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Abstract: We investigated the use of multi-sensor physical activity monitors, body mass index
(BMI), and heart rate (HR) to measure energy expenditure (EE) of various physical activity levels
among Chinese collegiate students, compared with portable indirect calorimetry. Methods: In a
laboratory experiment, 100 college students, 18–25 years old, wore the SenseWear Pro3 Armband™
(SWA; BodyMedia, Inc., Pittsburg, PA, USA) and performed 7 different physical activities. EE was
measured by indirect calorimetry, while body motion and accelerations were measured with an
SWA accelerometer. Special attention was paid to the analysis of unidirectional and three-directional
accelerometer output. Results: Seven physical activities were recorded and distinguished by SWA,
and different physical activities demonstrated different data features. The mean values of acceleration
ACz (longitudinal accel point, axis Z) and VM (vector magnitude) were significantly different
(p = 0.000, p < 0.05) for different physical activities, whereas no significant difference was found in
one single physical activity with varied speeds (p = 0.9486, p > 0.05). When all physical activities
were included in a correlation regression analysis, a strong linear correlation between the EE and
accelerometer reporting value was found. According to the correlation analysis, sex, BMI, HR, ACz,
and VM were independent variables, and the EE algorithm model demonstrated a high correlation
coefficient R2 value of 0.7. Conclusions: The predictive energy consumption model of physical
activity based on multi-sensor physical activity monitors, BMI, and HR demonstrated high accuracy
and can be applied to daily physical activity monitoring among Chinese collegiate students.

Keywords: energy expenditure monitoring; algorithm model; physical activity monitors

1. Introduction

The need for reliable methods to accurately calculate daily energy expenditure is im-
portant for public health supervision, especially for monitoring the epidemic of overweight
and obesity among various populations. Physical activity is associated with a reduced risk
of morbidity and mortality in many chronic diseases, including CVD, diabetes, obesity,
and some tumors [1,2]. Physical activities have also been shown to promote body weight
control with appropriate nutrition and energy intake. The ability to accurately assess
energy expenditure (EE) in free-living individuals can enhance the knowledge related
to the link between the dose of physical activity and health status, as well as improve
the understanding of how energy expenditure impacts energy balance related to body
weight control and chronic diseases such as diabetes mellitus [3]. Research on the energy
expenditure of physical activity can identify the recommended amount of targeted daily
physical activity, which can be specific and personalized, such as the recommended amount
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of physical activity for different ages, genders, and population cohorts (e.g., for obese and
overweight people). In addition to these benefits, a significant number of residents in China
do not participate in sufficient amounts of physical activity to achieve its health benefits.

A large sample size is always preferred in a physical activity and health study. Tradi-
tional physical activity research is majorly based on questionnaires, which is less objective.
One of the challenges in energy expenditure research is the ability to accurately assess
physical activity in free-living individuals. Numerous methods are available, but each of
the current methods to assess physical activity and energy expenditure has limitations [4].
In the last decades, scientists have developed direct calorimetry (DC), doubly labeled water
(DLW), indirect calorimetry (IC), and motion sensors for measuring energy expenditure
with different physical activities (PAEEs), from which, DC, IC, and DLW are considered
to be the gold standard of measuring [5]. Meanwhile, direct measuring is expensive and
restricts people to a small and limited space, and it is not feasible to conduct a large co-
hort study at the same time. Doubly labeled water (DLW) is considered to be the most
accurate technique to assess energy expenditure. The DLW method calculates the energy
consumption of the human body according to the elimination rate of 2H and 18O from the
human body within a period of time (5–14 days). It has the advantages of high accuracy,
convenient sampling, wide application, and long-term monitoring, but it is expensive
and cannot measure energy consumption in a short time for specific physical activity;
therefore, its application is limited [6]. The IC method is also known as the gas metabolism
method. Its principle is to estimate energy consumption by measuring gas exchange in
human breath. Its main instruments are represented by COSMED K4 series and CORTEX
METAMAX3B. However, these devices can only carry out monitoring for a short period of
time (such as 2–4 h) and need to be equipped with a computer terminal near the test site.
The subjects are also prone to discomfort when wearing breathing masks, so the IC method
is limited to the energy consumption test under the condition of small sample sizes and
short-term exercise. Self-reporting physical activity questionnaires have the limitation of
reporting accuracy, compared with objective techniques. Motion sensors mainly include
accelerometers and pedometers, which can indirectly reflect the level of physical activity
by recording the vibration of the body during physical activity. A motion sensor is easy
to wear and has high accuracy, so it has a wide application prospect in physical activity
monitoring. However, motion sensors cannot accurately monitor energy consumption in
activities, such as cycling and static fitness, due to small body vibration, which is a major
limitation of motion sensors [7]. Because of the cost and technical demands, these methods
are limited to small, pilot, and validation studies. Methods with good validity tend to be
very costly or complicated for outdoor activities; however, practical and feasible methods
for large populations have the limitation of poor accuracy and/or reliability.

Developing an objective and accurate method to assess energy expenditure associated
with physical activity continues to be a need in the field. Accelerometers are commonly used
because they are practical and effective. Many commercial accelerometers are currently
available, and there is considerable confusion over the appropriate test index and method to
convert accelerometer counts into estimates of physical activity or energy expenditure [8,9].
As the main tool of this physical activity research, most accelerometer data analysis methods
and energy consumption prediction models are based on the daily physical activity of
adults. Because of the different characteristics of accelerometers, determining the accuracy
and efficiency of accelerometers has become the key factor in relevant research. CSA, RT3,
and SWA accelerometers have been widely used in research in recent years, and a large
number of experiments have been carried out to illustrate their accuracy and applicability
for energy consumption prediction [10,11]. Their methods and experimental designs are
advanced and comprehensive.

With the increasing understanding of the correlation between physical activity and
health, the monitoring of physical activity EE and exercise intervention methods have
gradually become a key focus of physical activity research. Scholars have been seeking a
convenient, accurate, and practical monitoring method to effectively calculate and evaluate
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the energy consumption generated by physical activity. This method should first identify
the differences in physical activities, and then calculate energy consumption by an accurate
algorithm method. Therefore, this study, using a population of Chinese college students,
establishes an energy consumption model by monitoring seven kinds of physical activities
with a triaxial acceleration sensor. Through the calculation and analysis of the data available,
a graph is drawn to verify the triaxial acceleration sensor in distinguishing different types
of body activity, and the accuracy of the energy consumption algorithm is improved by
adding additional relevant parameters (BMI, HR, and sex).

2. Materials and Methods
2.1. Participants

One hundred Chinese collegiate students (aged 18–25) were recruited to participate
in this research (as shown in Table 1). Subjects who met the exclusion criteria were not
included (exclusion criteria: major disease or illness, use of medications that would affect
body weight or metabolism, a current smoker). Participants were aware of the procedures
and purposes of the study before they signed the informed consent documents. Participants
were required to eat normally one week before the test and not to eat within 2 h before
testing. A total of 80 participants enrolled as EXPERIMENTAL GROUP and took part in the
test, and the other 20 enrolled as CONTROL GROUP to verify the accuracy of the model.

Table 1. Participant characteristics (n = 100, mean ± SD).

EXPERIMENTAL GROUP CONTROL GROUP

Male (n = 40) Female (n = 40) Male (n = 10) Female (n = 10)

Age (Year) 20 ± 3.1 19 ± 1.7 23 ± 1.7 21 ± 1.1
Height (cm) 174.8 ± 6.6 164.5 ± 5.6 174.7 ± 5.6 162.6 ± 5.4
Weight (kg) 66.6 ± 11.3 57.4 ± 9.1 64.0 ± 8.1 55.2 ± 7.3

Body Mass Index
(kg/m2) 21.7 ± 3.5 21.4 ± 3.3 21.0 ± 2.4 20.8 ± 2.3

2.2. Measurement of Descriptive Variables

All participants were in light-weight clothing (shorts, t-shirt, and barefoot) before the
exercise sessions. Each subject arrived at the laboratory one hour before the test started.
Weight and height were determined without shoes. Body weight was measured to the
nearest 0.1 kg using a JY-200D height/weight digital scale (Jingyi equipment Co., Ltd.,
Beijing, China), and body height was determined to the nearest 0.1 cm using a horizontal
headboard with an attached wall-mounted metric rule. Body mass index (BMI, kg/m2)
was computed from weight and height.

2.3. Exercise Protocols

Seven separate activities were included in this project (rest, sit, treadmill walk, normal
run, stair walk, cycle ergometer, push-ups). The specific protocols are shown in Table 2.
The order of these exercise protocols was performed randomly. Walking was performed
on a motorized treadmill. Stair walk was performed with a 20.3 cm (6-inch) bench stair
in the following sequence: left leg up, right leg up, left leg down, right leg down. Cycle
ergometer exercise was performed on a Monark 827E stationary cycle ergometer (Monark
Exercise AB, Vansbro, Sweden). A metronome was used to set pace during stair stepping
and performing push-ups. During each activity, energy expenditure was measured simul-
taneously. Exercise heart rate was used to assess exercise intensity at each minute using a
Polar heart rate monitor [12,13].

The experiments were carried out in the Exercise Physiology Laboratory (Wuhan
Sports University, Wuhan, China), and the room was maintained at a temperature of
20~25 ◦C and 50~80% humidity. Participants were asked to perform the test one after
another. In order to strictly control the airflow, other subjects and staff were not allowed to
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enter the room without permission during the test. The research project was approved by
the Bioethics Committee of the Academy of Physical Education of Wuhan Sports University
(Wuhan, China) and was conducted in accordance with the Declaration of Helsinki. The
participants were informed and fully aware of the procedures of this study and acknowl-
edged all the risks and benefits before they were recruited. All participants conducted the
physical activities as they were required (as shown in Table 2).

Table 2. Description of Exercise Protocols.

Activity Description Duration
(min)

Speed
(km/h)

Rest Lying down on bed quietly, being awake, breathing softly
with eyes closed, and listening to soft music in headphones 10

Sitting Sitting quietly, playing video game 10

Treadmill walking Walking on a treadmill at different speeds, defined as slow
(3.2 km/h) and fast (4.8 km/h)

5 3.2
5 4.8

Normal running Running on a treadmill (8.1 km/h) 5 8.1
Stair walking Walking up and down stairs with 35 steps/min 5

Cycle ergometer 60 RPM with no external load 5
Push-up Push up and down at a pace of 25/min 5

2.4. Motion Sensors

The SenseWear Pro3 Armband™ (Body Media, Pittsburgh, PA, USA) is a commercially
available, comfortable, non-invasive physical activity monitor that is worn on the upper
arm over the triceps muscle and provides information about body position (lying or upright)
by detecting accelerations. The armband was placed on each subject’s arm before entering
the laboratory, and the subject remained in a seated position for a period of 5 min before
data collection to allow for acclimation to skin temperature. Energy expenditure during
exercise was captured at 60 s intervals, the real-time sampling frequency was checked every
0.1 s, and the peak acceleration and mean absolute difference (MAD) values were captured
every 6 s.

2.5. Energy Expenditure

Energy expenditure during various exercises was examined via open-circuit, indirect
calorimetry with the Cortex MetaMax3BTM metabolic system (Cortex Biophysik GmbH,
Leipzig, Germany). Cortex MetaMax3BTM system, which is a battery-operated, portable,
wireless metabolic system measuring gas exchange breath-by-breath, has been reported to
be a valid and reliable measure of oxygen uptake [12]. The face mask was connected to a
flow sensor to detect airflow from the rotation of fans, which allowed the determination
of ventilation. A sampling line connected both flow sensor unit and sensor box; oxygen
(O2) and Carbon Dioxide (CO2) from expired air were analyzed using a micro-fuel cell
and thermal conductivity, respectively. Cortex MetaMax3B software was used to compute
energy expenditure, which included oxygen uptake in milliliters per minute (mL/min),
milliliters per kilogram of body weight per minute (mL/kg/min), and kilocalories per
minute (Kcal/min). Experiments were carried out in a regular temperature and humidity
lab setting for all exercise tests, airflow calibration was performed using an automatic
flow calibrator, and the gas analyzers were calibrated (5% O2, 16% CO2, and 79% N2).
All experiments were performed for at least 5 min, and a minimum of 3 min of resting
gas exchange assessment data were collected both before and after each of the tests. The
purpose of the resting data assessment is to make sure for each individual to reach a steady
state during the entire test, and the time it takes to reach their steady state depends on their
current physical and physiological characteristics. Participants were appropriately warmed
up before the testing, and they were repeatedly encouraged to complete the activity with
their “regular” habits and pace.
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2.6. HR Monitoring

HR was measured simultaneously using a Polar T31 telemetric system (Polar Electro
OY, Kempele, Finland). The participants’ HR was monitored minute-by-minute during each
activity. Each participant underwent individual calibrations to establish the relationship
between HR and energy expenditure in all of the tested activities. The calibration activities
were carried out in sequence, with a break to allow recovery of resting HR.

2.7. Statistical Analysis

Statistical analysis and algorithm construction were performed using STATA 13.0
(StataCorp LLC, College Station, TX, USA). Data were analyzed for each exercise proce-
dure. This study evaluated the validation between estimated energy expenditure from
Cortex MetaMax3B and triaxial acceleration data from an SWA sensor and built energy
expenditure algorithms based on seven different activities. Energy expenditure across
each activity protocol was analyzed with ANOVA to assess mean differences in different
physical activities. Dependent t-tests were performed to compare triaxial differences in
different activities and within the same physical activity under different speeds/workloads.
Statistical significance was defined with p-value ≤ 0.05. The gender estimation of energy
expenditure was significantly different; therefore, men and women were separated for all
analyses. Graphical procedures were used to spot differences in activities with triaxial
accelerometer. SenseWear Pro3 Armband™ measures acceleration and deceleration in
the three dimensions of space according to ACx (forward accel point), ACy (transverse
accel point), and ACz (longitudinal accel point). Additionally, VM (vector magnitude) is
calculated as VM = (ACx2 + ACy2 + ACz2)1/2.

3. Results
3.1. Posture and Movement Classification

This study analyzed the validity of the SenseWear Pro3 Armband™ to capture and
recognize different modes of activities in a laboratory setting. When the generalized algo-
rithm provided by the manufacturer was applied to the data, the three-axis accelerometer
data significantly distinguished these seven activities with ACx, Acy, and ACz reads (see
Figure 1).

Tilt sensing is a basic function provided by accelerometers in response to gravity
or constant acceleration. Therefore, human postures, such as sitting and lying, can be
distinguished according to the signal magnitude of accelerations along sensitive axes [14,15].

3.2. Construction and Analysis of Energy Consumption Model of Physical Activity

The data obtained from the triaxial acceleration sensor were imported into STATA 13.0
to match with the data from the gas analyzer, and the non-conforming acceleration data
were deleted to ensure that the acceleration value was completely corresponding to the
MetaMax 3B data in time. Stepwise regression was used to construct the physical activity
energy consumption model. According to relevant studies, the vertical acceleration value
of the longitudinal accel (ACz) and VM values have a significant effect on distinguishing
different physical activities (p = 0.000, p < 0.05) [16,17]. The value of seven activities was
calculated (as seen in Table 3). No significant difference was found in treadmill walking
between slow and fast speeds (p = 0.9486, p > 0.05).

Pearson correlation analysis was used to analyze the relationship between the BMI
value, ACz value, VM value, and energy consumption in the test, and the correlation
significance between energy consumption and other test values was statistically calculated.
The correlation coefficients between the ACz value, VM value, BMI value, and energy
consumption W were 0.59 (p = 0.000), 0.76 (p = 0.000), and 0.29 (p = 0.011), respectively,
and all p-values were less than 0.05. BMI, ACz, VM, and energy consumption values were
significantly correlated. Therefore, it is feasible to construct the energy consumption model
with these three variables (as shown in Tables 4 and 5).
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Table 3. Acceleration values of seven activities (mean ± SD).

Activity ACz VM

Rest 94.37 ± 17.22 474.86 ± 15.92
Treadmill walking 412.38 ± 37.36 497.61 ± 14.71

Sitting 311.64 ± 62.06 450.47 ± 18.19
Cycle ergometer 266.43 ± 55.41 497.62 ± 50.17
Normal running 573.61 ± 98.38 647.57 ± 85.25

Push-up 435.92 ± 103.26 488.04 ± 37.60
Stair walking 486.16 ± 110.37 501.12 ± 107.13

ACz—longitudinal accel point generated in counts/min; VM—vector magnitude generated in counts/min.
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Table 4. Energy consumption model (based on ACz).

Model 1 Model 2 Model 3 Model 4

Subject EE (W/min) EE (W/min) EE (W/min) EE (W/min)

ACz (per min) 0.010 ** 0.012 ** 0.011 ** 0.004 **
Sex 1.320 ** 1.095 ** 1.097 **
BMI 0.132 * 0.227 **

HR (per min) 0.057 **
Constant term 0.290 −0.483 −3.09 * −9.173 **

R2 0.403 ** 0.464 ** 0.470 ** 0.701 **
** p < 0.01, * p < 0.05; ACz—longitudinal accel point generated in counts/min.

Table 5. Energy consumption model (based on VM).

Model 1 Model 2 Model 3 Model 4

Subject EE (W/min) EE (W/min) EE (W/min) EE (W/min)

VM (per min) 0.022 ** 0.022 ** 0.022 ** 0.008 **
Sex 0.914 ** 0.711 * 0.953 **
BMI 0.147 * 0.232 **

HR (per min) 0.059 **
Constant term −7.112 * −7.345 * −10.126 ** −12.270 **

R2 0.385 ** 0.416 ** 0.431 ** 0.709 **
** p < 0.01, * p < 0.05; VM—vector magnitude generated in counts/min.

The basic energy consumption algorithm equation is W/min = β0 + β1 × ACz, and
can be constructed with additional factors, e.g., sex, BMI, and HR, and the correlation
coefficients were 0.46, 0.47, and 0.7, respectively. The accuracy of the algorithm was
gradually improved when all of these variables were added to the model.

The comprehensive energy consumption algorithm (based on the ACz) was as follows:

W/min = −9.173 + 0.004 × ACz + 1.097 × SEX + 0.227 × BMI + 0.057 × HR (M = 1, F = 0)

The comprehensive energy consumption algorithm (based on the VM axis) was
as follows:

W/min = −12.27 + 0.008 × VM + 0.953 × SEX + 0.232 × BMI + 0.059 × HR (M = 1, F = 0)

As a result of this study, we developed new proprietary exercise-specific algorithms
for common physical activities of Chinese college students. When the exercise-specific
algorithms were applied to the data from the SenseWear Pro3 Armband™, the estimate
of energy expenditure appeared to be improved. The data were put into the models, and
the correlation between the calculated value and the real value was verified by comparing
it with the results from Cortex MetaMax3B™. According to the results, the correlation
coefficients between the actual energy consumption measured by Cortex MetaMax3B™
and the results calculated by the model were 0.8674 (ACz) and 0.88 (VM), respectively, both
of which were greater than 85%, indicating that the algorithms accurately predicted energy
consumption for different activities.

Different parameters can be used to build different types of algorithms, and the
accuracy of different algorithms varies greatly. Progress has been made to solve these
issues, but it is likely that the fundamental challenge is to build an accurate and feasible
energy expenditure algorithm with multiple parameters. Direct calorimetry is considered
the most accurate method to assess physical activity by measuring gas exchange and
interpreting it into energy expenditure. As a result, an algorithm model was built to
improve the estimation of energy expenditure when used in combination with parameters
such as accelerometry, HR, sex, and BMI.
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4. Discussion

The current study was conducted to investigate the relationship between energy
expenditure and body acceleration during different physical activities. The development
of an accurate, reliable, and feasible model to calculate daily energy expenditure in free-
living conditions is an important priority for public health researchers. Our study built a
correlation regression model based on a triaxial acceleration monitor during seven physical
activities, integrating the variables: BMI, sex, and HR. Our correlation coefficient, R, became
greater when integrating all three variables than when only using one or two of them, which
indicates achieving greater accuracy of the regression model. Biomechanical detection for
the movement of the human body and the classification of motion using accelerometer and
center of gravity (COG)-based methodologies have been adopted globally. Approaches to
the classification of biomechanical movement can be made by threshold-based or statistical-
based classification schemes. Threshold-based motion classification takes advantage of well-
known knowledge and information about the movements to be classified. Statistical-based
motion classification utilizes a supervised machine learning procedure, which associates
observations (or features) of movement to possible classifications in terms of the probability
of the observation (see Figure 1). Spatial sensing is a basic function of accelerometers, which
can respond to the change in the center of gravity or constant acceleration. Therefore, by
wearing an accelerometer on the torso or arm, human postures (such as sitting, walking,
and running) can be distinguished according to the signal magnitude of accelerations along
the measuring axes.

By using the wearable triaxial acceleration sensors, different types of motion can
be identified by the three-directional variable, which was obviously distinguished in
seven different types of physical activities. In our research, the postures tested can be
distinguished by observing different orientations of body segments and the changes in
the spatial movement of the body. The sedentary activities (rest and sitting) demonstrated
almost the same spatial acceleration image characteristics, whereas the other activities
produced distinct spatial acceleration images. Triaxial acceleration signals and discrete
wavelet transformations can determine activities in ambulatory movement. Above all these
three-dimensional data, vertical acceleration signals are best for distinguishing between
different types of motion, as they are characterized by vertical acceleration and frequency
peak in the signal spectrum.

Several other studies have investigated the accuracy of posture recognition by ac-
celerometers. Mathie et al. [18] reported a general classification framework consisting
of a hierarchical binary tree for classifying postures, e.g., falls, jumps, walks, and other
movements, using signals from a wearable triaxial accelerometer. This modular structure
also allows modifying the algorithms for each classification under certain conditions or
particular purposes. Trunk tilt variation due to a sit–stand postural shift was reported
to be measured by integrating the signal from a gyroscope attached to the chest of the
examinee [19]. The sit–stand postural shift can be recognized according to the patterns
of vertical acceleration from an accelerometer at the waist [20]. Although Yang et al. [21]
used a simplified scheme with a tilt threshold to distinguish standing and sitting, a single-
accelerometer approach has difficulty in distinguishing between standing and sitting as
both are upright postures.

Information from the sensors together with sex, BMI, and HR was integrated into
proprietary algorithms to estimate energy expenditure (EE). The significant correlations
between energy expenditure and accelerometer readings are found in the laboratory and
under free-living conditions, and the relationship between these parameters using triaxial
accelerometers varies between different types of physical activities. From the results of our
research based on Chinese college students, we developed new proprietary exercise-specific
algorithms for energy expenditure prediction. When the exercise-specific algorithms were
applied to the data from the control group and energy cost from Cortex MetaMax3BTM,
the estimate of energy expenditure appeared to be improved. To facilitate comparison, we
classified the seven different activities into the walking and running group and the non-
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walking and running group (rest, sitting, cycle ergometer, pushup, and stair walking). An
energy consumption correlation analysis was carried out for the two groups, as illustrated in
Figure 2. There was a linear correlation between total energy expenditure examined via the
Cortex MetaMax3BTM and total energy expenditure estimated using indirect calorimetry in
this study.
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Figure 2. (A) Scatter plot showing the energy expenditure assessed by energy consumption algorithm
(based on the ACz) for control subjects across seven activities (n = 20; 10 males and 10 females).
(B) Plot showing the energy expenditure assessed by energy consumption algorithm (based on
the VM) for control subjects across seven activities (n = 20; 10 males and 10 females). Blue spot
indicates walking and running group with red solid line as mean value, and green spot indicates the
non-walking and running group with orange solid line as mean value.

The distribution of the scatter plot shows that the values calculated by the energy
consumption algorithm based on ACz and VM have a good fit with the actual measured
data from Cortex MetaMax3BTM. As can be seen from the scatter plot, the energy con-
sumption of the walking and running group is higher than that of the non-walking and
running group. The energy consumption algorithm based on ACz shows a higher differ-
ence between the two groups, whereas the energy consumption algorithm based on VM
shows a small difference between the two groups. The reason may be that the VM value
is a composite value of three-dimensional acceleration, which can reduce the difference
when calculating the energy consumption of different types of physical activities. Relevant
studies have shown that there is a high correlation between the three-dimensional space
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axis and PAEE, and the linear algorithm is easy to calculate, so most researchers con-
struct linear equations and use ACz/VM as the independent variable to predict the energy
consumption of physical activity [22]. The results show that the correlation between the
energy consumption algorithm and the IC method is between 0.50 and 0.90. The classical
energy consumption prediction formula, the Freedson formula, is based on a treadmill
with three different speeds: 4.8 km/h, 6.4 km/h, and 9.7 km/h, and the R2 of the energy
consumption algorithm is 0.82 [23]. Other researchers also took walking and running as
normal daily activities and established multiple energy consumption models with ACz or
VM as independent variables, gradually improving the comprehensiveness of the test and
the accuracy of the prediction [24].

Different accelerometers have different validity in adult physical activity studies, and
the SenseWear Pro3 Armband™ and some other accelerometers have been used during
exercise to assess energy expenditure. For example, the research found that the SenseWear
Pro3 underestimated energy expenditure, particularly for monitoring high-intensity exer-
cise. However, there is currently no cure for improving the underestimation; therefore, the
underestimation of energy expenditure continues to be a problem of many accelerometer-
based physical activity monitors that are currently available. In a study comparing a
triaxial accelerometer to indirect calorimetry, Jakicic et al. [25] reported that the accelerom-
eter under-evaluated energy expenditure by a total of 30–50 kcal for 30 min of walking,
87–89 kcal for 20 min of cycling, and 44–51 kcal for 20 min of stair stepping. In another
study of Jakicic et al. [26], the difference between indirect calorimetry and the SenseWear
Pro3 Armband™ was studied by using similar exercise protocols; the total energy ex-
penditure was also underrated. Jakicic found that the SenseWear Pro3 Armband™ is
able to give an accurate estimate of energy expenditure of exercises mainly involving
the upper extremities [26]. These results suggest that the SenseWear Pro3Armband™
may provide a more accurate estimate of energy expenditure using exercise-specific algo-
rithms. Hustvedt et al. [27] evaluated the accuracy of the ActiReg (a three-dimensional
accelerometer) alone and in combination with an HR monitor. The mean TEE (total en-
ergy expenditure) measured by the ActiReg was not different from DLW (doubly labeled
water) (p = 0.45). Bland–Altman plots showed that the ActiReg underestimated TEE at
high-intensity exercise, and the underestimation of TEE was corrected by using an HR
monitor. Plasqui et al. [28] evaluated another three-dimensional monitor called the Tracmor.
The participants’ age, body mass, and height were shown to explain 64% of the variation
in DLW-measured TEE, and by adding Tracmor activity counts to the model, there was
an increase in explained variation of 19% (total R2 = 0.83). Our study suggests that when
exercise-specific algorithms are used in combination with triaxial acceleration, sex, BMI,
and HR, this results in providing a more accurate estimate of energy expenditure, indicating
that the body shifts and other physiological sensors provide useful information to improve
estimates of energy expenditure.

Despite the promising results obtained from this study, there are limitations that
need to be discussed. In the current study, the researchers focused on the accuracy of
exercise-specific algorithms and many different factors, such as age, gender, and activity
forms, which need to be considered to estimate energy expenditure. The exercise-specific
algorithms from our study are based on a laboratory study, and may not be as accurate
under free-living conditions. This study is based on Chinese college students, and the
participants are relatively young adults with normal body weights. It is unclear whether
our findings hold true for individuals of different ages, weights, or levels of physical fitness.

5. Conclusions

In summary, by the use of a triaxial acceleration sensor, body postures of seven
physical activities were distinguished, and the algorithms showed promise for accurately
measuring energy expenditure. On the one hand, the accuracy of the algorithms was
improved by the additional three parameters (sex, BMI, and HR). On the other hand,
the manufacturers of some accelerometers have already written the algorithms for their
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products, but they still need to improve the accuracy of the original data collected during
each of the exercises to estimate energy expenditure. In future research, the accuracy of the
model can be continuously improved by increasing the number of subjects. Meanwhile, the
physical activities for measuring energy consumption can be more diversified and include
activities such as outdoor sports, various ball games, and competitive and confrontational
sports, such as tennis, table tennis, badminton, swimming, basketball, and football. In the
process of constructing the energy consumption algorithm, different analysis methods can
be added, such as the piecewise model, neural network model, etc., to enhance the accuracy
of the actual prediction of energy expenditure.
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