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Abstract: Urban population growth in Nigeria may exceed the availability of affordable housing
and basic services, resulting in living conditions conducive to vector breeding and heterogeneous
malaria transmission. Understanding the link between community-level factors and urban malaria
transmission informs targeted interventions. We analyzed Demographic and Health Survey Program
cluster-level data, alongside geospatial covariates, to describe variations in malaria prevalence in
children under 5 years of age. Univariate and multivariable models explored the relationship between
malaria test positivity rates at the cluster level and community-level factors. Generally, malaria
test positivity rates in urban areas are low and declining. The factors that best predicted malaria
test positivity rates within a multivariable model were post-primary education, wealth quintiles,
population density, access to improved housing, child fever treatment-seeking, precipitation, and
enhanced vegetation index. Malaria transmission in urban areas will likely be reduced by addressing
socioeconomic and environmental factors that promote exposure to disease vectors. Enhanced
regional surveillance systems in Nigeria can provide detailed data to further refine our understanding
of these factors in relation to malaria transmission.
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1. Introduction

Nigeria accounts for 27 percent of all global malaria cases and 31 percent of global
malaria deaths, making it the greatest contributor to the global malaria burden [1]. Under-
lying Nigeria’s malaria burden are spatial and temporal differences in malaria risk driven
by diverse factors, including ecological and climatic factors, intervention histories, health
system factors, land use practices, and urbanization trends [2–4]. Notably, Nigeria is among
the top three countries expected to contribute to nearly one-third of the world’s urban
population growth between 2018 and 2050 [5]. In 2018, approximately half of Nigeria’s
200 million population resided in urban areas, and this proportion is projected to surge to
70 percent by 2050 [5]. These trends in urban population expansion raise concerns about
the concentration of Nigeria’s malaria burden in urban areas. It is even more concerning
that these population shifts are occurring in an atmosphere of declines in donor funding
for malaria interventions [6]. Given the confluence of rapid urbanization in Nigeria and
funding limitations, the scientific community and policymakers are increasingly interested
in understanding how urbanization-related factors may impact malaria transmission to
inform improved allocation of available resources.
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An examination of data compiled from across Africa, coupled with in-depth inves-
tigations into the consequences of urbanization in Brazzaville, Republic of Congo, illu-
minates several key urban community-level factors that influence malaria transmission
in cities [7–9]. Infrastructure development, heightened population density, and improved
access to healthcare services are factors that are generally expected to reduce malaria
transmission within urban settings. However, the rapid and unplanned urbanization
characterized by the establishment of farms within urban neighborhoods, as observed in
Cotonou, Benin [10], and the adaptation of the Anopheles gambiae sensu lato mosquito to
polluted waters, witnessed in Ghana [11], Cameroon [12], and Sudan [13], pose significant
threats that can elevate the risk of malaria transmission in cities. Furthermore, reports of
the proliferation of Anopheles stephensi, a major malaria vector well-suited to urban environ-
ments, in East Africa and Nigeria [6], add to these concerns. In addition to these factors, the
increasing mobility of individuals between urban areas and other settings as documented
in Uganda [14] and Burkina Faso [15] is among the factors that could perpetuate malaria
transmission within urban spaces.

The existing online research literature specific to Nigeria indicates that community de-
terminants of urban malaria transmission risk encompass factors such as proximity to water
bodies, travel to rural areas, environmental hygiene practices, and housing quality [16–20].
For instance, a study conducted by Awosolu and colleagues, focusing on patients receiving
care at two hospitals in Ibadan, revealed that factors, such as residing within a 1 km distance
from streams and recent travel to a rural area, were statistically significant risk factors for
malaria infection. Similarly, findings from a cross-sectional survey conducted in an urban
town in Nigeria’s southwest region indicated that the types of windows and environmental
hygiene practices significantly predicted malaria prevalence within households [20]. While
these studies provide valuable insights, their limited sample sizes and focus on individual
cities may constrain their applicability for making informed decisions regarding appropri-
ate malaria interventions. Therefore, complementary research endeavors are essential to
provide a comprehensive overview of key factors associated with malaria transmission
across various cities in Nigeria.

Georeferenced survey data, such as the Malaria Indicator Surveys (MIS) and Demo-
graphic and Health surveys (DHS), alongside modeled geospatial data, offer valuable
tools for comprehending the risk of malaria transmission in urban areas. Unlike rou-
tine surveillance systems, which typically lack individual-level georeferenced data on
malaria infections and mostly include individuals who seek care in public healthcare insti-
tutions [21,22], the MIS and DHS collect georeferenced data on an individual’s infection
status and risk factors in both urban and rural areas [23]. Data from individuals are orga-
nized by clusters or enumeration areas, representing the aggregation of households. The
geographic coordinates from the MIS/DHS pertain to point data collected at the centroids
of clusters. These clusters ensure comprehensive coverage of the administrative unit be-
ing sampled, with data collected through a random selection during household surveys.
Augmented by geospatial covariates, these survey datasets facilitate the examination of
associations with potential correlates of malaria infections within urban areas.

A notable limitation of using the MIS/DHS data is the restriction of malaria testing to
children under five years of age, coupled with the absence of detailed information about
the urban extent of clusters and their corresponding cities. Nonetheless, it is important
to emphasize that children under five are a key demographic for malaria prevention
and control efforts, regardless of the intensity of transmission and seasonality [24]. This
underscores the relevance of our analysis. For the second limitation, this study’s significance
is maintained because the cluster centroids are situated within areas classified as urban by
local authorities. This alignment enhances the potential for policymakers to accept and act
upon the results of the analysis.

In light of these data limitations and the imperative to comprehend malaria trans-
mission risk in Nigerian cities, this study embarked on an analysis with the following
objectives: (1) describe the magnitude and variations in malaria prevalence among children
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under the age of five years (U5), analyzed at both the cluster and geopolitical level in
individual DHS/MIS surveys, (2) identify factors that predict the U5 malaria test posi-
tivity rates, and (3) construct model effect plots that elucidate the associations between
covariates and the U5 malaria test positivity rates. The unadjusted effect plots reveal corre-
lations between dependent and independent variables, providing insights into potential
thresholds for intervention prioritization. Meanwhile, the adjusted effects illuminate the
independent contributions of covariates, crucial for understanding their broader public
health implications.

2. Materials and Methods
2.1. Data

Cluster-level data from the 2010, 2015, and 2021 MIS, the 2018 DHS, and publicly
available geospatial malaria covariate data were used for this study (refer to Table 1
for references). The DHS program conducts complex multistage surveys to gather and
disseminate accurate, nationally representative data on health and population in over
90 countries [23]. Data collection occurs at the individual level following probability
proportional to size sampling of clusters, geocoded at their centroids, and a random
selection of households within these clusters [23]. For this study, only clusters classified
as being situated in urban areas were retained. Figure 1 provides an overview of the
DHS/MIS sampling framework. It is important to note that the DHS program intentionally
displaced the GPS coordinates of the centroid of urban clusters by 0 to 2 km to ensure the
confidentiality of survey participants [25]. However, the displacement is performed in such
a manner that each cluster remains within the state-level boundaries. Given that the DHS
exclusively collects data on children aged 6 to 59 months, the number of positive malaria
tests by microscopy and the testing sample population for this age group were summarized
for each cluster. The selection of covariates was guided by the relevant research literature,
which highlights socioeconomic, demographic, behavioral, accessibility, and environmental
factors as potential explanatory variables for malaria transmission [2,4,15,26–29]. A detailed
description of all 29 considered covariates considered can be found in Table 1. To account for
the distance displacement of MIS and DHS clusters when calculating values for geospatial
covariates, raster values were aggregated across buffers of up to 4 km around each MIS
and DHS cluster.
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2.2. Descriptive Analysis and Covariate Selection

To comprehensively grasp the magnitude and distribution patterns of malaria preva-
lence in children under the age of five (U5), a descriptive analysis was conducted on their
test positivity rates. This rate, calculated as the number of U5 children with positive malaria
tests divided by the total number of U5 children tested for malaria in each cluster, was
mapped by the state and further compared across different months and years of the survey,
as well as the geopolitical region. Following this analysis, covariates were summarized to
assess their distribution and identify potential sources of information bias. Pearson correla-
tion coefficients were calculated within thematic groups to identify any strong correlations
among the covariates. The ggplot2 package in R [30] was utilized to fit a Poisson regression
model, allowing for the visual examination of bivariate relationships between covariates
and malaria test positivity rates. Non-linear relationships with covariates were estimated
using natural cubic splines from the splines package in R [31]. In instances where two
covariates exhibited a correlation coefficient of 60% or higher, the one displaying a weaker
visual relationship with the malaria test positivity rate, along with wider confidence bands,
was excluded from the subsequent multivariable analysis.

2.3. Multivariable Modeling

A model of the U5 malaria test positivity rate was constructed to identify predictive
factors and generate effect plots. For this purpose, multivariable generalized linear models
were employed, organized by thematic group and a combination of variables across the-
matic group. The glmmTMB package was employed, considering modeling-related factors
such as zero inflation, temporal dynamics, and spatial dependence [32]. The dependent
variable in these models represented the count of positive malaria tests among U5 children,
adjusted for the total number of U5 children tested for malaria in each cluster using an
offset term. Similar to the descriptive models previously discussed, we accounted for
non-linear relationships by employing natural cubic splines. Temporal dependencies were
addressed by incorporating the survey month and year for each cluster into the model,
while spatial dependencies were considered by including the geographical coordinates of
each cluster. The Akaike Information Criterion (AIC) statistic was used to select the best
predictive model of the malaria test positivity rate. Ultimately, the selected final model took
the form of a zero-inflated Poisson model. This choice was made based on goodness-of-fit
tests, including the Kolmogorov–Smirnov test, dispersion test, and outlier tests, which were
conducted using the DHARMa package. DHARMa utilizes simulation-based methods to
produce interpretable scaled residuals for fitted generalized linear mixed models [33]. The
model equation can be written as follows:

λtz = E(count|µ(t), η(z), NSZ) = exp
(

β0 + β1h1(X1)
T + · · ·+ βnhn(Xn)

T + µ(t) + η(z) + w
)

, (1)

logit(p) = β
(zi)
0 , (2)

where each of the β j are vectors of coefficients multiplying their associated vector natural
spline basis functions; hj and β0 represent the model intercept; Xi...n are covariate values;
µ(t) is a cluster-specific stationary autoregressive (1) process (type of autoregressive model)
for modeling temporal dependence by month and year of the survey; t represents each
study cluster; η(z) is the spatial Matern process for modeling spatial random effects using
each cluster coordinate z; NSZ is the event non-structural zero; and w represents the
offset term, which is the number of children 6–59 months tested for malaria. The zero
components were modeled with the equation in (2), with p representing the probability
of observing zero counts. Due to the large computational power required to generate
cubic plots from complex models, unadjusted and adjusted effect plots for the final model
covariates were produced and described using linear splines. All code written in support of
this manuscript is available via this doi: https://zenodo.org/records/10426210 (accessed
on 22 December 2023).

https://zenodo.org/records/10426210
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Table 1. Variable names, definitions, and sources for a selection of cluster-level variables considered
for modeling.

Variable Name Variable Definition Source

Dependent variable

Number of U5 positive malaria tests
The number of positive malaria tests by

microscopy among children 6–59 months old
aggregated per cluster

MIS and DHS [23,34–36]

Explanatory variables by thematic group

Socioeconomic factors

1. % with post-primary education Percentage (%) of women in each cluster with
secondary or higher educational attainment MIS and DHS [23,34–36]

2. % in the rich wealth quintiles

% of the cluster population in the rich and
richest wealth quintiles. Wealth quintiles

were constructed using various indicators of
household living standards [36]

MIS and DHS [23,34–36]

3. % in homes with improved flooring

% of the cluster population living in homes
with improved flooring (finished floors,
parquet or polished wood, ceramic tiles,

cement, and carpet)

MIS and DHS [23,34–36]

4. % in homes with a metal or zinc roof % of the cluster population living in homes
with a metal or zinc roof MIS and DHS [23,34–36]

5. % in homes with an improved
wall type

% of the cluster population living in homes
with an improved wall type (finished wall,

cement, bricks, cement blocks,
covered adobe)

MIS and DHS [23,34–36]

6. % living in improved housing (2000)

Predicted % of the cluster population living
in improved housing in 2000. Improved

housing is defined as homes with improved
water and sanitation, sufficient living area,

and durable construction, according to
Tusting et al. [37]

Malaria Atlas Project (MAP)
[38,39]

7. % living in improved housing (2015) Predicted % of the cluster population living
in improved housing in 2015 MAP [37,40]

Demographic factors

8. All-age population density

Estimated population density per cluster at
the time of the 2010 and 2015 DHS/MIS

surveys. Population density data for 2020
were extracted for the 2018 and 2021 surveys
(UN World Population Prospects-Adjusted
Population Density, v4.11). Unit is persons

per square kilometer

Center for International Earth
Science Information Network,

Columbia University [39]

9. Population density, children five years
and under

Estimated population density for children
under the age of five in 2020. Unit is the
number of children per square kilometer

Humanitarian Data Exchange [40]

10. % of pregnant women % of pregnant women MIS and DHS [23,34–36]
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Table 1. Cont.

Variable Name Variable Definition Source

11. % of the female population % of females per cluster MIS and DHS [23,34–36]

12. Median household size Median household size per cluster MIS and DHS [23,34–36]

13. Median age Median age per cluster MIS and DHS [23,34–36]

14. State State where the cluster is located MIS and DHS [23,34–36]

15. Region

Geopolitical region where the cluster is
located (there are six geopolitical regions in

Nigeria: the northeast, northwest, north
central, southeast, southwest, south south)

MIS and DHS [23,34–36]

Behavioral factors

16. % of individuals using bednets % of the cluster population that slept under a
treated bednet the night before the survey MIS and DHS [23,34–36]

17. % of children 6–59 months using
bednets, among those tested by
microscopy

% of children 6–59 months tested for malaria
by microscopy that slept under a treated

bednet the night before the survey
MIS and DHS [23,34–36]

18. % of U5 children that sought medical
treatment for fever

% of children under the age of five that
received medical treatment given that they

had a fever or cough in the two weeks before
the survey. Medical treatment must be
received in the public sector or medical

private sector, except for a pharmacy

MIS and DHS [23,34–36]

19. % of U5 children with a fever who
received artemisinin combination
therapy (ACT)

% of children under the age of five that
received an ACT given that they had a fever MIS and DHS [23,34–36]

Accessibility-related factors

20. Motorized travel time to healthcare
in minutes

Predicted travel time to healthcare facility in
minutes in 2019 MAP [41]

Environmental factors

21. Total precipitation (depth in meters)

Estimated total precipitation during survey
month and year per cluster. Units measure
the depth in meters. It is measured as the
depth that the water would have if it were

spread evenly over a grid box

European Center for
Medium-Range Weather Forecasts
(ECMWF), Climate Data Store [42]

22. Temperature (◦C)
Estimated temperature of air at 2 m above
the surface of land, sea, or inland waters in

Celsius per cluster during the survey month
ECMWF, Climate DataStore [42]
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Table 1. Cont.

Variable Name Variable Definition Source

23. Surface soil moisture (GSM)

The average estimated depth of water
present in a specific soil layer beneath the

surface is measured as gravimetric soil
moisture (GSM) per cluster. GSM is the mass

of water compared to the mass of solid
materials per unit volume of soil

Goddard Earth Sciences Data and
Information Services Center [43]

24. Distance to water bodies (meters) Straight line distance to water bodies in
meters MAP (unpublished data)

25. Elevation (meters) Cluster elevation above sea level in meters Multi-Error-Removed
Improved-Terrain DEM [44]

26. Enhanced vegetation index
Enhanced vegetation index for quantifying
vegetation greenness in units of the spectral

index

MAP gap filled EVI
(communication with MAP)

Other adjustment variables

1. Number of children tested Number of children 6–59 months old tested
for malaria per cluster MIS and DHS [23,34–36]

2. Interview date

Year the DHS survey was conducted per
cluster and survey month per cluster (some
clusters were surveyed over a two-month

period; the first interview month was used in
those cases)

MIS and DHS [23,34–36]

3. Longitude and latitude

The longitude and latitude positions where
the clusters were geolocated after

displacement to protect participant
confidentiality

MIS and DHS [23,34–36]

3. Results
3.1. Describing Variations in Malaria Prevalence among Children under the Age of Five Years in
Urban Areas
3.1.1. Sample Overview

A total of 988 clusters were sampled in 2010, 2015, 2018, and 2021 DHS and MIS
surveys. The number of individuals surveyed in each cluster varied widely across all
surveys, with ranges from 98 to 2949 in 2010, 167 to 2954 in 2015, 3 to 3471 in 2018, and 166
to 4765 in 2021. Malaria test results by microscopy were available for children 6–59 months
in 972 of the 988 sampled clusters. The study dataset consisted of 81 clusters from the
2010 survey, 136 clusters from 2015, 560 clusters from 2018, and 195 clusters from 2021
(Figure 2A). On average, a higher number of children were tested per cluster in 2010, 2015,
and 2021 compared to 2018 (Figure 2B). The 2010 clusters were sampled during the months
of October, November, and December. The 2015 clusters were sampled in October and
November. The 2018 clusters spanned from August to December, while the 2021 survey
sampling took place in October, November, and December. Visualizing cluster centroids
highlights the abundance of sampled clusters from the 2018 survey and that most clusters,
364 (37%) of the 972, were sampled in October, while the least number of clusters were
sampled in August (Figure 2C,D).

3.1.2. Low Malaria Test Positivity across the Majority of Urban Clusters

On average, ten children (mean = 10.2, standard deviation (SD) = 7.5) were tested
per cluster. The distribution of the number of children that tested positive for malaria per
cluster was predominantly skewed toward zero (Figure 3A), with a mean of 2.9 (SD = 2.8).
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The median test positivity rate was zero (interquartile range (IQR): 0.2). No child tested
positive for malaria in roughly 49% (473) of the clusters. Stratifying clusters by year of
survey revealed that the median test positivity rate was 0.1 for those surveyed in 2010 and
2015 and zero in 2018 and 2021, and that the test positivity rate declined over time (black
line in Figure 3B denotes the median). Most clusters in Lagos (90%), Rivers (76%), Abia
(75%), Akwa Ibom (75%), and Benue (75%) had a zero test positivity rate (Figure 3C). It is
essential to note that the DHS 2018 report highlighted the exclusion of 11 Local Government
Areas (LGAs) in Borno during the initial sampling phase due to security concerns [23]. This
exclusion raises concerns about the representativeness of the test positivity rate distribution
within this state, located in Nigeria’s northeast. At the regional level, 64% of the clusters in
the south south geopolitical region had a zero test positivity rate, 63% of the clusters in the
northeast, 61% in the north central, 50% in the southeast, 49% in the southwest, and 48% in
the northwest (Figure 3D).
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Figure 2. Urban clusters sampled in the 2010, 2015, 2018, and 2021 surveys: (A) number of
clusters per survey year. Eighty-one clusters were sampled in 2010, 136 in 2015, 560 in 2018,
and 195 in 2021; (B) number of children 6–59 months tested for malaria using microscopy per
cluster and by year of survey; (C) cluster centroids mapped by year of survey within state-level
administrative boundaries; and (D) cluster centroids mapped by month of survey within state-level
administrative boundaries.
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Figure 3. Distribution of malaria tests by microscopy, positive tests, and test positivity rates among
children 6–59 months within urban clusters in the DHS/MIS 2010–2021: (A) distribution of the
number of positive malaria tests (conducted by microscopy) per cluster (green); the mean = 2.9
(SD = 2.8) is depicted with a black line, and the distribution of the number tested for malaria per
cluster (yellow); the mean = 10.2 (SD = 7.5) is depicted with a black line. Forty-nine percent (473) of
the 972 clusters with non-missing values had zero positive tests. In all clusters, at least one child
was tested for malaria; (B) density distribution of cluster test positivity rate by year of DHS survey.
The thick black line is the median test positivity rate; (C) positive tests as a fraction of the number
of children tested geolocated within state-level geographical boundaries. The majority of surveyed
clusters in Lagos, Borno, and Akwa Ibom had a zero test positivity rate; (D) regional differences in
the proportion of clusters at and above a zero malaria test positivity rate.
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3.1.3. Test Positivity Rates in Sampled Clusters Declined over Time

To assess whether the observed time-related declines in test positivity rates, as depicted
in Figure 3B, were influenced by variations in the months during which the 2010, 2015,
2018, and 2021 surveys were conducted, we conducted a comparison of clusters sampled
in the same months but surveyed in different years. The analysis involved 740 clusters
surveyed in the months of October and November, with data spanning all four survey
years, as well as December, with data available for three survey years. Specifically, when
examining clusters sampled in October, it was observed that 51% of the clusters in the
2021 survey reported zero positive tests, in contrast to 53% in the 2018 survey, 50% in the
2015 survey, and 32% in the 2010 survey (File S1: Supplementary Figure S1A). For clusters
sampled in November, the percentages of clusters reporting zero positive tests were 54%
in both 2021 and 2018, compared to 46% in 2015 and 43% in 2010 (File S1: Supplementary
Figure S1B). Likewise, for clusters sampled in December, 100% of the clusters in the 2021
survey had zero positive tests, whereas this figure was 66% for the 2018 survey and only
13% for the 2010 survey (File S1: Supplementary Figure S1C).

To evaluate whether the observed findings were affected by regional differences, in-
cluding climate variations during the months of data collection, we analyzed and visualized
malaria test positivity rates by geopolitical region for each survey month. According to
Figure 4, except for the clusters sampled in December, the samples from October and
November covered all geopolitical zones across all DHS/MIS survey years. While the year-
over-year decline in median test positivity rates was not consistently linear, it is notable
that the median rate in 2021 was substantially lower than the rates observed in 2010 in the
months of October and November for all regions. However, the number of children tested
for malaria varied annually. The 2021 survey featured the largest number of children tested
for malaria per geopolitical region, particularly in October and December. It is uncertain
whether these differences in the number of children tested account for the observed trend.

3.2. Identifying Predictors of Malaria Test Positivity and Visualizing Bivariate Associations to
Inform Intervention Prioritization

Bivariate analysis provided insight into the unadjusted functional relationships be-
tween the number of malaria positives and all 26 potential risk factors. It played a crucial
role in guiding variable selection for the multivariable regression, especially for highly
correlated variables, defined as those exhibiting a correlation coefficient of 60% or higher.
Visualizations of the individual covariate distributions, the outcomes of the correlation
analysis, and the results of the bivariate analysis can be found in File S1.

The final multivariable prediction model for malaria test positivity, chosen based on
the lowest AIC values among a series of 21 models with varying covariates, was a Poisson
model. The model QQ plot demonstrated that the model predictions closely aligned
with the Poisson distribution (see File S1: Supplementary Figure S27A). The selected final
model incorporated the following covariates: percentage of individuals with post-primary
education, percentage of individuals in the rich wealth quintiles, percentage of individuals
residing in improved housing in 2015, all-age population density, median age, percentage
of children under the age of five seeking medical treatment for fevers, total precipitation,
and enhanced vegetation index. The subsequent sections present findings from both single-
variable and multivariable models, elucidating how changes in these covariates impact
malaria test positivity rates in the comprehensive DHS dataset spanning from 2010 to 2018
and 2021.

3.2.1. Clusters with the Lowest Educational Attainment and Wealth Were at the Highest
Risk of Malaria

Socioeconomic variables exhibited a negative association with malaria transmission
intensity, although this effect appeared less pronounced and exhibited greater uncertainty
in the multivariate analysis (Figure 5A,B). The malaria test positivity rate declined with
increases in the percentage of individuals with post-primary education in both unadjusted



Int. J. Environ. Res. Public Health 2024, 21, 78 11 of 20

and adjusted analyses. Notably, the malaria test positivity rate displayed a consistent
decline with increasing percentages of individuals with post-primary education, evident
in both unadjusted and adjusted analyses. However, it is worth noting that the impact of
educational attainment appeared most robust when the percentage was below 50%, as illus-
trated in Figure 5. Similarly, reductions in malaria test positivity rates were observed with
increasing percentages of individuals falling within the rich wealth quintiles, particularly
within the ranges of 0 to 50% and 80 to 100%. This trend was consistent in both the adjusted
and unadjusted analyses. Notably, clusters characterized by the lowest socioeconomic
status exhibited the highest risk of malaria in both analyses.
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3.2.2. High Population Density and Younger Median Age Correlated with Higher Malaria
Transmission Intensity

In the unadjusted analysis, the malaria test positivity rate displayed a decline with
increasing all-age population density, up to a threshold of 8000 persons per square kilometer,
after which the decline plateaued (Figure 6A). However, in the adjusted analysis, the
malaria test positivity rate remained relatively stable up to 17,000 persons per square
kilometer, beyond which an increase in malaria test positivity was observed, albeit with
significant uncertainty (Figure 6B). Furthermore, reductions in malaria test positivity rates
were evident with rising median age, particularly beyond a median age of 18 years old, as
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shown in the unadjusted model. However, it is noteworthy that the impact of median age
on malaria positivity appeared to diminish in the adjusted analysis (Figure 6C,D).
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Figure 5. Effect plots of bivariate and multivariate regression analysis for indicators of educational
attainment and wealth: (A) unadjusted and (B) adjusted effect of the percentage of individuals
with post-primary education on the malaria test positivity rate. Percentage of individuals with
post-primary education was adjusted for the percentage of individuals in the rich wealth quintiles,
the percentage of individuals living in improved housing in 2015, all-age population density, median
age, the percentage of children under the age of five that sought medical treatment for fevers,
total precipitation, and enhanced vegetation index; (C) unadjusted and (D) adjusted effect of the
percentage of individuals in the rich wealth quintiles on the malaria test positivity rate. The percentage
of individuals in the rich wealth quintiles was adjusted for the percentage of individuals with
post-primary education, the percentage of individuals living in improved housing in 2015, all-age
population density, median age, the percentage of children under the age of five that sought medical
treatment for fevers, total precipitation, and enhanced vegetation index.

3.2.3. Higher Enhanced Vegetation Index Was Positively Associated with the U5 Malaria
Test Positivity Rate

In the unadjusted analysis, there was a notable correlation between increasing the
malaria test positivity rate and higher values of the enhanced vegetation index, which is
indicative of vegetation cover and growth. The most substantial reductions in the malaria
test positivity rate, although characterized by a high degree of uncertainty, were observed
at approximate vegetation indices of 0.5 and 0.76 (as depicted in Figure 7A). However, it
is important to note that the influence of the enhanced vegetation index on malaria test
positivity was notably reduced in the adjusted analysis (refer to Figure 7B).
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Figure 6. Effect plots of the bivariate and multivariate regression analysis for all-age population
density and median age: (A) unadjusted and (B) adjusted effect of all-age population density (persons
per square kilometer) on the malaria test positivity rate. All-age population density was adjusted
for the percentage of individuals with post-primary education, the percentage of individuals in the
rich wealth quintiles, the percentage of individuals living in improved housing in 2015, median
age, the percentage of children under the age of five that sought medical treatment for fevers, total
precipitation, and enhanced vegetation index; (C) unadjusted and (D) adjusted effect of median age
in years on the malaria test positivity rate. Median age was adjusted for the percentage of individuals
with post-primary education, the percentage of individuals in the rich wealth quintiles, all-age
population density, the percentage of individuals living in improved housing in 2015, the percentage
of children under the age of five that sought medical treatment for fevers, total precipitation, and
enhanced vegetation index.
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Figure 7. Effect plots of the bivariate and multivariate regression analysis for the enhanced vegetation
index: (A) unadjusted and (B) adjusted effect of the enhanced vegetation index on the malaria test
positivity rate. The enhanced vegetation index was adjusted for the percentage of individuals with
post-primary education, the percentage of individuals in the rich wealth quintiles, the percentage
of individuals living in improved housing in 2015, all-age population density, median age, the
percentage of U5 children that sought medical treatment for fevers, and total precipitation.

3.2.4. Effects of Housing, Care Seeking, and Precipitation

In the unadjusted analysis, an increase in the proportion of individuals residing in
improved housing in the year 2015 was associated with a reduction in malaria test positivity
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rates. However, in the adjusted analysis, these trends appeared relatively flat (Figure 8A,B).
Variables used for the adjustment were the percentage of individuals with post-primary
education, the percentage of individuals in the rich wealth quintiles, all-age population
density, median age, the percentage of U5 children that sought medical treatment for
fevers, total precipitation, and enhanced vegetation index. Examining the relationship
between the proportion of children under the age of five seeking medical treatment for
fever and malaria test positivity rates, it was evident that the highest test positivity rates
in the unadjusted analysis were observed at approximately 25% (Figure 8C,D). For total
precipitation, during the survey month, a consistent negative relationship was observed
in both unadjusted and adjusted analyses for total precipitation (Figure 8E,F). Variables
used to adjust total precipitation include the percentage of individuals with post-primary
education, the percentage of individuals in the rich wealth quintiles, all-age population
density, median age, the percentage of individuals living in improved housing in 2015,
the percentage of U5 children that sought medical treatment for fevers, and enhanced
vegetation index.
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Figure 8. Effect plots of the bivariate and multivariate regression analysis for the percentage of
individuals living in improved housing in 2015, the percentage of U5 children that sought medical
treatment for fevers, and total precipitation: (A) unadjusted and (B) adjusted effect of the percentage
of individuals living in improved housing in 2015; (C) unadjusted and (D) adjusted effect of the
percentage of U5 children that sought medical treatment for fevers; (E) unadjusted and (F) adjusted
effect of total precipitation in meters.



Int. J. Environ. Res. Public Health 2024, 21, 78 15 of 20

4. Discussion

We conducted an in-depth analysis using urban data from the most recent four years
of Nigeria’s DHS/MIS surveys. Our primary objectives were to assess differences in the
magnitude of the prevalence of malaria among children under the age of five over time and
at the cluster and geopolitical levels, identify predictors at the community level, and create
both unadjusted and adjusted effect plots. These analyses were undertaken with the dual
purpose of guiding intervention prioritization in urban areas and gaining insights into the
public health implications of the identified predictors.

The analysis of malaria test positivity rates among children under the age of five in
urban areas revealed consistently low rates that have shown a declining trend over time.
The south south and northeast geopolitical regions had the largest number of clusters
where zero test positivity rates were observed. Notably, states with the highest number
of urban clusters reporting zero test positivity rates included Lagos, Rivers, and Abia.
Interestingly, prior research has documented low malaria infection rates, as determined by
microscopy, in urban Lagos, with rates as low as 8% and 0.9% [45–48]. However, it remains
somewhat unclear why lower test positivity rates were observed in the urban clusters of
Rivers and Abia, especially when previous studies conducted in urban areas have indicated
higher test positivity rates among the study populations [49–51]. It is important to note
that two of these earlier studies were health facility studies, which did not differentiate
participants based on whether their specific place of residence was urban or rural. Moreover,
recruitment in the health facility surveys could have been biased toward sicker individuals
likely to test positive for malaria, potentially contributing to this discrepancy.

The unadjusted fitted lines, which illustrate the relationship between the U5 malaria
test positivity rate and various indicators, such as educational attainment, wealth, age
distribution, vegetation cover, housing quality, and treatment-seeking behavior, suggest
that communities at high risk for malaria in urban areas are characterized by lower educa-
tional attainment, poverty, younger residents, poorer housing quality, and infrequent fever
treatment-seeking behavior. After adjustment, the impact of educational attainment and
wealth is diminished, indicating that they could be explained by other factors included in
the model, such as housing quality, median age, and environmental factors, like vegetation
cover. Our results align with findings documented in the existing literature [52]. For
example, in a comprehensive review of the factors associated with malaria transmission in
urban areas across sub-Saharan Africa, Silvia and Marshall highlighted relevant studies
demonstrating that poor housing, which increases exposure to mosquitoes, inadequate
waste disposal, and urban agriculture are among the factors contributing to elevated
malaria risk in urban settings [52]. Additionally, the increased risk of malaria infections
among children is well-documented, consistent with our study’s findings that clusters with
a higher proportion of children are more likely to exhibit a higher malaria burden [24].

Currently, the distribution of insecticide-treated bednets (ITNs) and the administration
of seasonal malaria chemoprevention (SMC) through mass campaigns are the cornerstones
of national malaria control and prevention efforts in Nigeria [53]. However, our study find-
ings suggest that these tools alone may be insufficient to reduce the malaria burden in urban
areas. ITNs primarily reduce mosquito exposure indoors, with protection limited to sleep-
ing hours and effectiveness diminishing with the aging of the nets. SMC is administered
only during the rainy season and relies on adherence to the full treatment course.

To effectively reduce the malaria burden in urban areas, it is essential to supplement
these interventions with strategies that address malaria risk stemming from environmental
and socioeconomic factors, including poor-quality housing. Interventions such as housing
modification and larval source management have demonstrated success in reducing malaria
infections. For example, window and door screening has been linked to a 62% reduction in
malaria incidence in a study conducted in Ethiopia and a 16% reduction in malaria parasite
prevalence, even in the absence of bednet usage [54]. Larval source management, involving
habitat modification and manipulation, has shown the ability to reduce the density of adult
mosquitoes [55]. Behavior change interventions, including educational campaigns and
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resources to support high-risk communities in understanding the drivers of malaria risk,
can be instrumental. A combination of these interventions is likely to lead to a significant
decrease in the malaria burden in urban areas.

The study findings offer valuable guidance on how to identify at-risk communities
and prioritize them during resource allocation. At a regional scale, resources for urban
malaria control could follow the order shown in Figure 2D, with a priority focus on the
northwest and southwest regions. The information provided in File S1: Supplementary
Figure S11 is also useful as it highlights states at high risk of malaria, such as Kebbi in
the northwest and Ondo in the southwest. However, when determining intervention
prioritization, population sizes in these regions and states must also be considered. Even
areas with a lower burden may have a greater population at risk. To apply the insights
gained from the multivariable models, employee data from major city employers can be
utilized to identify areas where residents have lower levels of post-primary education. This
information can then inform resource allocation, especially if local factors are believed
to drive malaria transmission. Alternatively, it can guide the provision of prophylactic
measures if transmission is predominantly influenced by mobility patterns. Furthermore,
geospatial data, such as the enhanced vegetation index generated from high-resolution
satellite imagery, can be employed to identify and prioritize high-risk areas. Nevertheless,
it is crucial to emphasize that the meaningful application of these study methodologies
for informing intervention prioritization and deprioritization decisions requires improved
data that effectively capture the malaria burden, associated socio-demographic and envi-
ronmental factors, and the geographic extent of urban areas, as well as local knowledge
of major risk factors. Previous attempts to prioritize administrative units in Nigeria for
ITN distribution, with the aim of addressing malaria risk, highlighted the challenges of
distinguishing between high- and low-priority areas in the absence of high-quality data
and a comprehensive understanding of the local context [56]. In addition, it is important
to consider that predictive factors for malaria could vary based on the geographic scale of
analysis [57].

This study faces certain limitations associated with data quality and availability. One
notable limitation is the potentially low malaria test positivity rate observed in Nigeria’s
northeast region, which may be attributed to under-sampling due to security concerns
in that area. Additionally, it is important to recognize that DHS/MIS surveys typically
provide data that may not fully represent urban settings at the state and zonal levels. More-
over, the timing of the surveys aligns with malaria transmission months in the southern
geopolitical zones. As a result, drawing definitive conclusions regarding a low malaria
burden across urban settings or making comparisons across geopolitical zones becomes
challenging. To address potential biases related to temporal and regional variations when
comparing malaria test positivity across survey years, we made efforts to mitigate this
issue by comparing clusters sampled during the same months and in the same region.
Fortunately, our findings from these analyses remained consistent, indicating a decline
in the malaria burden over time. However, it is worth noting that these findings may be
influenced by differences in the sampling strategy employed across the survey years. In
addition, it is likely that the results of the 2021 survey may have been impacted by the
SARS-CoV-2 pandemic, as it could have led to lower participation rates in the survey, de-
creased care-seeking behavior, and reduced access to interventions. The 2022 World Malaria
Report lends support to the occurrence of disruptions in malaria services, such as bednet
distribution through mass campaigns, and access to malaria diagnosis and treatment in
2021 [6].

Furthermore, it is essential to note that the reported test positivity rates do not account
for potential changes in transmission that may occur over a 12-month period. Shifts in
test positivity rates outside the months covered by the DHS/MIS surveys could lead to
different conclusions regarding the burden and trends in malaria prevalence within urban
areas. Additionally, the distribution of covariates derived from the DHS/MIS data is likely
to be unrepresentative of urban settings. For instance, the measurement of educational
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attainment, as indicated by the percentage of individuals with post-primary education
(secondary or college education), showed low values in most of the sampled clusters. In
contrast, a greater proportion of clusters fell within the higher wealth quintiles or had
improved housing infrastructure. If individuals accurately reported their educational
attainment, it seems improbable that most clusters would fall within the higher wealth
quintiles or have improved housing infrastructure, given the well-established positive
correlation between educational attainment and these socioeconomic factors. [58,59]. We
have made efforts to address these limitations by utilizing modeled covariates where
possible. However, to provide a comprehensive understanding of the data and to guide
future study or data collection efforts, we have included visualizations of these study
covariates in File S1.

The distance displacement of clusters designed to protect the confidentiality of respon-
dents meant that we could not examine the impact of the proximity of clusters on disease
risk. Additionally, the lack of data on co-morbidities, such as HIV/AIDS and sickle cells,
which increase the risk of developing severe malaria, meant that we could not adjust for
them in the modeling analysis. In addition, due to data availability, our analysis is confined
to children under the age of five years, whose malaria burden likely exhibits different
transmission dynamics and determinants from older children and adults.

5. Conclusions

This study contributes to the existing research literature by examining variations in
malaria among children under five (U5) in urban Nigeria and investigating associated
risk factors. Improving the efficiency of intervention distribution has the potential to
significantly reduce the malaria burden. As locally representative data become available
for individual cities, the methodologies employed in this study can be easily adapted to
inform intervention stratification strategies. Specifically, the identified predictive factors
can help determine thresholds for prioritizing or de-prioritizing interventions, such as the
distribution of bednets, in states and geopolitical regions with a high urban malaria burden.
Our study underscores the importance of addressing environmental risk factors through
housing improvements. With the ongoing trend of urbanization, there is a growing interest
in tackling malaria within urban settings, as highlighted by the release of a framework by
the WHO for responding to malaria in urban areas [60]. By shedding light on the existing
data gaps within the Nigerian DHS/MIS, we aim to encourage increased investments aimed
at enhancing both its design and usefulness. Additionally, we advocate for improvements
in routine surveillance systems to further support malaria research and intervention efforts.
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