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Abstract: Physical rehabilitation and exercise training have emerged as promising solutions for
improving health, restoring function, and preserving quality of life in populations that face disparate
health challenges related to disability. Despite the immense potential for rehabilitation and exercise
to help people with disabilities live longer, healthier, and more independent lives, people with
disabilities can experience physical, psychosocial, environmental, and economic barriers that limit
their ability to participate in rehabilitation, exercise, and other physical activities. Together, these
barriers contribute to health inequities in people with disabilities, by disproportionately limiting their
ability to participate in health-promoting physical activities, relative to people without disabilities.
Therefore, there is great need for research and innovation focusing on the development of strategies
to expand accessibility and promote participation in rehabilitation and exercise programs for people
with disabilities. Here, we discuss how cutting-edge technologies related to telecommunications,
wearables, virtual and augmented reality, artificial intelligence, and cloud computing are providing
new opportunities to improve accessibility in rehabilitation and exercise for people with disabilities.
In addition, we highlight new frontiers in digital health technology and emerging lines of scientific
research that will shape the future of precision care strategies for people with disabilities.
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1. Introduction

According to recent data from the Centers for Disease Control (CDC), 61 million
(26%) adults in the United States are living with disability as defined as “serious diffi-
culty walking, hearing, seeing, concentrating, remembering, or making decision”, with
disability from mobility limitations being the most common (14%) [1]. Within this popula-
tion, people with all types of disabilities experience physical, environmental, structural,
social, and economic disadvantages that negatively impact their health and quality of life
disproportionately, compared to those without disability. Specifically, when considering
health disparities, people with disabilities are three times more likely to have comorbidi-
ties such as heart disease, stroke, and diabetes [2–5] and are more than four-fold more
likely to experience mental distress compared to those without disability [6]. Moreover,
physical disabilities that impact mobility can limit participation in physical activities and
exercise [7,8], and, over time, chronic physical inactivity can lead to physiological decondi-
tioning that further impairs physical function and cardiometabolic health [9–13]. In people
with physical disabilities, research has demonstrated that the degree of cardiometabolic
disease risk, dependence, anxiety, and depression worsens with the severity of mobility
impairment [14–20]. Thus, there is a profound need for accessible and efficacious treatment
strategies to improve physical and mental health in people with disabilities, particularly in
those with mobility limitations.
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Physical rehabilitation and exercise training have emerged as promising solutions to
improving health, restoring function, and preserving quality of life in populations that face
disparate health challenges related to disability [3,5,21–37]. Specifically, clinical research
studies have shown that rehabilitation and exercise programs provide an opportunity to
simultaneously target multiple physiological systems and drive improvements in neural
function, cardiopulmonary and metabolic capacity, muscle strength, endurance, flexibil-
ity, and vascular health [3,5,21–37] while also reducing mental distress and attenuating
depression and anxiety [14–20] in these populations. Despite the enormous potential for
rehabilitation and exercise to help people with disabilities live longer, healthier, and more
independent lives, people with disabilities can experience physical, psychosocial, envi-
ronmental, and economic barriers that limit their ability to participate in rehabilitation,
exercise, and other health-promoting physical activities [38–44] (Figure 1). Here, we discuss
how emerging technologies may provide new opportunities to overcome such barriers and
establish more accessible and effective approaches to rehabilitation and exercise for people
with disabilities.

Figure 1. Emerging digital health technologies are providing opportunities to overcome barriers
experienced by people with disabilities to participation in rehabilitation and exercise.

2. Telecommunications

Participation in physical rehabilitation and exercise often requires access to specific
environments, specialized equipment, and professional instruction, which may not be safe,
accessible, or relevant for people with disabilities and which can directly limit their ability
to participate in such activities. For example, facilities that support rehabilitation and
exercise such as clinics, gyms, parks, and trials are often physically inaccessible to people
with disabilities who have mobility limitations, and inclement weather can further limit
the utility of even the most accessible facilities [45–51]. In addition to physical barriers,
public gyms and crowded spaces may also contribute to intrapersonal barriers, as people
with disabilities commonly report barriers associated with self-efficacy, perception of risks,
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and fear of embarrassment [38–40,51–53]. Moreover, people with disabilities may also
experience barriers associated with transportation and scheduling that negatively impact
their ability to attend scheduled rehabilitation and exercise activities at specific locations.
Outside of clinically-supervised rehabilitation programs, public-facing fitness organizations
and exercise classes often lack expertise, which may limit the availability of safe instruc-
tion that is tailored to the needs and concerns of people with disabilities [45–47,54–56].
Together, these barriers contribute to health inequities in people with disabilities by dispro-
portionately limiting their ability to participate in health-promoting physical activities such
rehabilitation and exercise, relative to people without disabilities.

Tele-health has emerged as a promising solution to expanding access to quality care
for individuals that are geographically, physically, cognitively, and economically disad-
vantaged [57–60]. “Tele-health” refers to strategies that leverage telecommunications
technologies such as telephone, email, text, and the internet to provide healthcare services
to individuals in remote locations outside the clinic [57,61–65]. Tele-health interventions
can overcome many of the barriers related to facility access, scheduling, and transportation
by offering a more convenient and economical solution that can be performed in one’s
home or in an accessible location of one’s choosing [57,58,61,66–69]. As highlighted in this
section, rehabilitation and exercise professionals have also adopted tele-health strategies to
specifically address the accessibility issues faced by people with disabilities.

2.1. Tele-Rehabilitation

The need to deliver home-based rehabilitation programs has been a longstanding
challenge for patients and clinicians. In addition to overcoming many of the barriers
patients encounter when accessing rehabilitation services, home-based rehabilitation inter-
ventions also address fundamental treatment gaps that may ultimately improve outcomes
for patients. For example, in response to a research survey administered to over 500 re-
habilitation professionals, clinicians reported that 70% of their patients with disabilities
required additional therapy after discharge, and more than 55% required additional therapy
between in-clinic visits [70]. In this same cohort, 95% of the respondents indicated that
tele-rehabilitation may provide an opportunity to address the need for additional treatment
sessions [70]. Over the past 25 years, the utility and efficacy of tele-rehabilitation has been
evaluated in several different clinical populations [71–77], and, according to the National
Library of Medicine’s PubMed database, the number of peer-reviewed research articles fea-
turing tele-rehabilitation in the title alone has increased more than 10-fold in the past decade.
Empirical evidence from tele-rehabilitation research studies suggest that the use of these
tele-health strategies may provide an accessible and effective option for deploying rehabili-
tation and exercise interventions for people with disabilities [57,61,64,65,69,78–80]. Recent
systematic and thematic reviews of this body of literature have concluded that the available
evidence demonstrates that tele-rehabilitation interventions are effective at improving phys-
ical function, cardiometabolic health, and quality of life in people with disabilities associated
with neurologic, musculoskeletal, and cardiovascular disorders [57,59,61,64,65,69,79–82].
For example, studies evaluating the impact of tele-rehabilitation interventions in people
with mobility impairment associated with neurologic conditions (stroke, multiple sclerosis,
and spinal injury/disease) have found remote intervention strategies to be as effective
as standard, in-person rehabilitation at improving measures of physical function and
mobility [57,59,61–63,72,76,81,83–85].

Historically, home-based rehabilitation programs have been limited to using detailed
written instructions and illustrations, before evolving into video-based instructions de-
livered through videotape or digital video disk [57–59,61,64,69,72,84]. More recently, the
advent of high-speed internet, massive data storage capacity, and affordable digital videog-
raphy have revolutionized in-home rehabilitation programming, through the emergence of
web-based tele-rehabilitation [86–89]. Specifically, these advancements in telecommunica-
tions technology offer a more versatile approach to tele-exercise, which allows clinicians
to efficiently create and upload large libraries of custom video content that can be ac-
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cessed by users from any device with internet connectivity (i.e., tablet, smart phone, etc.).
Furthermore, the increasing affordability and quality of real-time video streaming and
video conferencing has also expanded the capabilities of tele-rehabilitation by enabling
the live streaming of video content and allowing patients to interact with their health-
care providers through real-time two-way video conferencing in a secure, interactive
environment [90,91]. While tele-rehabilitation delivered through various methods has
demonstrated immense potential to make a substantial impact on health and function
in people with disabilities, the available evidence also suggests that the effectiveness of
tele-rehabilitation interventions may be limited by poor adherence and a lack of clinical
supervision [57,59,61,64,65,69,75,79–82,92]. Undoubtedly, corrective and encouraging feed-
back is critical to the safety and effectiveness of rehabilitation, but this is difficult to provide
during tele-rehabilitation sessions where direct clinical supervision is limited or absent
altogether. Thus, future work is needed to address the limitations of tele-rehabilitation
interventions and identify ways to improve sustained engagement and expand clinical
evaluation into remote settings.

2.2. Tele-Exercise

In addition to clinician-guided rehabilitation interventions, mounting evidence has
also demonstrated that regimented exercise can improve physical function and overall
health in people with disabilities by increasing cardiopulmonary and metabolic capacity,
muscle strength, coordination, and vascular health [21,33,36,93–106] while also reducing
mental distress and attenuating depression and anxiety [2,25,107–110] in these populations.
Yet, people with, and without, disabilities encounter a multitude of intra- and interpersonal
barriers to participating in exercise programs that involve professional supervision, special-
ized facilities, or public spaces. To this end, telecommunications technologies have also
been rapidly adopted by exercise professionals, and within the last half decade, the entire
fitness industry has rapidly evolved into a hybrid ecosystem, as the popularity of online
fitness programming has grown exponentially [111–113].

According to a survey of over 4000 fitness professionals conducted by the American
College of Sport Medicine, online fitness climbed to the #1 most popular fitness trend in
the fitness industry in 2021 [111,112]. However, the preponderance of public-facing tele-
exercise platforms, such as the commercial tele-exercise programs designed by Peloton [114]
and Tonal [115], provide content and user interfaces that are primarily curated for the
general population and may not be suitable to the needs of people living with disabilities.
Therefore, it may be difficult for someone living with a disability to identify commercially
available exercise content that provides a safe and accessible effective tele-exercise platform
that will help them attain their goals [116]. Furthermore, studies evaluating tele-exercise
programs in clinical populations have consistently found that participants reported limited
social engagement as a primary limitation to tele-exercise strategies [75,117–119]. Thus,
while telecommunications technologies have immense potential to address health equity
in people with disabilities, there is a need for more accessible and efficacious approaches
to tele-exercise programs that are socially engaging and tailored to the needs of people
with disabilities.

2.3. Expanding Tele-Health Solutions

Solutions that leverage emerging technologies to expand clinical evaluation into re-
mote settings and integrate social connectivity into tele-health platforms will be a vital
component in the future of tele-rehabilitation and tele-exercise. As discussed in detail
below, a growing body of research is starting to reveal the many ways remote monitoring
tools, such as wearable sensors and digital survey technologies, may be used to evaluate
physical function and physiology in remote settings (see “remote monitoring”) [120–122].
In addition, some companies are exploring approaches to remote monitoring that directly
integrate clinical evaluation into the tele-rehabilitation platform itself. For example, Kaia
Health [123], is a tele-rehabilitation platform that leverages computer vision technology
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to map a patient’s biomechanics based on two-dimensional video data captured from a
smartphone camera to evaluate a patient’s movements while they are viewing instructional
video content through a mobile app. The software then provides automated, corrective
feedback in real-time during their tele-rehabilitation activities, while also providing the
opportunity for asynchronous clinician-mediated feedback, based on recordings. Other
technologies, such as chatbots, are also being explored as a method to improve adherence
in tele-rehabilitation by providing support in the form of tailored feedback and encour-
agement [124–126]. Specifically, some studies have shown how automated, SMS-mediated
chatbot interactions can provide patients with information and encouragement, which may
improve adherence to an assigned tele-rehabilitation [124–126]. Ultimately, establishing
sustainable and efficacious approaches to tele-rehabilitation will require the integration of
multiple different technologies such as those that data from wearable sensors, computer
vision systems, and other remote monitoring technologies are used to drive automated
feedback from by chatbots and other forms of digital communication.

The emergence of creator-driven and socially interactive digital health platforms
may also provide novel solutions to address the limitations of modern tele-rehabilitation
and tele-exercise programs [116,127]. Online tele-health platforms that emphasize social
connectivity and allow users to directly communicate with each other and instructors could
overcome limitations to tele-exercise associated with the lack of social interactions [2,52,127].
Moreover, tele-health platforms that provide an opportunity for rehabilitation and exercise
professionals to organically publish original content may also establish diverse libraries of
instructional content that are inclusive of the needs and goals of people with disabilities. For
example, Burnalong [128], a digital wellness platform, offers an online community where
credentialed creators can post video content such as exercise classes and programs. This
model attracts hundreds of different creators with a wide range of expertise who generate a
diverse library of tele-exercise video content that is tailored to the needs of various groups,
including those with disabilities. The platform also allows users to interact with each
other and the exercise instructors as well, through discussion forums and two-way video
streams. Therefore, users with disabilities can find professionally curated content that
is inclusive of their goals, ability level, and preferences, while also engaging with other
individuals who may have similar lived experiences or health goals. Together, innovative
tele-health platforms and remote monitoring technologies are starting to bridge the gap
between the individual, clinic, and the communities of people living with disabilities. While
these solutions have immense potential to collectively address many of the limitations of
tele-rehabilitation and tele-exercise, future research is warranted to determine how, and
to what extent, applications of remote monitoring and socially engaging platforms may
improve adherence and outcomes for people with disabilities.

3. Remote Monitoring

While tele-rehabilitation and tele-exercise have emerged as potential approaches
to overcoming many environmental and economic barriers to participating in health-
promoting physical activities [57,61–65,80,118], remote interventions are limited by their
inability to employ contemporary evaluation strategies and adaptive equipment that may
greatly enhance the safety, accessibility, and precision of an intervention. For example,
the deployment of safe and effective rehabilitation and exercise interventions requires
individualized evaluation strategies that can identify changes in physical function and
physiology over time, so that activity intensity and type can be adjusted as an individual
adapts [97,129,130]. Yet, key clinical outcome measures, such as walking tests and car-
diopulmonary assessments [131–137], require direct clinical supervision or costly, immobile
instruments that cannot be used in remote settings outside the clinic, and therefore, it is
difficult to conduct a rigorous evaluation of physical function and physiology of individuals
participating in remote interventions, which may negatively impact risk and efficacy.
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3.1. Wearable Sensors

Recent advancements in wearable sensor technologies have expanded our capacity to
monitor various aspects of human movement and physiology [120,138–148]. Wireless, non-
invasive instruments such as accelerometers and optical sensors can now be combined into
a single, wearable electronic device, which measures multiple physiological systems in re-
mote locations without any, or with little, clinical oversight required [120–122,139,149–156].
By integrating these measurement devices with contemporary system-on-a-chip technol-
ogy, high-capacity lithium batteries, and Bluetooth connectivity, modern wearable devices
can now generate and transmit continuous, high-resolution measurements for days or
weeks at a time. Certainly, there is a great deal of consumer interest in wearables, and
companies such as Fitbit [157–159], Apple [159,160], Garmin, and Whoop [161,162] provide
commercially available, user-friendly products such as watches and wristbands that enable
users to track their physical activity, cardiac function, sleep, and other aspects of their
health, without any technical training required. However, the potential of wearables is
also recognized by clinicians and researchers as well, and there has been a rapid expan-
sion in research related to wearable devices over the past decade [120,138–148,163,164].
Moreover, similar to the trends observed in tele-rehabilitation research, the number of
peer-reviewed research articles featuring “wearables”, in the title alone, has increased
more than 12-fold in the past decade, according to the NLM’s PubMed database. These
studies have demonstrated a wide range of potential use cases in which wearable sensors
may overcome barriers to accessing evidence-based care by expanding clinical evaluation
into remote settings; they provide new opportunities to remotely deliver rehabilitative
interventions that require specialized equipment that was historically only available in the
clinic [122,149,156,165–169].

Because wearable devices can incorporate many different instruments and may be
integrated into many different types of wearable accessories, there are a wide range of
potential clinical use cases for wearables. Within the wearable device ecosystem, sen-
sors that use inertial measurement units (IMUs) to evaluate movement are amongst
the common [120–122,141,143,170]. IMUs are noninvasive, electronic sensors that use
accelerometers and gyroscopes to simultaneously measure linear acceleration and an-
gular rotation. A wide range of different movements and biomechanics can be mea-
sured by pairing wearable IMU sensors with straps and adhesive to secure the devices
to the wrist, ankle, hip, or other desired anatomical location. IMU sensors worn at dif-
ferent anatomical locations can provide reliable measures of general daily activity (i.e.,
steps) [143,151,171–179], gait metrics [145,180], spasticity [170,181], and specific upper- and
lower-extremity movements [149,182–188]. Several research studies have used wearable
IMUs to reveal important, multidirectional interactions among non-structured physical
activity, rehabilitation, and exercise [148,151,179,189–191]. Specifically, studies have shown
that reductions in daily, non-structured physical activities are related to increased risk of
cardiometabolic disease and reduced mobility in people with disabilities, and that par-
ticipation in rehabilitation and exercise can improve health outcomes, both directly and
indirectly, through associated increases in physical activity.

In addition to research instruments, some commercially available devices also lever-
age IMUs to facilitate participation in home-based exercise activities. For example, Flint
Rehab [192] has developed a system called FitMi [193–195] that integrates wearable IMU
sensors with an interactive software program to monitor and provide feedback regarding
movement quantity and quality during participation in tele-exercise activities. Systems
such as the FitMi are creating opportunities for people with disabilities to engage in tailored
exercise programs that are guided by real-time feedback based on their precise move-
ments. Together, this work demonstrates how wearable IMU sensors may provide an
opportunity to remotely evaluate the quantity and type of physical activities associated
with tele-rehabilitation and exercise programs.

Measurements of walking function and gait mechanics are critical to evaluating the
progression of physical disability and the impact of therapeutic strategies for people
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with mobility impairments [196,197]. While IMUs sensors embedded in wrist straps and
smartphones can provide valuable information regarding physical activity and steps, these
devices are limited in their capacity to evaluate lower-extremity biomechanics-associated
gait kinetics. To this end, recent developments in wearable sensor technologies have started
to incorporate small, wireless pressure sensors into footwear to capture lower-extremity
pressure patterns generated by foot placement during gait cycles [198–203]. For example,
Sensoria Health [204] has developed textile pressure-sensor-infused socks that can evaluate
spatiotemporal parameters of gait associated with walking and running. Assessments
of gait derived from smart socks have been validated by multiple independent research
studies, which have found the sock sensor to be as, or more, accurate than gold-standard
gait lab systems [202,203,205]. These preliminary studies have demonstrated exciting
potential for smart socks to provide reliable measurements of gait in community-based
settings, without the need for direct, clinical supervision. In addition to measuring specific
spatiotemporal gait metrics associated with clinical disability, smart footwear may also
provide a direct measurement of daily step count that is more inclusive to people with
disabilities. The reliability of step counts derived from contemporary wrist-worn sensors is
significantly reduced in clinical populations with lower gait speed, and wrist-worn trackers
are unable to accurately count steps in populations that use assistive devices, such as
walkers, which limit upper-extremity mobility during walking [190,191,206]. Establishing
an outcome measure that can accurately evaluate daily steps in people with more severe
mobility impairments will create new opportunities to explore the clinical importance of
daily physical activity in people with disabilities, and will advance our knowledge of how
various treatment strategies impact everyday life.

In addition to measuring human movement and biomechanics, wearable devices are
also commonly used to monitor heart rate, which may be useful when delivering tele-
rehabilitation and tele-exercise programs. For example, wearable heart-rate monitors can
allow clinicians to monitor cardiac activity during participation in tele-rehabilitation, which
may be critical to maintaining safety and identifying problems in patients with cardiac
irregularities/impairments [66,139,154,156,179]. Furthermore, evidence-based guidelines
for exercise in people with disabilities have been established, based on research showing
that the intensity of exercise should be optimized to generate a specific physiological
stimulus that can safely and effectively drive improvements in physical function, fatigue,
and cardiometabolic health [97,129,130,207]. Thus, wearable sensors may also address this
need by providing constant measures of heart rate that can be used to inform the calibration
and progression of exercise intensity [107,129,208,209]. However, in populations with
neurological conditions, autonomic dysregulation and/or the use of certain medications
can disrupt the cardiovascular response to exercise [97,210–213]. In such cases, heart-rate
measurements may not accurately reflect the intensity of physical exertion, and some
individuals may not be able to achieve the target heart rate recommended by exercise
guidelines. While exercise guidelines for people with neurological conditions can also be
achieved by exercising, according to how hard someone perceives they are working [97,214],
measuring perceived exertion [215,216] requires tools that can capture subjective, self-
reported measures of individual experience.

3.2. Ecological Momentary Assessments (EMAs)

Advancements in mobile software technology have led to the development of digitally
deployed surveys and questionnaires that can capture self-reported, ecological momen-
tary assessments (EMAs) of symptom perception and mental health outcomes. EMAs
evaluate perceptions and behaviors in real time in real-world environments [217–221]
and have been used across a broad range of psychological research and clinical practice
to evaluate psychological responses to experiences and mental health [217–220,222–225].
Software applications, such as RedCap [226] and ExamMed [227], allow researchers and
clinicians to build custom EMAs that are sent directly to individuals through their email,
text message, or mobile application. Because EMAs operate by prompting users to record
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their perceptions and thoughts in real time, in real-world environments, this approach
minimizes error, such as recall bias, which might influence clinical assessment that requires
recall over the course of several days or weeks. In addition, EMAs allows researchers
and clinicians to better understand factors that influence symptom perception and mental
health by evaluating events that occur in close temporal proximity (before and after) to
EMA measurements [219,220,222,223]. Indeed, recent studies have demonstrated how
information derived from EMAs can be integrated with activity and geolocation data from
wearable sensors to identify key determinants of behavior in community settings, and these
studies have started to reveal novel relationships between mood and free-living physical
activity [217,219,220,222,228]. While similar evaluation strategies have great potential to
inform rehabilitation and exercise strategies, there are currently limited methodologies
established to integrate EMAs with multiplex data from multiple instruments in modern
wearable sensors.

Integrated remote monitoring systems that combine quantitative data from wear-
able sensors with subjective data from EMAs could provide new opportunities to explore
how physical and mental health are influenced by disease, disability, and related inter-
ventions in real-world environments. For example, people with disabilities often report
fatigue and pain as significant barriers to participating in rehabilitation and exercise activ-
ities [4,229–231]. Fatigue and pain can be extremely variable from day to day, and even
within a single day [232–237], and a few contemporary studies have used daily surveys and
remote activity trackers to show that momentary feelings of fatigue and pain can have an
immediate, negative impact on daily physical activity [232,236,237]. Yet, the preponderance
of studies evaluating fatigue in people with disabilities have relied on questionnaires that
ask individuals to provide a summative rating of the fatigue they have experienced over
the past 7–28 days [238,239]. Therefore, it is difficult to delineate how fatigue impacts
participation in physical activities on a day-to-day basis. Consequently, there is a lack of
empirical scientific evidence regarding how daily fluctuations in fatigue and pain might
acutely influence exercise participation in people with disabilities, and it is unclear whether
long-term adaptations from exercise impact the relationship between fatigue, pain, and
non-exercise physical activities in real-world settings in this population. Future studies
implementing remote monitoring strategies that integrate physical activity and physiology
metrics with perceived outcomes may help identify acute and chronic interactions among
rehabilitation and exercise, fatigue, and pain in people with disabilities on a day-to-day
basis in real-world settings. Such work could help clinicians develop and deploy more
sustainable rehabilitation and exercise strategies for people with disabilities who experience
elevated levels of fatigue and pain.

4. Digital Environments and Gaming

Safety, engagement, and adherence are critical components for delivering sustainable
and effective rehabilitation and exercise programs. Undoubtedly, rehabilitation and exercise
often require activities that are associated with a moderate risk of falling or injury, and
people with deficits in motor control, balance, and cognition may be at greater risk during
participation in such activities [97,130,240–242]. While clinicians can help mitigate risks
by providing detailed instructions and physical assistance, remote strategies lack clinical
oversight, which may lead to additional challenges related to safety and engagement and
that lead to reduced adherence. Moreover, some intentional aspects of rehabilitation and
exercise activities may present inherent safety concerns that persist even with professional
oversight. For example, rehabilitation strategies that incorporate external stimuli and
focus on walking around objects have been shown to improve walking function in people
with disabilities [243], but such obstacles may increase the risk of an adverse event such
as a fall and/or injury. The level of risk and an individual’s perception of safety during
participation in rehabilitation and exercise programs may also contribute to hesitancy, and
studies have shown that people with disabilities report safety concerns as a primary factor
that contributes to low adherence [39,41,42,52,53]. Thus, maintaining environments that
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have reduced risk of adverse events and help patients feel safe during their participation in
rehabilitation and exercise activities may also improve adherence and engagement.

In addition to safety, people with disabilities also commonly report a lack of motiva-
tion as another factor that may negatively impact adherence to rehabilitation and exercise
programs [39,41,42,52,53]. During supervised rehabilitation and exercise activities, clini-
cians play a key role in keeping patients engaged in their activities by providing real-time
instructive feedback and incorporating simple, goal-oriented tasks such as games. Specifi-
cally, studies have shown that rehabilitation strategies that incorporate feedback, games,
and elements of entertainment may increase the intensity at which a specific activity is
performed [244–247]. In this section, we highlight emerging technologies that are providing
new opportunities to improve safety, engagement, and adherence in rehabilitation and
exercise programs for people with disabilities.

4.1. Virtual and Augmented Reality

Virtual-reality (VR) and augmented-reality (AR) technologies provide an opportunity
to address challenges associated with safety, engagement, and adherence in rehabilita-
tion and exercise for people with disabilities [77,245,248–250]. VR and AR technologies
use computer-generated imagery to create immersive and interactive digital environ-
ments. Specifically, VR establishes a digital environment that reflects real or fictional places,
whereas AR is the real world viewed through a device, adding computer-generated objects
or effects into one’s domain. Both VR and AR offer the opportunity to safely simulate
walking or other daily activities, in various digital environments that may include obstacles
or everyday scenarios, with a reduced risk of harm [249,251–254]. Moreover, VR and AR
provide a method of integrating fantastical situations and gaming into rehabilitation and
exercise activities, to make them more enjoyable and/or entertaining [253–255].

While multi-sensory digital experiences date back to the 1990s, recent developments in
computer-generated imagery and microprocessors have expanded the quality and mobility
of VR/AR technologies, and have consequently expanded their potential applications for
rehabilitation and exercise [77,249–251,256,257]. Specifically, a growing body of research has
demonstrated the safety and efficacy of integrating VR technologies into rehabilitation care
plans in several rehabilitation populations, including stroke, multiple sclerosis, rheumatoid
arthritis, fibromyalgia, and Parkinson’s disease, among others [77,249–251,256,257]. The
use of VR technologies as a rehabilitation tool has been shown to improve mobility and
function, decrease pain, and improve quality of life [77,249–251,256,257]. Moreover, VR
may also decrease the burden on caregivers, while raising compliance, motivation, and
adherence [250,253], and research indicates that skills learned in virtual environments
can translate to the real world [250,253]. Regarding AR, some evidence suggests that
AR-based interventions may improve physical function and reduce risk of fall when
implemented in conventional physical therapy practice for people with disabilities [245,248].
However, there are a limited number of research studies investigating AR interventions,
and the degree to which the integration of AR technology may contribute to additional
improvements in outcomes, over and beyond traditional approaches to rehabilitation,
remains unclear.

Contemporary VR and AR devices have many attributes that allow them to be used
across a variety of rehabilitation and exercise strategies. For example, VR and AR can
be combined with numerous accessories, such as omnidirectional treadmills and haptic
suits, which incorporate physical activity and feedback with the virtual or augmented
experience [258–260]. VR and AR devices are also becoming more mobile and integrated
into accessories that enable everyday use, such as wireless eyewear, smartphones, and
heads-up displays (HUDs) [261,262]. VR systems have also become increasingly accessible
for individuals who use wheelchairs or have limited mobility. Specifically, some VR
programs now offer seated experiences, making it suitable for those who prefer or require
a stationary position. VR developers are also incorporating accessibility features, including
adaptive controllers, customizable user interfaces, subtitles, and adjustable avatars.
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Systematic reviews evaluating the usability of semi-immersive and fully immersive
VR systems have reported strong usability in people with a wide range of neuromotor
impairments, particularly when examining user ratings regarding ease-of-use and learn-
ability [263]. Notwithstanding, VR and AR have limitations that reduce their clinical
utility and require further development to establish more accessible and efficacious virtual
environments for use in rehabilitation and exercise. For example, VR and AR use in reha-
bilitation and exercise can be associated with motion sickness, loss of human connections,
safety issues for those with limited mobility, and cost [264–266] which may be particularly
problematic for people with disabilities. Fortunately, recent development work has focused
on overcoming many of the limitations of VR and AR. Companies such as Meta [267]
and Apple [268] are in the process of developing more connected virtual environments,
to enable users to remotely interact and exchange information in the metaverse [269,270].
Such innovations have the potential to open a world of possibilities for people with dis-
abilities who have barriers to transportation or limited ability to spend long periods of
time away from home. Google has also created Google Cardboard, a smartphone assembly
for digital environments made of cardboard that has potential to reduce costs of VR and
AR technology [271]. Furthermore, emerging products, such as Teslasuit [272] are now
offering full-body haptic experiences that provide comprehensive feedback to multiple
anatomical locations. The multidirectional feedback received from the suit is suggested
to increase the body’s response to input from VR and/or AR, thus potentially stimulating
neural pathways and propagating stronger synaptic connections [273] which are important
targets for neurorehabilitation. Collectively, these advancements will lead to more real-
istic, affordable, and socially connected digital environments, which will establish more
accessible and efficacious VR and AR solutions for rehabilitation and exercise.

4.2. Gaming

Digital gaming technologies have been around for over 50 years, and over the past
decade, the gamification of rehabilitation and exercise has emerged as a promising strat-
egy to improve engagement and adherence [167,244,248,264,274,275]. Gamification refers
to the “use of game design elements in non-game contexts” [275]. In the context of
rehabilitation and exercise, gamification may involve the use of quests, points, levels,
leaderboards, or badges to guide and encourage users through a series of physical ac-
tivities [167,244,248,264,274,275]. Users frequently report that gaming elements are fun,
exciting, and reduces the monotony that patients may experience during their plan of
care, which can increase adherence and performance during rehabilitation and exercise
activities [167,244,248,264,274,275]. Moreover, the stimuli of gaming elements themselves
may also initiate changes in specific neural adaptations [264]. Specifically, gaming has
been shown to release dopamine with each achievement, facilitating neuroplasticity and
potentiation of synaptic connections [244], and game-based therapies involve cognitive and
motor components that recruit specific neurons of interest, leading to the formation of new
neural networks [266].

The benefits of integrating non-immersive digital gaming into rehabilitation and
exercise have been evaluated in different clinical populations [276,277], and there are
several studies demonstrating how gaming platforms such as Microsoft Kinect and Nin-
tendo Wii can improve physical function and overall wellbeing in people with disabili-
ties [247,278–282]. Advancements in gaming are also offering new opportunities for people
to engage in collaborative gaming activities through online, multiplayer games. Online
games can overcome social barriers for people with disabilities, while also allowing people
with mobility limitations to engage and compete in gamified activities that may be oth-
erwise physically inaccessible [283–285]. More recently, clinicians and researchers have
also started to explore how gamification of rehabilitation and exercise can be delivered
using VR technologies [286–288]. Strategies that guide individuals through movements
using gamified rehabilitation and exercise activities performed in immersive VR environ-
ments offer an approach that provides all of the benefits of gamification in addition to the
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enhanced user experience and psychophysiological stimuli generated by VR. Although
future research is needed to determine the best practices for combining VR and gaming in a
rehabilitation context, this integrated strategy has the potential to provide a safe, accessible,
and motivating approach for people with disabilities, while also generating robust stimuli
to drive adaptations within multiple physiological systems [248,255,274,278].

Taken together, the collective evidence demonstrates how telecommunications, wear-
ables, VR, AR, and gaming may be used either individually, or in combination, to overcome
many barriers people with disabilities face regarding rehabilitation and exercise. However,
choosing the most effective combination of technological solutions for each individual is
dependent on several factors related to personal goals, abilities, and preferences that are
shaped by a myriad of physiological, psychological, sociological, and economical factors.
In the next section, we highlight new frontiers in precision care strategies that are helping
clinicians make data-driven decisions when it comes to selecting the most effective and
efficient rehabilitation and exercise strategies for people with disabilities. Yet, the overall
value of integrating VR and AR technologies into rehabilitation remains somewhat unclear.
Future research focused on demonstrating how VR and AR may enhance outcomes and cost
effectiveness, over and beyond conventional care strategies, may facilitate the translation
of these technologies into clinical practice.

5. Promoting Accessibility with Co-Development

While digital health technology holds significant promise in increasing accessibility,
adoption may not be universally seamless across diverse user groups, and it is crucial to
recognize potential barriers that individuals with disabilities may encounter when utilizing
technological devices and digital health services. For instance, individuals with mobility
impairments or motor control challenges may encounter challenges when physically in-
teracting with small buttons, straps, touchscreens, or complex clasp mechanisms that are
often associated with wearable sensors and mobile telecommunications devices. Sensory
impairments among individuals with visual or hearing deficits may also limit the usabil-
ity of digital health technologies that do not offer alternative modalities for information
presentation. In addition to physical barriers, people with disabilities may also experience
cognitive impairments that make it difficult to navigate complex digital interfaces or man-
age complex protocols associated with operating and maintaining digital health devices and
platforms. Thus, it is critical that future technological innovation efforts are informed by
preemptive and parallel research agendas that are focused on understanding the potential
barriers to implementing digital health technologies within the population of individuals
with disabilities. Co-innovation strategies directly involve people with disabilities in the
technological innovation process by conducting a series of focus groups, surveys, and pilot
studies to identify the needs, barriers, and preferences of the intended user [117,289–291]
and systematically evaluate the feasibility, usability, and safety of technologies. Through
this iterative process, co-development strategies allow developers to design and refine
digital health solutions that are not only effective, but also inclusive and accessible to
individuals with disabilities (Figure 2).
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Figure 2. Overview of co-development process.

6. Precision Care

While substantial progress has been made in establishing evidence-based guidelines
for rehabilitation and exercise in people with disability [97,130,207], standardized guide-
lines only provide general recommendations, which are not directly tailored to the needs,
abilities, and goals of each individual. Undoubtedly, people with disabilities can have a
wide variety of mobility limitations and physiological disorders that differentially impact
how they participate in, and how their body responds to, distinct types of interventions.
Thus, there is increasing awareness in the field of physical medicine, rehabilitation, and ex-
ercise physiology surrounding the need for individualized, data-driven treatment strategies
that are specifically tailored to an individual’s needs, goals, and abilities. To this end, the
concept of precision care (i.e., precision medicine/rehabilitation) has emerged as an alterna-
tive approach to the generalized, broad application of evidence-based guidelines [292–296].
Precision rehabilitation leverages large, multiplex datasets to establish personalized, data-
driven treatment strategies that are optimized to drive outcomes for individuals (Figure 3).
For example, one approach to precision rehabilitation is to establish patient subtyping
systems, in which subgroups of patients with the same diagnosis are identified and differ-
entially assigned to specific treatments based on their integrated health profile [292–296].
In addition, precision rehabilitation strategies may also support more dynamic approaches
to care that incorporate new health data as it is generated to make real-time adjustments to
treatment strategies [165,292,294]. In addition to addressing barriers related to the lack of
individualized care for people with disabilities, precision rehabilitation treatment strategies
may also lead to more efficient and economical clinical practices, by creating data-driven
models of care that concentrate resources on the specific rehabilitation services that are
most likely to make an impact for each patient. Notwithstanding, precision rehabilitation is
a relatively new concept, and, to date, only 13 peer-reviewed articles have been published
with “precision rehabilitation” in the title. Substantial research and innovation efforts will
be required in this area to establish pathology-specific best practices and develop robust
technical solutions that can support the implementation of precision rehabilitation at scale.
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A primary limitation to precision rehabilitation strategies is the data collection, as well
as the processing and analysis bottleneck that is created by establishing the large, multiplex
datasets that result from integrating several sources of health information [292,297]. For
example, precision rehabilitation strategies such as patient subtyping must be able to
determine which types of treatments generate the most favorable outcomes for specific
patient subtypes. Because patient outcomes depend on several physiological, functional,
social, and environmental factors, generating accurate predictive models requires valid
data and robust analytical approaches that can perform complex, iterative analyses to
identify patterns and predictors within large, multiplex datasets that can cover several years
of time. Therefore, the practical implementation of precision rehabilitation necessitates
the development of automated, user-friendly data collection and analytical systems that
can deliver actionable information to clinicians without the need for hours of manual or
supervised data collection and analysis [292,297–300].

Artificial Intelligence and Cloud Computing

Emerging evidence is starting to reveal how applications of artificial intelligence (AI)
may be used to automate analyses and identify patterns within large, integrated health
datasets, which may be difficult for humans to otherwise detect. AI broadly refers to a form
of computer science where algorithms are trained to perform complex tasks, such as pattern
recognition. For example, applications of AI have made substantial contributions to the
fields of oncology, neurology, and immunopathology, by revolutionizing, and automating,
our capacity to rapidly and accurately analyze high-resolution images generated by medical
imaging instruments [301–307]. Historically, biomedical imaging relied on manual analyses
by physicians and scientists to identify and quantify biomarkers within large images
containing many different relevant and irrelevant features. AI transformed this practice by
using algorithm-based image analysis to drastically increase the rate, scale, and sensitivity
of biomarker detection [301,307–310].



Int. J. Environ. Res. Public Health 2024, 21, 79 14 of 28

Similar to images, integrated health datasets used in precision rehabilitation strate-
gies also include massive amounts of information that may or may not be relevant to an
individuals’ prognosis. Therefore, it would follow that applications of AI also have the
potential to drastically increase the rate, scale, and overall capacity to extract clinically
meaningful information from datasets consisting of hundreds of metrics derived from
multiple different sources. For example, recent work has demonstrated how AI algorithms
can use multifactorial data derived from electronic medical records (EMRs) to predict
hospitalization [311,312], drug efficacy [313], and the development of critical illness [314]
in several different clinical populations. One limitation of this approach is that AI pre-
dictive models often provide little information about which factors may be driving the
outcomes. Indeed, the algorithms used in medical applications of AI consider hundreds of
factors, and systematically evaluate interactions and patterns among hundreds of factors
including demographics, lab results, co-morbidities, social determinants of health, and
medical images, among many others. However, identifying key factors associated with
positive or negative outcomes is critical to designing targeted treatment strategies for
people with disabilities. To this end, there have been recent efforts to employ “explainable”
AI models that systematically identify key factors that are driving the predictive power of
the algorithms [315,316]. For example, while it may be helpful to know which patients will
adhere to their rehabilitation or exercise program, systems that use explanatory AI may
help identify the primary reason patients are, or are not, adhering to protocols, which may
inform future intervention strategies.

Although there is increasing interest surrounding the use of AI in precision rehabil-
itation [292,294,296], the application of AI in rehabilitation is still in the nascent stages
of exploration. Several previous studies have demonstrated the utility of using machine
learning to forecast outcomes related to walking function, assistive-device use, discharge
potential, and falls risk in people with disabilities [315,317–322], and such applications of AI
can certainly inform the design and management of individualized rehabilitation treatment
strategies. Yet, further work is needed to systematically evaluate the safety and efficacy
of using AI to direct an individual’s care through processes such as patient subtyping or
AI-directed FES calibration [292]. Moreover, existing studies have focused on applying AI
to datasets derived from a single source, such as EMRs, wearables, or specialized clinical
measurement devices [315,317–322]. Undoubtedly, approaches that integrate data from
these different sources, and others, would offer a more comprehensive profile of the pa-
tient, and may improve the precision of AI-generated predictive models aiming to forecast
outcomes or determine the optimal care path for a particular patient subtype. In addition,
data integration may also inform dynamic-precision rehabilitation strategies. For example,
combining static EMR data with real-time data from remote patient-monitoring systems
could provide deep insight regarding the acute and chronic impact of a rehabilitation
treatment session if such data is integrated with the treatment schedule or information
from tele-rehabilitation/tele-exercise platform [165]. Therefore, in addition to the need for
complex, automated analytics, another substantial challenge for precision rehabilitation is
the need for a robust technical infrastructure that can rapidly integrate, organize, and store
large, multiplex datasets, in a readily accessible and analyzable format.

Cloud-based data repositories and computing systems have emerged as a promising
solution to the data storage and processing demands of precision rehabilitation strategies
that aim to leverage big data [323–326]. For example, EMR systems are often isolated from
other sources of health information such as data derived from rehabilitation equipment and
remote patient-monitoring systems. Moreover, even the most simplistic wearable devices
can generate thousands of data points per day per patient, which can cause data storage
and processing difficulties for consumer-level desktop computers. Contemporary cloud
systems, such as those offered by Microsoft Azure [327] and Amazon Web Services [328],
provide a robust, versatile infrastructure for addressing data integration, storage, and
processing needs. Furthermore, the AI strategies highlighted above require immense com-
putational power to support the complex, iterative analytical approaches used to identify
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patterns and predictors within large, multiplex datasets. While historical medical records
contain a wealth of information related to patient outcomes, even the most sophisticated
EMR systems lack the analytical tools and AI capacities needed to turn historical outcomes
data into predictive algorithms for precision rehabilitation. Contemporary cloud-based
computing services also address this need by offering access to nearly unlimited compu-
tational power on an as-needed basis. As healthcare technology continues to evolve, the
complexity and size of the health data ecosystem will only continue to grow, and thus,
data-driven approaches to healthcare also require versatile solutions that rapidly adapt and
match the capacity of the continuously evolving data sources. To this end, the capabilities of
cloud computing provide the technical infrastructure needed to establish scalable, big-data
solutions to support contemporary and future approaches to precision medicine.

7. Conclusions

Emerging digital health technologies have the potential to significantly impact the
accessibility and precision of rehabilitation and exercise strategies for people with dis-
abilities. Telecommunications technologies are expanding access to care by providing
remote rehabilitation and exercise services to individuals in remote or underserved areas,
or to those who are unable to access in-person rehabilitation services, due to mobility
or other accessibility barriers. Wearable devices and sensors can be used to monitor a
person’s progress, provide real-time feedback, and generate data to inform the progression
of rehabilitation and exercise programs. Furthermore, VR and AR offer immersive and
interactive digital environments that can be used in rehabilitation and exercise to guide
users through specific movements, simulate real-world scenarios, and integrate elements of
gaming and entertainment into their training. Advancements in artificial intelligence and
cloud computing are also improving rehabilitation and exercise for people with disabilities
by enabling data-driven approaches to precision rehabilitation that are directly tailored to
the needs and goals of the individual. Overall, emerging technologies have the potential to
enhance and expand the capabilities of rehabilitation professionals, and to provide new
and innovative ways to help individuals with disabilities or injuries achieve their goals and
improve their quality of life.
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