+∞)) as undergoing Brownian motion according to Stratonovich
notation as:

d(logit(β)) = d
(

ln
(

β

1 − β

))
= sβdWt (A2)
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In a more general situation, where β varies in the interval [a, b], we scale β ∈ [a, b] to
β′ ∈ [0, 1], where we have:

β′ =
β − a
b − a

(A3)

Finally, if we substitute Equation (A3) into (A2), we can obtain the logit of β (transfer
from interval [a, b] to (−∞,+∞)) as undergoing Brownian motion according to Stratonovich
notation as:

d(logit(β)) = d
(

ln
(

β − a
b − β

))
= sβdWt (A4)

Appendix C. Boxplots of the COVID-19 Particle Filtering Model Estimated Latent State

Figure A1. Boxplot of the latent state of stock S.

Figure A2. Boxplot of the latent state of stock EU .

Figure A3. Boxplot of the latent state of stock IAU .
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Figure A4. Boxplot of the latent state of stock IAD.

Figure A5. Boxplot of the latent state of stock IA2U .

Figure A6. Boxplot of the latent state of stock IA2D.

Figure A7. Boxplot of the latent state of stock IA3U .



Int. J. Environ. Res. Public Health 2024, 21, 193 35 of 40

Figure A8. Boxplot of the latent state of stock IA3D.

Figure A9. Boxplot of the latent state of stock IYNU .

Figure A10. Boxplot of the latent state of stock IYND.

Figure A11. Boxplot of the latent state of stock IYU .
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Figure A12. Boxplot of the latent state of stock IYD.

Figure A13. Boxplot of the latent state of stock RU .

Figure A14. Boxplot of the latent state of stock RD.

Figure A15. Boxplot of the latent state of stock V1.



Int. J. Environ. Res. Public Health 2024, 21, 193 37 of 40

Figure A16. Boxplot of the latent state of stock V2.

Figure A17. Boxplot of the latent state of stock logit(cβ).

Figure A18. Boxplot of the latent state of stock logit( fH).

Figure A19. Boxplot of the latent state of stock logit( fY).
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Figure A20. Boxplot of the latent state of stock logit(α).

Appendix D. Mathematical Equations for Calculating the Normalized RMSE
and Discrepancy

The normalized RMSE between the COVID-19 particle filtering model estimated/
predicted values and the observed data on each day is calculated as follows:

NRMSE =

√√√√∑n
i=1

(
2(ŷ−yi)

ŷ+yi

)2

n
(A5)

where y is the model estimated/predicted value, ŷ is the observed value, and n is the total
number of particles sampled by weight to measure. Then, the discrepancy of each empirical
dataset is simply the average of the NRMSE across the whole time frame. The result of the
NRMSE lies in the interval [0, 2].

Appendix E. Calculation of Relative Mixing Rate Amongst Undiagnosed Symptomatics
ρU and Diagnosed in Community ρD

Ref. [39] shows “About 35 of the 160 confirmed cases did not minimize social contact.
More than a fifth continued to work or carried on with their daily routine despite being
sick”. We then assume that 80% of diagnosed mostly isolated themselves by reducing their
contacts to 20% of normal and 50% undiagnosed reduce their contacts to 20% of normal.
Then we have ρD = 0.8 ∗ 0.2 + (1 − 0.8) ∗ 1 = 0.36, ρU = 0.5 ∗ 0.2 + (1 − 0.5) ∗ 1 = 0.6

NIC = IA + IYU + IYN + IA2 + IA3

N = S + E + VP + VF + IA + IYU + IYN + IA2 + IA3 + HICU + HNICU + R

NI = IA + IYU + IYN + IA2 + IA3 + HICU + HNICU
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