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Abstract: We applied the AirQ+ model to analyze the 2021 data within our study period (15 December
2020 to 17 June 2022) to quantitatively estimate the number of specific health outcomes from long-
and short-term exposure to atmospheric pollutants that could be avoided by adopting the new
World Health Organization Air Quality Guidelines (WHO AQGs) in São Paulo, Southeastern Brazil.
Based on temporal variations, PM2.5, PM10, NO2, and O3 exceeded the 2021 WHO AQGs on up to
54.4% of the days during sampling, mainly in wintertime (June to September 2021). Reducing PM2.5

values in São Paulo, as recommended by the WHO, could prevent 113 and 24 deaths from lung
cancer (LC) and chronic obstructive pulmonary disease (COPD) annually, respectively. Moreover,
it could avoid 258 and 163 hospitalizations caused by respiratory (RD) and cardiovascular diseases
(CVD) due to PM2.5 exposure. The results for excess deaths by RD and CVD due to O3 were 443 and
228, respectively, and 90 RD hospitalizations due to NO2. Therefore, AirQ+ is a useful tool that
enables further elaboration and implementation of air pollution control strategies to reduce and
prevent hospital admissions, mortality, and economic costs due to exposure to PM2.5, O3, and NO2 in
São Paulo.

Keywords: air pollutants; ambient air quality standards; health outcomes; AirQ+ software

1. Introduction

Air pollution is one of the greatest environmental risks to human health increasing
morbidity and mortality and reducing life expectancy [1,2]. In 2019, air pollution ranked
fourth as the world’s leading risk factor for early death causing 6.7 million deaths world-
wide, of which 4.1 million were due to ambient air pollution [3–6].

According to the World Health Organization (WHO), in 2019, 37% of premature
deaths related to outdoor air pollution occurred due to ischemic heart disease (IHD) and
stroke, while 23 and 18% were caused by acute lower respiratory infections and chronic
obstructive pulmonary disease (COPD), respectively, and 11% due to lung cancer (LC) [2].
Furthermore, global deaths (in millions of people) resulting from exposure to ambient air
pollution have increased by 51% since 1990 and are estimated to double by 2050 if more
relevant interventions do not occur [5,7].

Air pollution consists of both gaseous and particulate primary pollutants released
directly into the atmosphere, such as nitrogen oxides (NOx), carbon monoxide (CO), and
sulfur dioxide (SO2), as well as secondary pollutants formed in the atmosphere, including
fine particulate matter (PM2.5) and ozone (O3). Particulate matter is the most studied
pollutant presenting consistent evidence of adverse health effects [8,9]. Exposure to both
coarse and fine particles (PM10 and PM2.5, respectively) is harmful to health, but the latter
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represents the most robust predictor of mortality from lung cancer, respiratory, cardiovascu-
lar, and other diseases [1,3]. Numerous studies also report a relationship between exposure
to gaseous pollutants, such as O3, and increased morbidity and mortality [5].

In 2019, more than 90% of the world’s population was living in areas, mainly in low-
and middle-income countries (e.g., Brazil), where ambient air pollution concentrations
surpassed the 2005 WHO guideline for PM2.5 (annual mean: 10 µg m−3) [3]. The WHO
Air Quality Guidelines (AQGs) provide evidence-based guidance for air pollutant levels
to reduce exposure and protect public health. In 2021, the AQGs were updated due to
the ongoing risk of air pollution to human health, with more restrictive concentrations for
pollutants such as PM2.5 (annual mean: from 10 to 5 µg m−3), PM10, CO, and nitrogen
dioxide (NO2) [10,11].

In Brazil, despite the reductions in primary pollutant concentrations achieved through
the implementation of air pollution control programs in recent years, several levels remain
above the WHO AQGs. Additionally, although public policies such as the Program for the
Control of Air Pollution Emissions by Motor Vehicles (PROCONVE, established in 1986)
have led to a decrease in vehicular emissions, the growth of the vehicle fleet (as reported
by Nogueira et al. [12]) has offset these gains. The concentrations of secondary pollutants
such as PM2.5 and O3 remain a concern and are not yet effectively controlled, as noted by
Andrade et al. [13]. Further studies on outdoor exposure to mainly secondary pollutants are
necessary to develop or adjust policies, regulate their concentrations, improve air quality,
and potentially reduce adverse health effects.

Moreover, there is a scarcity of studies conducted in Brazil focusing on the quantitative
assessment of air pollution effects on hospitalizations and mortality. Considering existing
research based on data from the 1990s and 2000s, a positive association was observed
between Disability-Adjusted Life Years (DALYs) and air pollution in São Paulo adding
up to 28,212 years annually and more than 5000 deaths that could be prevented if PM2.5
levels were reduced to the 2005 WHO AQG of 10 µg m−3 [14,15]. These studies present
relevant results related to air pollution and health effects in the Metropolitan Area of São
Paulo (MASP), but it is also important to evaluate the outcomes with the new WHO AQGs,
taking into account the reduction in the levels of air pollutants observed recently. To the
best of our knowledge, this is the first study assessing the health risks of air pollutants in
the region using AirQ+, which is a tool for quantifying the health burden and impact of air
pollution developed by the WHO Regional Office for Europe [16].

The progress toward achieving the Sustainable Development Goals (SDG) outlined in
the 2030 Agenda has been insufficient and unequal globally [17]. In Brazil, these inadequa-
cies are apparent in the statistical monitoring of the 2030 Agenda, which fails to report data
on mortality rates caused by household and outdoor air pollution. To address this issue,
we employed the AirQ+ model to quantify the number of health outcomes that could be
prevented by adopting the new WHO AQGs for long- and short-term exposure to PM2.5,
NO2, and O3 in São Paulo, Brazil, based on their temporal variations.

2. Materials and Methods
2.1. Study Site

São Paulo is South America’s largest and most developed and industrialized region. It
has an estimated population of approximately 12.4 million individuals, a territorial unit
area of 1521 km2, a population density of around 7398 inhabitants.km−2, and a Human
Development Index (HDI) of 0.805 [18]. In addition, it has a Gross Domestic Product (GDP)
of around USD 150 billion, corresponding to 33% from the state of São Paulo and 58% from
the MASP [19,20].

According to Köppen’s classification, the region presents a humid subtropical climate
(Cwa) with dry and cool winters (temperatures below 18 ◦C) and wet and warm summers
(temperatures above 22 ◦C) [21]. São Paulo is surrounded by hills of 1200 m and is located
on a plateau at 860 m above sea level. The frequent occurrence of subsidence layers and
thermal inversion makes the dispersion of pollutants difficult, especially during winter [22].
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Furthermore, São Paulo has a fleet of around 8.9 million vehicles responsible for the
emissions of 96% of CO, 73% of hydrocarbons (HC), 65% of NOx, 40% of PM, and 11%
of SOx [23,24]. We carried out measurements with a mobile laboratory at the School of
Medicine of the University of São Paulo (FMUSP) (23◦33′16.2′ ′ S, 46◦40′19.7′ ′ W) (Figure 1),
where the influence of emissions from mobile sources, such as light- and heavy-duty
vehicles (LDVs and HDVs, respectively), is significant.
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Figure 1. Location of Brazil and the state of São Paulo (dashed line rectangle) (a), the Metropolitan
Area of São Paulo (MASP) (dashed line rectangle) within the state (b), the city of São Paulo and the
School of Medicine of the University of São Paulo (FMUSP) (c).

2.2. Data Sampling and Analysis

We performed the sampling campaign of air pollutants with the Mobile Laboratory for
Research and Monitoring of Air Quality (LuMIAR) at the FMUSP continuously between
15 December 2020 and 17 June 2022 (a total of 550 days). LuMIAR is equipped with
monitors for measuring PM2.5, PM10, SO2, CO, NO2, and O3, and the data are reported
on a 1-h average. In Table 1, we present information from the instruments considered for
this study [25]. Concentration units for PM2.5, PM10, SO2, NO2, and O3 are presented in
µg m−3, while CO is presented in mg m−3 to compare with the AQGs. The Weather Station
of the Institute of Astronomy, Geophysics, and Atmospheric Sciences of the University
of São Paulo provided the meteorological variables (air temperature, precipitation, wind
speed, and wind direction).

We performed all the data organization and statistical analyses in the R Software
(version 4.0.3) and used the openair package (version 2.10-0) to plot time series, temporal
variations, and wind rose graphs for the pollutants and meteorological variables [26,27].
We used the AirQ+ software tool (version 2.1.1) to conduct health risk assessments for
long- and short-term effects [16] based on temporal trends for PM2.5, NO2, and O3. It can
be applied for any region to evaluate how much a specific health outcome is attributable
to certain air pollutant concentrations and the health effects if levels change in the fu-
ture compared to the present. AirQ+ calculations were based on methodologies and
concentration-response functions determined by epidemiological studies available up to
2013 and their meta-analysis [28]. Some limitations of the software include the following:
calculations do not consider multiple exposure cases or multi-pollutant scenarios; it uses
ambient data as a proxy indicator of population exposure; and “morbidity estimates present
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low reliability due to difficult conformity in the assessment of health outcomes related to
hospital admissions” [28].

Table 1. Information about the Mobile Laboratory for Research and Monitoring of Air Quality
(LuMIAR) equipment.

Equipment. Parameter Model Manufacturer Unit

TEOM Continuous Ambient Particulate Monitor PM2.5, PM10 1405 Thermo Fisher Scientific µg m−3

SO2 Analyzer SO2 43i Thermo Fisher Scientific µg m−3

Photoacoustic Gas Monitor CO Innova 1512 LumaSense Technologies mg m−3

NOx Analyzer NO2 42i Thermo Fisher Scientific µg m−3

O3 Analyzer O3 49i Thermo Fisher Scientific µg m−3

We obtained population data for the city of São Paulo from the Brazilian Institute
of Geography and Statistics (IBGE) [18], and mortality and hospital admission data from
the Department of Informatics of the Brazilian Unified Health System (DATASUS) [29].
We considered the period from 1 January to 31 December 2021, for the incidence per
100,000 inhabitants at risk per year based on the mortality and hospitalization statistics, as
it was the only complete year available in the dataset. Mortality data included LC, COPD,
IHD, and stroke information for different age groups. On the other hand, hospitalization
and mortality data considered respiratory (RD) and cardiovascular diseases (CVD) for the
total population.

Furthermore, we used 24-h mean values for the entire year, location area size, total
population, the population at risk, incidence per 100,000 inhabitants, and cut-off concentra-
tion as the input data in the software. For long-term exposure, we applied the annual WHO
AQGs that denoted “the lower end of the range in which significant effects on survival have
been observed” [30]. On the other hand, the 24-h mean WHO AQGs were considered for
short-term effects. The AirQ+ software already included default relative risk (RR) values.
We utilized the log-linear and the Global Burden of Disease (GBD) 2015/2016 (integrated
function 2016 vs. 2005 WHO AQG value) methods to estimate the results for the pollutants.
The optional input data included latitude, longitude, and location identification. We as-
sessed different health-related results using this software tool, including the attributable
proportion of cases, the number of attributable cases, the number of attributable cases per
100,000 population at risk, the proportion of cases in the pollutant concentration range,
and the cumulative distribution by air pollutant concentration [16,31,32]. We also used
Origin (version 2020) to plot bar charts for the attributable cases of mortality and hospital
admissions.

3. Results and Discussion
3.1. Pollutant Concentrations and Meteorological Variables Overview

Descriptive statistics and time series for the pollutants measured at the FMUSP are
shown in Table 2 and Figure 2, respectively. Mean values for all pollutants were similar
in 2021, 2022, and throughout the entire sampling period (15 December 2020 to 17 June
2022) (Table 2). Abe and Miraglia [15] reported concentrations of 21 ± 10 µg m−3 for PM2.5,
36 ± 17 µg m−3 for PM10, and 83 ± 36 µg m−3 for O3 between 2009 and 2011 in São Paulo.
Compared with the overall mean values obtained at the FMUSP, these three pollutants
observed significant decreases of 47.1, 47.8, and 55.9% over ten years.
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Table 2. Descriptive statistics of the pollutants sampled at the FMUSP between 15 December 2020
and 17 June 2022. Data uncertainty is expressed as the standard deviation (±values in parenthesis).

Pollutant Overall Mean 2021 Mean 2022 Mean

PM2.5 (µg m−3) 11.1 (±6.8) 11.6 (±7.4) 10.5 (±5.3)

PM10 (µg m−3) 18.8 (±12.1) 19.5 (±13.3) 18.0 (±9.1)

SO2 (µg m−3) 2.8 (±1.0) 2.8 (±1.0) 2.9 (±1.0)

CO (mg m−3) 0.7 (±0.5) 1.2 (±0.4) 1.5 (± 0.4)

NO2 (µg m−3) 32.2 (±15.0) 32.2 (±15.4) 33.8 (±13.9)

O3 (µg m−3) 36.6 (±22.2) 37.9 (±21.8) 33.2 (±22.9)

Int. J. Environ. Res. Public Health 2023, 20, x    6  of  18 
 

 

NO2 
(µg m−3) 

Annual  10  60 

24−h  25  - 

1−h  200  260 

O3  8−h  100  140 

WHO—World  Health  Organization;  CONAMA—Brazilian  National  Environmental  Council 

(Conselho Nacional do Meio Ambiente). 

 

Figure 2. Twenty-four-hour time series for PM2.5 and PM10 (a), SO2 (b), CO (c), and NO2 (d), and 8−h 

time series for O3 (e) during the sampling period. The black horizontal lines indicate the WHO Air 

Quality Guidelines. 24−h mean for PM2.5: 15 µg m−3, PM10: 45 µg m−3, NO2: 25 µg m−3; and 8−h mean 

for O3: 100 µg m−3. 

Historically,  cities  in  Brazil  (including  São  Paulo)  have  suffered  from  rampant 

violations  of AQGs, particularly  in  the  1970s  and  1980s, due  to  a  lack  of  control  and 

regulation  of  air  pollution  sources.  However,  following  international  initiatives, 

governmental organizations have  implemented various measures  to address  this  issue, 

focusing on the reduction in emissions from mobile sources in the transport sector [13]. 

The most  successful  initiative was  implementing  the PROCONVE program, based on 

CONAMA  Resolutions  18/1986  and  297/2002,  effectively  reducing  concentrations  of 

primary pollutants, such as CO, PM10, and SO2 [35,36]. The program was responsible for 

decreasing  90%  of  emissions  from  LDVs  and  80%  from HDVs  based  on  enforceable 

legislation to promote national technological development in automobile engineering and 

methods and equipment for testing and measuring pollutant emissions, to encourage the 

large-scale use of biofuels,  and  to  reduce  the  sulfur  content  in  fuels  [13,33,35,36]. For 

example, it resulted in the introduction of flex-fuel LDVs (powered by gasohol, ethanol, 
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Quality Guidelines. 24-h mean for PM2.5: 15 µg m−3, PM10: 45 µg m−3, NO2: 25 µg m−3; and 8-h
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Nevertheless, PM2.5, PM10, NO2, and O3 still exceeded the 2021 WHO AQGs on
117 (21.3%), 26 (4.7%), 299 (54.4%), and 171 (31.1%) days, mainly during wintertime (June to
September 2021), considering the 550 days of the sampling campaign (Figure 2). For NO2,
54.4% of the data exceeded the AQG for the 24-h mean, while it was not surpassed when
considering the 1-h mean (not shown). The graphs for SO2 and CO do not include black
horizontal lines indicating the WHO AQGs, as the values registered at the FMUSP were
much lower. Over the years, an expressive reduction in SO2 concentrations in São Paulo
has occurred due to the diminished sulfur content in vehicular and industrial fuels [33].
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The WHO AQGs are much more restrictive than the Brazilian National Air Qual-
ity Standards (NAQS) recommended by the Brazilian National Environmental Council
(CONAMA) Resolution 491/2018 [34] (Table 3), which was established considering the
2005 WHO AQGs as a reference. Nonetheless, the implementation criteria consider inter-
mediate NAQS, i.e., standards determined as temporary values to be completed in phases,
although the period of use of each one before reaching the final AQGs (from 2005) has
not been specified. Therefore, the values for intermediate phase 1 are currently in effect.
Comparing our results with the NAQS, none of the pollutants surpassed the limits (not
shown), which highlights the differences between the Brazilian legislation and the WHO
recommendations. Hence, there is a need for monitoring the concentrations of atmospheric
pollutants in the region and for more effective policies to implement restrictive limits
following the WHO guidelines, reducing the delay that is currently observed.

Table 3. Air quality guidelines recommended by the WHO and CONAMA.

Pollutant Averaging Time WHO CONAMA

PM2.5

(µg m−3)

Annual 5 20

24-h 15 60

PM10
Annual 15 40

24-h 45 120

SO2
24-h

40 125

CO
(mg m−3) 4 -

(ppm) 8-h 9 9

NO2
(µg m−3)

Annual 10 60

24-h 25 -

1-h 200 260

O3 8-h 100 140
WHO—World Health Organization; CONAMA—Brazilian National Environmental Council (Conselho Nacional
do Meio Ambiente).

Historically, cities in Brazil (including São Paulo) have suffered from rampant viola-
tions of AQGs, particularly in the 1970s and 1980s, due to a lack of control and regulation
of air pollution sources. However, following international initiatives, governmental or-
ganizations have implemented various measures to address this issue, focusing on the
reduction in emissions from mobile sources in the transport sector [13]. The most successful
initiative was implementing the PROCONVE program, based on CONAMA Resolutions
18/1986 and 297/2002, effectively reducing concentrations of primary pollutants, such as
CO, PM10, and SO2 [35,36]. The program was responsible for decreasing 90% of emissions
from LDVs and 80% from HDVs based on enforceable legislation to promote national tech-
nological development in automobile engineering and methods and equipment for testing
and measuring pollutant emissions, to encourage the large-scale use of biofuels, and to
reduce the sulfur content in fuels [13,33,35,36]. For example, it resulted in the introduction
of flex-fuel LDVs (powered by gasohol, ethanol, or any mixture of both) considering new
exhaust systems and catalytic converters, and the addition of biodiesel to diesel for HDVs.
Since 2012, post-treatment with selective catalytic reduction (SCR) systems for the NOx
emissions of HDVs has also been mandatory [12].

In 1990, CONAMA Resolution 003/1990 established NAQS considering the need
to monitor and control air pollutants in Brazil, which was then repealed by CONAMA
Resolution 491/2018 to follow the 2005 WHO AQGs as mentioned above. Furthermore,
the city of São Paulo implemented driving restrictions in the 1990s based on the last digits
of the license plate of cars on pre-established days during peak hours (from 7 to 10 h and
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from 17 to 20 h). This initiative was introduced to decrease air pollution emissions and
alleviate traffic congestion [13,33].

Regarding industrial emissions in the MASP, currently, there is a small contribution
to the concentrations of air pollutants due to a moving process of point sources to other
cities, which had fewer restrictions to install potentially polluting industries, that occurred
in the 1980s and 1990s. On the other hand, policies have been implemented to reduce
industrial emissions since the 1980s in the state of São Paulo. For example, the change from
oil-fired to electric boilers to generate energy for industries was remarkable in reducing
SO2 ambient concentrations. In 2007, another important action was to institute rules for
new facilities considering the local level of regular pollutants (CO, NO2, O3, PM10, total
particulate matter, SO2, and smoke) [13,33].

Nogueira et al. [12] reported reductions of 4.9 and 5.1% per year for CO and of 5.5 and
4.2% per year for NOx from 2001 to 2018 in São Paulo considering emission factors for
LDVs and HDVs, respectively. The authors discussed that, although overdue, the vehicular
emission regulations adopted in Brazil have significantly improved air quality in the MASP.
From 1996 to 2009, a downward trend was also observed for all pollutants (CO, NOx, SO2,
and PM10) monitored by the Environmental Company of the State of São Paulo (CETESB),
except for O3 [33]. Therefore, despite the reductions in primary pollutants levels achieved
with air pollution regulation programs, controlling the concentrations and emissions of
secondary pollutants such as PM2.5 and O3 is the greatest challenge currently faced by
governmental organizations in São Paulo and Brazil.

The hourly time variations of pollutants are shown in Figure 3 for the entire sampling
period (hours are shown as local time). Except for O3, the pollutants presented similar
hourly profiles, with two peaks (from 8 to 11 h and 19 to 23 h) due to emissions from mobile
sources with increased traffic on the roads close to the sampling site. The peak associated
with the nighttime rush hour indicated larger time variability among the pollutants, mainly
for PM10 and CO, which presented peaks earlier (from 16 to 18 h) and later (between
23 and 1 h) in the day, respectively. In addition, the Planetary Boundary Layer (PBL)
stability in the evening hampers pollutants’ dispersion, maintaining high concentrations
during this period. Moreover, the hourly profiles follow the characteristics already observed
in São Paulo [22,33].

For O3, the highest concentrations occurred between 14 and 16 h, a different behavior
from the other pollutants due to photochemical reactions between O3 precursors (NOx and
volatile organic compounds—VOCs) and solar radiation. The chemistry of NOx at night
differs from that observed during the day, as NO2 photolysis does not occur, i.e., NO present
in the atmosphere at night can rapidly react with O3, and nearly all NOx is converted into
NO2 [37]. As also observed by Carvalho et al. and Massambani and Andrade [33,38],
between 3 and 4 h (Figure 3), a secondary peak appeared due to horizontal and vertical
transport from other regions as there is no O3 formation during the night [33,39].

In Figure S1 of the Supplementary Material, July, August, and September presented
the highest monthly averages for PM2.5, PM10, SO2, and NO2, corresponding to winter in
Brazil, a characteristic period of higher levels of air pollution due to stable atmospheric
conditions and lower precipitation rates. It is possible to observe great variability in
the CO data (Figure S1), with the highest concentrations in January and February at the
FMUSP, which was not expected but probably occurred due to a specific local source still
under investigation.

These results agree with the local meteorological conditions (Figures 4 and S2). The
mean temperature values over the entire sampling period were 19.7 ± 3.4 ◦C, while
precipitation was recorded on 266 days with a maximum of 71.2 mm/day. As expected,
April to September (fall and winter) presented the lowest precipitation rates, since São
Paulo has dry and cool winters [18]. The relative humidity was 79.9 ± 8.1%, and the
wind speed was 1.5 ± 0.5 m s−1 with a maximum of 4.9 m s−1. Wind direction showed
a consistent pattern coming from the southeast and northeast more than 50 and 30% of
the time. These meteorological data follow the climate normal (1991–2020) for São Paulo
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according to information from the Brazilian National Institute of Meteorology (INMET)
(not shown).
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Our analysis revealed a decrease in the concentrations of primary pollutants dur-
ing the weekend, mainly on Sunday (Figure S1), as the number of vehicles in circulation
can decrease up to 70% compared to weekdays, according to data from the Traffic Engi-
neering Company of São Paulo [40]. On the other hand, O3 levels were relatively higher
during the weekends, a trend already documented in the region and associated with
a VOC-limited atmosphere in urban areas [41,42]. This is because the substantial reduction
in NOx emissions from HDVs on weekends leads to an increase in O3 levels [25,37].

3.2. Health Risk Assessment

The main impact assessment results from AirQ+ are relative risk (RR) (and 95%
confidence intervals—CI), attributable cases per 100,000 population at risk (B + c), and
attributable cases (N + c).

3.2.1. Outcomes from PM2.5 Exposure

Regarding long-term health effects, we evaluated the following outcomes: mortal-
ity from LC and COPD. The RR of mortality from LC was 1.4 (95% CI: 0.6–2.1%) and
5.8% (95% CI: 2.6–9.0%) higher for people exposed to the annual 11.6 µg m−3 registered in
São Paulo compared to the annual WHO AQGs of 10 and 5 µg m−3, respectively (Table 4).
In addition, mortality due to LC attributable to long-term exposure to PM2.5 concentrations
above the 2005 WHO AQG scenario was 28 cases. For the 2021 WHO AQG, it was 113 cases
(Figure 5), representing a 300% difference. Therefore, reducing PM2.5 values in São Paulo
from 11.6 to 5 µg m−3, as recommended by the WHO, could prevent 113 deaths from
lung cancer in the region annually. The RR of mortality from COPD in São Paulo was
1.7% (95% CI: 0.9–2.6%) higher for people exposed to the annual 11.6 µg m−3 than
10 µg m−3. Additionally, 24 excess mortality cases for this health outcome were observed
considering long-term exposure to PM2.5 above the 2005 annual WHO AQG (Figure 5).

We estimated the following outcomes concerning short-term health effects: hospital
admissions for RD and CVD. For the former, excess hospitalizations increased from 57 to
258 when comparing the 2005 and 2021 WHO AQGs results (Figure 5 and Table 4). For
the latter, the values were 36 and 163 excess hospital admission cases caused by PM2.5
concentrations over the 2005 and 2021 24-h mean WHO AQGs, respectively. This indicates
an increase of 350% in both health outcomes for the number of excess hospitalizations
when comparing the WHO AQGs (from 2005 and 2021). On the other hand, the results
were diluted in age groups for IHD and stroke; hence, the excess mortality varied from
0.36 (35–39 years old) to 3.65 cases (60–64 years old) and from 0.05 (25–29 years old) to 3.86
cases (80–84 years old), respectively, for long-term effects (Table 5).

Table 4. Impact assessment of health outcomes from long- and short-term exposure to PM2.5 consid-
ering the 2005 and 2021 WHO Air Quality Guidelines.

Health
Endpoint Timeframe Age

2005 WHO AQG 2021 WHO AQG

RR B + c N + c RR B + c N + c

Mortality
from LC

Long-term
30+ 1.0138

(1.0062–1.0210)
0.46

(0.21–0.70)
27.93

(12.76–42.32)
1.0584

(1.0262–1.0902)
1.89

(0.87–2.83)
113.41

(52.42–169.94)

Mortality
from COPD 25+ 1.0166

(1.0087–1.0258)
0.34

(0.18–0.53)
24.37

(12.93–37.53) - - -

Hospital
admissions

for RD
Short-term Total

population

1.0008
(1.0000–1.0016)

0.51
(0.00–1.07)

57.07
(0.00–120.61)

1.0034
(1.0000–1.0073)

2.29
(0.00–4.84)

257.65
(0.00–544.74)

Hospital
admissions

for CVD

1.0004
(1.0001–1.0007)

0.32
(0.06–0.59)

36.20
(6.77–66.03)

1.0017
(1.0003–1.0030)

1.45
(0.27–2.65)

163.42
(30.54–298.01)

LC—lung cancer; COPD—chronic obstructive pulmonary disease; RD—respiratory disease; CVD—cardiovascular
disease; RR—relative risk; B + c—estimated change of incidence (per 100,000) at a certain category of exposure;
N + c—estimated number of cases attributable to a certain level of exposure.
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Table 5. Impact assessment of health outcomes from long-term exposure to PM2.5 considering the
2005 WHO Air Quality Guideline.

Timeframe Age
IHD Stroke

RR B + c N + c RR B + c N + c

Long-term

25–29 1.0220
(1.0122–1.0453) 0.04 (0.02–0.08) 0.43 (0.24–0.87) 1.0174

(1.0075–1.0274) 0.00 (0.00–0.01) 0.05 (0.02–0.08)

30–34 1.0200
(1.0112–1.0418) 0.04 (0.02–0.08) 0.39 (0.22–0.80) 1.0162

(1.0076–1.0262) 0.02 (0.01–0.04) 0.24 (0.11–0.38)

35–39 1.0185
(1.0100–1.0365) 0.04 (0.02–0.08) 0.36 (0.20–0.70) 1.0153

(1.0074–1.0249) 0.03 (0.01–0.04) 0.23 (0.11–0.37)

40–44 1.0173
(1.0093–1.0377) 0.16 (0.09–0.35) 1.33 (0.72–2.83) 1.0140

(1.0064–1.0231) 0.09 (0.04–0.15) 0.75 (0.34–1.22)

45–49 1.0159
(1.0088–1.0330) 0.16 (0.09–0.34) 1.22 (0.68–2.49) 1.0131

(1.0064–1.0211) 0.09 (0.05–0.15) 0.70 (0.34–1.12)

50–54 1.0142
(1.0075–1.0298) 0.37 (0.20–0.76) 2.45 (1.31–5.07) 1.0119

(1.0055–1.0190) 0.25 (0.12–0.40) 1.68 (0.79–2.67)

55–59 1.0128
(1.0073–1.0262) 0.40 (0.23–0.81) 2.21 (1.27–4.46) 1.0108

(1.0053–1.0178) 0.28 (0.14–0.46) 1.53 (0.76–2.51)

60–64 1.0115
(1.0064–1.0233) 0.86 (0.48–1.73) 3.65 (2.03–7.32) 1.0097

(1.0048–1.0160) 0.62 (0.31–1.02) 2.61 (1.30–4.30)

65–69 1.0102
(1.0058–1.0205) 1.07 (0.61–2.14) 3.25 (1.84–6.46) 1.0088

(1.0040–1.0145) 0.79 (0.36–1.29) 2.39 (1.08–3.90)

70–74 1.0090
(1.0051–1.0191) 1.31 (0.74–2.75) 3.11 (1.76–6.53) 1.0078

(1.0038–1.0127) 1.12 (0.55–1.83) 2.67 (1.30–4.35)

75–79 1.0077
(1.0048–1.0158) 1.56 (0.97–3.18) 2.67 (1.65–5.44) 1.0066

(1.0034–1.0111) 1.33 (0.69–2.23) 2.28 (1.18–3.81)

80–84 1.0065
(1.0038–1.0118) 2.77 (1.65–5.01) 3.31 (1.97–5.99) 1.0057

(1.0027–1.0098) 3.23 (1.53–5.53) 3.86 (1.83–6.60)

85–89 1.0054
(1.0031–1.0103) 4.83 (2.80–9.21) 2.76 (1.60–5.27) 1.0047

(1.0023–1.0078) 5.58 (2.70–9.24) 3.19 (1.54–5.29)

90–94 1.0043
(1.0026–1.0081) 10.30 (6.33–19.52) 2.19 (1.35–4.14) 1.0038

(1.0018–1.0062) 12.17 (5.81–19.58) 2.58 (1.23–4.16)

95+ 1.0031
(1.0019–1.0056) 24.65 (14.88–44.00) 1.61 (0.97–2.87) 1.0028

(1.0013–1.0046) 29.05 (13.59–47.15) 1.90 (0.89–3.08)

IHD—ischemic heart disease; RR—relative risk; B + c—estimated change of incidence (per 100,000) at a certain
category of exposure; N + c—estimated number of cases attributable to a certain level of exposure.
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3.2.2. Outcomes from O3 and NO2 Exposure

For O3, we calculated the sum of ozone means over 35 ppb (SOMO35) (or 70 µg m−3),
and added it as the input concentration, as indicated by the WHO [16]. A decrease in peak
O3 values in several regions in Europe occurred during the 1990s, but no trend was observed
in the sum of maximum 8-h O3 levels over 35 ppb (70 µg m−3). Therefore, SOMO35 is
a metric for health impact assessment with a recommended cut-off value of 70 µg m−3

due to a statistically significant increase observed in mortality risk estimates considering
O3 concentrations above 50–70 µg m−3. In addition, more consistent atmospheric model
estimates were available for results above 70 µg m−3 [43].

RD caused 443 and 93 excess annual mortality cases for long- and short-term effects,
respectively, while for hospital admissions, the result was 404 incidents. O3 was also
attributable to 228 and 995 excess mortality and hospitalization results for CVD, respectively
(Figure 6 and Table 6).

For NO2, there were 90 excess hospital admission incidents due to RD (Figure 6
and Table 7). Thus, compliance with the 2021 WHO AQG for NO2 could prevent
90 hospitalizations derived from respiratory diseases annually in São Paulo. Notably, this
number is probably underestimated since there may be a high rate of non-hospitalization
care due to respiratory symptoms. It was not possible to compare with values from 2005, as
this metric was introduced in 2021. All these results indicate that better public policymaking
for air quality in São Paulo and other large cities in Brazil is necessary to reduce the number
of deaths and hospital admissions due to exposure to air pollutants.
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Table 6. Impact assessment of health outcomes from long- and short-term exposure to O3 considering
the sum of ozone means over 35 ppb (SOMO35).

Health Endpoint Timeframe Age RR B + c N + c

Mortality
from RD

Long-term

Total population

1.0290 (1.0103–1.0499) 3.94 (1.43–6.65) 443.23 (160.46–748.56)

Short-term

1.0060 (1.0000–1.0144) 0.83 (0.00–1.99) 93.37 (0.00–223.97)

Hospital
admissions

for RD
1.0090 (1.0014–1.0171) 3.59 (0.57–6.73) 403.58 (64.57–756.81)

Mortality
from CVD 1.0101 (1.0027–1.0175) 2.03 (0.54–3.50) 228.18 (60.87–393.67)

Hospital
admissions

for CVD
1.0184 (1.0103–1.0263) 8.84 (5.00–12.54) 994.69 (562.13–1411.28)

RD—respiratory disease; CVD—cardiovascular disease; RR—relative risk; B + c—estimated change of incidence
(per 100,000) at a certain category of exposure; N + c—estimated number of cases attributable to a certain level
of exposure.

Table 7. Impact assessment of health outcomes from short-term exposure to NO2 considering the
2021 WHO Air Quality Guideline.

Health Endpoint Timeframe Age RR B + c N + c

Hospital admissions
for RD Short-term Total population 1.0020

(1.0013–1.0027)
0.80

(0.51–1.08)
89.61

(57.25–121.93)

RD—respiratory disease; RR—relative risk; B + c—estimated change of incidence (per 100,000) at a certain category
of exposure; N + c—estimated number of cases attributable to a certain level of exposure.

3.2.3. Discussion of Health Outcomes Results

The well-known adverse health effects caused by PM2.5 may be aggravated by expo-
sure to O3, which may cause lung epithelial damage and inflammatory response resulting
in susceptibility to various infections [15,44]. Other epidemiologic studies also have shown
significant health outcomes due to exposure to O3, such as toxic effects on pulmonary tis-
sues and mortality from respiratory and cardiovascular diseases [15,45]. For NO2, several
studies suggest that it may increase the risk for all-cause, respiratory, and cardiovascular
mortality, besides asthma [46–49].

Other studies also evaluated the health effects caused by exposure to pollutants in
different parts of the world using AirQ+ [31,50–54]. Kliengchuay et al. [50] reported 125,
27, and 26 deaths caused by COPD, IHD, and stroke due to long-term exposure to PM2.5
in Ratchaburi, Thailand, where the annual mean was 26.9 ± 18.7 µg m−3. The estimated
number of premature deaths in Tehran, Iran, varied from 397 to 419 for IHD and from 86 to
102 for LC between 2016 and 2018, with mean PM2.5 concentrations from 29.4 ± 16.1 to
31.6 ± 16.2 µg m−3 [51]. Therefore, the results differ between studies depending on the
concentrations registered in each region.

To the best of our knowledge, this is the first study assessing the health risks of
air pollutants in São Paulo with AirQ+. However, several epidemiological studies have
been conducted in the area to determine the adverse health effects of air pollution on the
population based on acute effects in terms of hospital admissions, emergency room visits,
and mortality in children and the elderly. According to Miraglia et al. [14], the key results
of these studies showed a positive association even with concentrations below the AQGs.
The life expectancy reduction due to air pollution was four years for RD, ten years for
CVD, and 19 years for children with RD [14]. Health problems also generate high costs
for the public health system. In the same study, Miraglia et al. [14] reported that the total
health cost due to air pollution in São Paulo was more than USD 3.2 million. Nevertheless,
these costs were not estimated in this investigation, which would be relevant to include in
future analyses.
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Abe and Miraglia [15] used the APHEKOM model and air pollutant levels between
2009 and 2011 to estimate that São Paulo could prevent more than 1500 cardiovascular and
respiratory hospitalizations annually if a PM10 concentration of 20 µg m−3 (2005 WHO
AQG) was reached. In addition, more than 5000 deaths could be postponed if PM2.5
levels were reduced to the 2005 WHO AQG of 10 µg m−3. The authors reported that life
expectancy could increase by 15.8 months, corresponding to 266,486 life years gain and
saving USD 15.1 billion annually. For O3, more than 50 respiratory hospital admissions
could be avoided (population≥ 15 years old) following the 2005 WHO AQG (average daily
maximum 8-h mean: 100 µg m−3) [15]. In general, we presented lower results compared to
the ones reported by Abe and Miraglia [15], although both studies were conducted in São
Paulo; however, some significant aspects between the analyses caused this divergence. We
used the WHO’s AirQ+ model (vs. APHEKOM by Abe and Miraglia [15]), which resulted
in variations due to slightly different methodologies. Moreover, average concentrations
between 2009 and 2011 [15] were higher than in 2021 (21 ± 10 vs. 11.6 ± 7.4 µg m−3 for
PM2.5, 36 ± 17 vs. 19.5 ± 13.3 µg m−3 for PM10, and 83 ± 36 vs. 37.9 ± 21.8 µg m−3 for O3)
as downward trends in atmospheric pollutants have been observed in the MASP due to
vehicular emission regulations adopted in Brazil.

In this study, we only investigated PM2.5, O3, and NO2 due to the unavailability of
robust data on the incidence of chronic bronchitis in adults, asthma symptoms in asthmatic
children, and the prevalence of bronchitis in children required for the analysis of PM10 in the
software. Additionally, AirQ+ does not have the option to evaluate CO and SO2. Hence, we
used mortality and hospital admission data, which are less robust and more heterogeneous
than the former. Mortality data are the best option for health risk assessments because
they are accessible from high-quality records in São Paulo, reliable, and not subject to
classification errors [15].

It is noteworthy that we obtained mortality and hospitalization data for São Paulo
from DATASUS, which is a website for collecting, processing, and disseminating health
information [29]. The Brazilian Ministry of Health classified COVID-19 as a severe acute
respiratory syndrome (SARS), with another website for monitoring related cases and deaths
that unfortunately presented remarkable numbers in the country [55]. In addition, the
data for all health outcomes considered in our study did not show significant differences
between 2017, 2018, 2019, 2020, and 2021 [29]. Thus, we believe there is a low probability of
having COVID-19-related data among the information we used in the analyses.

Spatial averaging of the concentrations over an entire city may dampen the values
and lower the mortality rates [51]. Therefore, using data from other monitoring stations in
the city is important to have more robust results and identify trends related to the sources
of air pollution emissions, which we suggest for future work. Nevertheless, monitoring
stations do not correspond to the total exposure to air pollutants for all inhabitants in the
region as it depends on different circumstances, such as indoor and outdoor activities and
occupational exposure, among other factors [52].

This study also does not include other potential contributing factors to the relationship
between air pollutants and hospitalization and mortality, such as body mass index, personal
habits (e.g., smoking and drinking), physical activities, education, income, and medical
history. Nonetheless, this study shows how many deaths and hospital admissions can be
avoided in the area if more restrictive values for air pollutants are adopted, considering the
2021 WHO AQGs compared to those from 2005. It also should be noted that it accurately
assesses health outcomes for different pollutants in the city of São Paulo, which exceed
the 2021 WHO AQGs, and provides evidence to develop effective policies to enhance air
quality and prevent health effects regarding hospitalizations and deaths.

4. Conclusions

In São Paulo, PM2.5, PM10, NO2, and O3 exceeded the new WHO AQGs, mainly
during wintertime as July, August, and September presented the highest monthly averages
for all pollutants, except for O3, which presents a different behavior due to photochemical
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reactions. Winter is a characteristic period of higher levels of air pollution in the region due
to stable atmospheric conditions and lower precipitation rates. Wind speed presented low
values, which also hindered the dispersion of pollutants.

The air pollutants considered in this study present consistent evidence of adverse
health effects, i.e., mortality from lung cancer, stroke, and other respiratory and cardiovas-
cular diseases. Considering pollutant concentrations and health data for the city of São
Paulo, we estimated that reducing PM2.5 values could prevent 113 and 24 deaths from lung
cancer and chronic obstructive pulmonary disease annually, respectively. In addition, it
could avoid 258 and 163 hospitalizations caused by respiratory and cardiovascular diseases
due to PM2.5 exposure. The results for excess respiratory and cardiovascular deaths due
to O3 were 443 and 228, respectively, and 90 hospitalizations from respiratory diseases
due to NO2. These data provide valuable information for local authorities to design and
implement effective policies aimed at promoting a healthy environment.

In this study, we only considered temporal (and not spatial) trends for the concen-
trations of pollutants. Thus, future studies are needed to assess the differences in time
variation, spatial distribution, and attributable proportion of hospitalizations and deaths
in different regions of the city of São Paulo. Calculating the health costs due to air pol-
lution would also add more important information for policymakers to analyze the cost-
effectiveness of interventions.

AirQ+ is a useful tool that enables further elaboration and implementation of air
pollution control strategies to reduce and prevent hospital admissions, mortality, and
economic costs due to exposure to PM2.5, O3, and NO2 in São Paulo. The software is
also helpful for national progress in implementing the 2030 Agenda and efficient public
health regulations.
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