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Abstract: Whenever people spend time outdoors during hot weather, they are putting themselves in
potentially stressful situations. Being able to predict whether a person is overheating can be critical
in preventing heat-health issues. There is a clear relationship between body core temperature and
heat health. However, measuring body core temperature is expensive. Identifying a non-invasive
measure that could indicate a person’s thermal strain would be valuable. This study investigated
five physiological measures as possible surrogates: finger mean skin temperature (FSKT), finger
maximum skin temperature (FMSKT), skin conductance level (SCL), heart rate (HR), and heart rate
variability (HRV). Furthermore, they were compared against the results of participants’ subjective
thermal sensation and thermal comfort in a range of hot microclimatic conditions in a hot and humid
climate. Results showed that except for SCL, each of the other four physiological measures had a
positive significant relationship with thermal sensation, but a negative relationship with thermal
comfort. Furthermore, through testing by cumulative link mixed models, HRV was found to be
the most suitable surrogate for predicting thermal sensation and thermal comfort through a simple,
non-invasive measure in outdoor environment in summer in a hot and humid area. This study
highlights the method for predicting human thermal strain and contributes to improve the public
health and well-being of urban dwellers in outdoor environments.

Keywords: thermal strain prediction; heart rate variability; non-invasive measure; outdoor environ-
ment; hot and humid climate area; cumulative link mixed model

1. Introduction

Humans are quickly becoming an urban species, with most people living in cities.
In some places such as the US, the proportion of urban population is greater than 80% [1].
However, the way cities have been developed in the past has made them hotter than the
surroundings [2]. This exacerbates the global trend toward a warmer climate and puts
human health at risk. Staying in outdoor environments in summer is potentially dangerous
for people, particularly during heat waves [3]. Examples of thermal stress situations include
kids playing football, the elderly being vulnerable and unable to recognize heat stroke
symptoms, people dying during heat waves, dangers of overheated microclimates, etc. [4].

Thus, predicting human thermal strain to avoid causing heat-related disease in out-
door environments becomes crucial. The main trends to investigate and predict thermal
strain, both outdoors and indoors, consist of two ways: one is through the on-site ques-
tionnaire survey and the other employs the empirical equation by fitting questionnaire and
energy budget model, such as physiological equivalent temperature (PET), wet bulb globe
temperature index (WBGT), Universal Thermal Comfort Index (UTCI), etc. [5]. However,
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those widely used energy budget models do not fully consider individual characteristics.
With the advance of wearable devices and the marching to smart cities, using physiological
parameters measured by wearable devices to investigate thermal strain has become the
frontier of this field [6].

Body core temperature indicating the temperature of the internal organs is the most
accurate physiological measure which reflects human thermal strain based on the human
thermoregulation mechanism [7]. However, measuring body core temperature (internal)
is expensive. Thus, it is necessary and valuable to find a simple, non-invasive surrogate
to determine when people are too hot and in danger of heat-related diseases, such as
heat stroke.

1.1. Widely Used Non-Invasive Physiological Measures for Thermal Strain

Physiological responses of a human body to thermal environments have been broadly
investigated in lots of research of both outdoor and indoor environments, concerning
temperature regulation mechanism, autonomic nervous system, cardiovascular system,
etc. Several physiological measures have been widely recognized as the representations
of human thermal strain, such as finger skin temperature [8], skin conductance [9], heart
rate [10], and heart rate variability [11].

1.1.1. Skin Temperature

Skin temperature is the thermal status of the outer skin layer of a human body. Unlike
the body core temperature, which is maintained in a narrow range, the fluctuation of skin
temperature varied in a larger threshold, which resulted from thermal stress which may
by induced by the change in body core temperature as well as other potent factors such
as the change in air temperature and evaporation of sweating. For example, finger skin
temperature has been used as one of the main indicators of physiological thermal strain
and plays an essential role in human thermoregulation [12].

When a human body is suffering from thermal stress, the widening of blood vessels as
well as the congestion of capillaries speed the heat loss up [13], resulting in an increase of
skin temperature.

Researchers have employed skin temperature to investigate thermal strain and found
they are significantly correlative. For example, the skin temperature was significantly lower
by 1.1 degrees Celsius in a tree shadow compared with in open space [14]. There is a
significant correlation between thermal strain and skin temperature of seven local body
parts in different indoor thermal environments [15]. Moreover, the accuracy of thermal
comfort prediction was over 95% with the skin temperature of the human face as an
independent variable in an indoor experiment that employed infrared thermography [16].
The mean skin temperature and its gradience were two critical factors for subjects’ thermal
sensation [17].

1.1.2. Skin Conductance Level

Skin conductance level represents the conductivity between two skin surface points,
determined by sweat secretion activity [18]. Based on physiological mechanisms, sweat
secretion results from the enhancement of sweat gland activity induced by stimulus, such as
stress, etc. It is recognized as an indicator of sympathetic nerve activity [19] and sweat
activity in human thermoregulation [20].

Therefore, skin conductance is widely employed in the research of psychological
stimuli, as well as thermal strain [21]. Wang and Hu found sweat activity was linearly
related to thermal sensation vote [22]. Nicola et al. proposed that skin conductance
performed well in predicting thermal comfort with a r2 higher than 0.71 during walking [9].

Body core temperature rises when a human body is in a hot microclimate [23]. At the
same time, a negative feedback mechanism is activated. Then, the thermoregulation mecha-
nism generates neural signals through the back of the hypothalamus and finally stimulates
the sweat glands to secrete sweat, which takes the excessive body heat away through evap-
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oration [24]. Therefore, people would feel stuffy in high humidity environment because
sweat on the skin is hard to evaporate from the body’s surface.

1.1.3. Heart Rate

Heart rate refers to the number of heartbeats per unit time [25]. Heart rate fluctuates
with thermal stress [26], as well as physical activity and psychological change.

When a human body suffers thermal stress in a microclimate, it must dissipate exces-
sive heat outwards by increasing the skin blood flow, as well as the sweating. So, only by
increasing the frequency of heart contraction and relaxation, i.e., increasing the heart rate,
can homeostasis be maintained. For example, Choi et al. found that by comparing the cool
chamber (18 ◦C~20 ◦C) and the warm chamber (25 ◦C~27 ◦C), the heart rate of men in the
latter was significantly higher [27].

1.1.4. Heart Variability

Heart rate variability (HRV) represents the degree of variation between the two suc-
cessive R-waves of sinus beats signal [28]. It refers to the regularity of the heartbeat, as the
more regular the pattern is, the lower the HRV, and vice versa.

HRV reflects the activity and balance of the human autonomic nervous system (ANS),
including the sympathetic nervous system (SNS) and the parasympathetic nervous system
(PNS) [29]. When the SNS is activated, it is associated with the perception of arousal or
stress, which increases heart rate, represented by the lower frequency (LF) power [30].
In contrast, the activation of the PNS is related to relaxation, which causes a decrease in
heart rate, represented by the high frequency (HF) power [30]. Therefore, LF/HF can reflect
the balance of the ANS, which has been recognized as a widely used indicator of HRV [31].

Negative feedback is activated when a human body experiences thermal stress to
keep body core temperature in a narrow range through thermo-regulation mechanism.
At this time, the SNS is activated to promote sweating and vasoconstriction to dissipate heat
away from the body, along with the increase in heart rate [32]. Therefore, LF/HF would
increase, and HRV would decrease. When people feel thermally comfortable, a human body
consumes less oxygen and nutrients than thermally uncomfortable, resulting in gentler
breathing. Therefore, the PNS and SNS are more balanced, represented by the decreased
LF/HF and increased HRV.

HRV is proved to be highly correlated with thermal strain in lots of studies. For ex-
ample, Liu et al. found LF/HF was significantly higher when subjects felt thermally
uncomfortable than thermally comfortable [33]. Similar evidence had also been reported
by other research [34,35]. Furthermore, Cong et al. proposed that cold exposure would
decrease SNS activity and increase skin temperature, represented by a lower LF/HF [36].
Yang et al. proved LF/HF went up along with the increase of thermal sensation. Partic-
ularly, when it approaches 1, subjects would feel neutral or slightly warm [37]. Unlike
those results found in indoor settings, Liu et al. compared the differences in participants’
physiological responses between two microclimates and indicated that LF/HF under a tree
was significantly higher than in the open space [14].

1.2. Research Gap and Aim

Although those research studies mentioned above show evidence of the relationship
between physiological measures and human thermal strain, research gaps still exist. Firstly,
most of the research was conducted in an indoor environment, and a limited number of
studies were in outdoor spaces [14,17]. Unlike the steady-state condition of an indoor space,
an outdoor microclimate is non-steady, namely dynamic [17,38]. Therefore, exploring the
relationship between physiological measures and thermal strain in urban outdoor spaces
characterized by dynamics is urgent under the background of climate change, as well as
validating the existing evidence found indoors.
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Secondly, most research has just investigated the relationship between one physiologi-
cal measures and thermal strain [37]. Several studies compared the predictive potential of
more than two measures to thermal comfort indoors [39]. However, there is no research that
compared the significance level of correlation and predictive potential of skin temperature,
skin conductance, heart rate, and heart rate variability to thermal strain.

Thirdly, the regression method widely used to explore the prediction of physiological
parameters to thermal strain was linear [9,22,36] and curve-linear [35], which have been
proved to be not the most suitable [40–42]. Logistic regression was found to be more
appropriate [5,17], taking the participant as a random factor.

This study aimed to find a simple, non-invasive way to determine when people are
too hot and in danger of thermal stress in outdoor environments. Using Shanghai as a case
study, and by conducting an on-site experiments and questionnaires in three urban squares
in summer, we investigated and compared the correlation and predictive potential between
each of the five widely used physiological measures as mentioned above (finger mean
skin temperature, finger maximum skin temperature, skin conductance level, heart rate,
and heart rate variability) and thermal strain (thermal sensation and thermal comfort) to
determine if any could be used as the best surrogate of body core temperature measurement,
due to its expensiveness to predict thermal strain in urban outdoor space in hot and humid
climate areas in summer.

2. Materials and Methods
2.1. Experiment Site

The experiment was conducted in Shanghai, China, in three urban squares with three
days each, between 20 July and 21 August 2018, that are considered to be the typical day of
summer and supposed to be hot and sunny according to weather forecast. The exact dates
of the measurements in each square and the corresponding outdoor weather conditions are
shown in Table S1. Shanghai belongs to the subtropical humid climate zone, with a typical
characteristic of cold winter and hot summer, located between 120◦52′ E to 122◦12′ E and
30◦40′ N to 31◦53′ N. Shanghai experiences the lowest air temperature near 0 ◦C in winter,
and the highest air temperature close to 40 ◦C in summer, with a prevailing wind direction
of southeast and an annual average relative humidity of 68%.

We chose Knowledge and Innovation Community (KIC) square (Figure 1b), Century
square (Figure 1c), and Guoge square (Figure 1d) as experiment sites based on the criteria
of spatial diversity, elevation variation, aspect ratio, and sky view factor of each square
which could result in a wide range of microclimates, after surveying most of urban square
in Shanghai downtown area. Furthermore, 22 spots were selected based on different space
attributes to conduct experiments with 6, 7, and 9 at Century square, Guoge square, and
KIC square, respectively. Detailed information about each spot is shown in Table S2.
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2.2. Participants

Seventy healthy adults without cardiovascular disorders or skin disease, including
twenty-six females and forty-four males, were recruited to participate in the experiment
through social media. Table 1 shows the demographic information of age, weight, height,
body mass index (BMI), and clothing thermal resistance (clo).
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All participants had lived in Shanghai for at least three years, which indicated they
would have been acclimatized [43].

Participants were informed of the experiment procedure and were required to observe
the following precautions: avoid staying up late, drinking alcohol, or taking drugs before
the experiment. They were also required to meet the experiment dress code to keep the
similar clothing thermal resistance.

Participants were randomly assigned to the experiment time slot of each square, which
resulted in 27 for Century square, 25 for KIC square, and 18 for Guoge square, based on
their available day.

Table 1. Demographics of participants.

Sex Participants (n) Age (Years) Height (m) Weight (kg) BMI
(Body Mass Index, kg/m2)

Clo
(Clothing Thermal Resistance)

Male 44 35.90 ± 11.90 1.70 ± 0.10 67.20 ± 7.60 22.70 ± 2.20 0.66 ± 0.15
Female 26 29.20 ± 9.80 1.60 ± 0.10 52.90 ± 6.90 19.90 ± 2.20 0.79 ± 0.16

Note: values are means ± standard deviation.

2.3. Microclimate and Human Physiological Measures

Watchdog 2000 series (Spectrum Technologies, Inc., Aurora, IL, USA, 2021), a portable
weather station (Table S3), was employed to measure the microclimate condition of each
spot at the same time on experiment days. It monitored microclimate parameters, including
air temperature (Ta), relative humidity (Rh), solar radiation (Sr), wind speed (Ws), and wind
direction with a logging interval of 1 min. The watchdog was installed on a tripod, keeping
it near 1.5 m above the ground that made the height of sensors close to a participant’s heart
and head.

A structured questionnaire was designed to survey participants’ thermal strain. The
first part was demographic information, including name, age, weight, height, and dress.
The second part, consistent with ASHARE Standard 55 [44], included a thermal sensation
vote (TSV) with a nine-point Likert scale, and an outdoor thermal comfort vote (OTC) with
a five-point Likert scale (Figure S1).

ErgoLAB “Human-Machine-Environment” synchronization platform (Kingfar Inc.
Beijing, China, 2014), which has been validated in related research [14,45], was employed
to measure participants’ physiological response in each spot with different microclimates.
It consists of three wearable wireless sensors to monitor different signals (finger skin
temperature, skin conductance level, heart rate, and heart rate variability) and a data
processing platform. Table S4 shows the accuracy and range of each sensor.

2.4. Experimental Protocol

Figure 2 shows the experimental protocol. At the beginning of each experiment day,
Watchdog weather stations were assembled and started to continuously log microclimate
data at each spot during the test.
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Secondly, after participants arrived, they were reminded of the experiment protocol
again and signed the informed consent. Then, researchers helped them wear wireless
physiological sensors. Three sensors were attached on the index finger (to measure skin
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temperature), middle and fourth fingers (to measure skin conductance), and the earlobe
(to measure heart rate and heart rate variability), respectively.

Thirdly, each round of the test included two participants. After preparation, they
walked at a uniform pace to the first spot, then rested for 1 min, that has been proved to
be suitable in the pretest, to minimize the physiological disturbance by walking. Next,
there was a 3 min thermal stress perception period with a standing posture. At the
beginning of this period, wireless wearable sensors start to record the physiological signals
simultaneously and stop when it ends. After this period, participants needed to fill out the
questionnaire in 1 min. Then, participants walked to the next spot and repeated the same
process until all the test spots were finished. Each participant takes about 40 min~60 min to
finish the entire experiment.

The sequence of experiment spots was designed based on the sky view factor to avoid
participants from being overexposed to the sun for a long time (Supplementary Material
Table S2).

2.5. Statistical Analysis

The descriptive analysis of microclimate data was conducted in SPSS 20.0 (IBM Corp,
Armonk, NY, USA, 2011). FSKT, FMSKT, SCL, HR, and HRV were processed on the
ErgoLAB platform. FSKT and SCL were both processed by moving average filter.

HR and HRV were first filtered by baseline de-noise, white de-noise, high-pass de-
noise, and low-pass de-noise. Then, ectopics were replaced to analyze LF/HF.

Correlation analysis between each physiological measure and thermal strain was
conducted using the ‘rmcorr’ package in R 3.5.0 (R Core Team, Vienna, Austria, 2018),
based on repeated measurement correlation, with participants’ ID as a random factor.

Furthermore, cumulative link mixed model (CLMM) was used to fit the quantitative
model between each physiological measure and thermal strain, with the former as the
independent variable and the latter as the dependent variable. CLMM had been testified
in related research to fit the model with ordinal data as dependent variable [46,47]. Thus,
it can meet the ordinal data attribute of thermal strain designed based on the Likert scale, as
well as dig the latent correlation of repeated measurements induced by the within-subject
experiment design, which has been neglected by previous research.

We selected log-likelihood and Akaike information criterion (AIC) to compare the
predictive potential of physiological measure to the thermal strain of each model. Studies
have shown that the better model was both with the lower AIC [48] and the higher log-
likelihood [49].

The significant difference level in this research was set at p < 0.05.

3. Results
3.1. Microclimate and Thermal Strain during Experiment

Microclimate parameters, including Ta, Sr, Rh, and Ws, were logged simultaneously at
each spot from 7:30 a.m. to 17:30 p.m. in the experiment days of each square. Table 2 shows
the values of microclimate parameters and participants’ thermal strain which is represented
by TSV and OTC during the experiment. According to the minimum (Min), maximum
(Max), and standard deviation (SD), it can be seen that the microclimate condition was wide-
ranging, representing the variability of space configuration among those spots. Moreover,
it is worthy to notice that wind speed was low during the experiment.

For TSV, participants voted from neutral (0) to too hot (+4). For OTC, it ranged from
too uncomfortable (−2) to very comfortable (+2), which means the samples were well
distributed. In contrast, the overall values of TSV and OTC during the experiment were
warm (1.83 ± 1.26) and neutral (−0.23 ± 0.88).
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Table 2. Microclimate condition and thermal strain during experiment.

Ta (◦C) Sr (W/m2) Rh (%) Ws (m/s) TSV OTC

Overall
Min 29.90 9.80 38.90 0.01 0 −2
Max 38.50 1105.60 74.50 3.16 +4 +2

Mean ± SD 33.13 ± 1.68 290.36 ± 280.95 55.18 ± 7.32 0.41 ± 0.57 1.83 ± 1.26 −0.23 ± 0.88

KIC
Min 29.90 12.20 39.40 0.01 0 −2
Max 38.50 1048.60 70.50 3.16 +4 +2

Mean ± SD 32.77 ± 1.93 338.11 ± 270.71 53.33 ± 7.02 0.73 ± 0.71 2.11 ± 1.33 −0.38 ± 0.99

Century
Min 30.30 9.80 43.50 0.01 0 −2
Max 37.20 1105.60 68.70 2.22 +4 +2

Mean ± SD 33.60 ± 1.56 337.51 ± 320.65 56.39 ± 5.65 0.37 ± 0.52 1.92 ± 1.28 −0.29 ± 0.89

Guoge
Min 30.40 17.20 38.90 0.01 0 −2
Max 36.50 887.60 74.50 2.22 +4 +2

Mean ± SD 32.76 ± 1.49 193.19 ± 195.39 54.88 ± 9.08 0.24 ± 0.41 1.51 ± 1.12 −0.02 ± 0.73

3.2. Thermal Physiology Response

Participants’ physiological response induced by the surrounding microclimate were
monitored and logged during the perception period at each spot using three wireless
wearable sensors. Data were analyzed through the Ergo-Lab platform and SPSS. After
removing those recordings with abnormal and missing data, Table 3 shows the numbers of
the sample, Min, Max, mean, and SD of each physiological measure at each square and the
overall. First, each measure has 354 samples, with 83, 155, and 116 for KIC, Century, and
Guoge square, respectively. Second, based on the Min and Max, participants’ physiological
responses varied a lot during the experiment, representing the abundant microclimate
condition, consistent with Section 3.1.

Table 3. Participants’ thermal physiology response during experiment.

SKT (◦C) SCL (µs) HR (Bpm) LF/HFFSKT FMSKT

Overall

Sample 354 354 354 354 354
Mean 33.00 33.31 0.01 67.00 0.23
Max 39.07 41.66 23.96 135.00 5.99

Mean ± SD 35.28 ± 1.19 35.86 ± 1.38 5.21 ± 4.38 91.12 ± 12.75 1.45 ± 0.98

KIC

Sample 83 83 83 83 83
Min 33.00 33.31 0.07 70.00 0.23
Max 39.07 41.66 23.96 135.00 5.30

Mean ± SD 34.51 ± 1.38 35.30 ± 1.84 2.53 ± 4.21 91.06 ± 13.67 1.45 ± 0.96

Century

Sample 155 155 155 155 155
Min 33.12 33.76 0.01 70.00 0.27
Max 38.25 39.97 18.55 124.00 5.99

Mean ± SD 35.52 ± 1.21 36.12 ± 1.38 4.53 ± 3.77 96.42 ± 11.81 1.74 ± 1.06

Guoge

Sample 116 116 116 116 116
Min 33.17 33.91 2.21 67 0.24
Max 36.83 39.22 18.17 109.00 5.06

Mean ± SD 35.47 ± 0.70 35.91 ± 0.78 8.03 ± 3.63 84.07 ± 9.55 1.05 ± 0.69

Based on mean and SD of the overall value, FSKT mostly ranged from 34.09 ◦C to
36.47 ◦C, while it is 34.48 ◦C~37.24 ◦C for FMSKT, with the highest value of 41.66 ◦C.
There is a big difference between the Min and Max of SCL, with a mean value of 5.21 µs.
For heat rate, participants in a specific microclimate scenario have an extreme value of
135 bpm. Moreover, the mean and SD indicated that participants’ heart rates were within
the normal domain in most microclimate conditions. Lastly, for LF/HF, its majority ranged
from 0.47~2.43, with a highest record at 5.99.

3.3. Physiological Measures and Thermal Strain
3.3.1. Correlation between Physiological Measures and Thermal Strain

Because the experiment was designed based on within-subject test, the data were not
independent. So, the repeated measures correlation statistical method was employed to
test the significant correlation between each physiological measure and thermal strain [50],
taking participants into account, with the ‘rmcorr’ package in R. Table 4 shows that except
for SCL, the others all had significant correlations with OTC and TSV. Furthermore, all
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were negative with OTC, which means when these physiological measures increase, OTC
will decrease; the situation for TSV is inverse.

Table 4. Overall correlation between each physiological measure and thermal strain during experi-
ment tested by repeat measurement correlation method.

Physiological Measure Thermal Strain
OTC TSV

SKT
FSKT −0.31 *** 0.42 ***

FMSKT −0.31 *** 0.43 ***
SCL −0.11 0.13
HR −0.18 * 0.12 *

LF/HF −0.34 *** 0.48 ***
Notes: * p < 0.05, *** p < 0.001.

Moreover, among these correlation coefficients of physiological measures for OTC,
LF/HF was the highest with −0.34, followed by FSKT and FMSKT, with both being 0.31.
For TSV, the overall pattern was similar, but correlation coefficients of all measures were
higher than that of OTC. The highest correlation coefficient was LF/HF with 0.48, followed
by FSKT and FMSKT. Lastly, HR shows the lowest correlation coefficient with TSV and
OTC, with 0.12 and 0.16, respectively, compared with other parameters.

3.3.2. The Best Fitted Model for Predictive Potential of Physiological Measure to Thermal Strain

In this study, three aspects require us to carefully choose the suitable analysis algo-
rithm that meets the data attribute and structure to demonstrate the latent information
of the database. Firstly, unlike the random survey adopted by most research studies, this
experiment was designed based on the within-subject test. Thus, recordings of each subject
are nested, namely not independent. Secondly, TSV and OTC, as the dependent variables,
were designed based on the Likert scale (which is ordinal data). Recent studies have
questioned whether linear regression can demonstrate the exact quantitative relationship
with ordinal data as the dependent variable and proposed that logistic regression may be
more suitable [40,41]. Thirdly, it is better to treat the subject as a random factor (random
intercept) in the regression to minimize the effect of individual differences on the model
accuracy, because of the individual difference which induced the variance of physiological
response between subjects under thermal strain, especially SCL shown in Table 3.

Therefore, linear regression turned out to be not the most suitable for this research, and
cumulative link mixed models [51], employed CLMM function from “ordinal Package” in
R (R Core Team, 2016), were selected to regress the quantitative relationship between each
physiological measure and thermal strain. CLMM had been testified in related research to
fit the model with ordinal data as dependent variable [46,47]. Thus, it can meet the ordinal
data attribute of thermal strain designed based on the Likert scale, as well as dig the latent
correlation of repeated measurements induced by the within-subject experiment design,
which has been neglected by previous research.

All models of each physiological measure and thermal strain are listed in Table 5,
showing dependent variable, model number (Model no.), syntax, independent variable,
and random effect. Thus, ten cumulative linked mixed models were fitted with each
physiological measure as independent variable, as well as controlling participants’ ID as
the random effect.

Table 5 shows the models’ information of these ten CLMM, listing log-likelihood, AIC,
and significant difference between each model and above (Pr).

Firstly, according to Pr, results show that the predictive potential of each model is
significantly different from the others, with p < 0.001. Secondly, for all CLMM of OTC, the
best model is M1.4, with the lowest AIC of 854.70, and the highest log likelihood of−421.35,
followed by M1.1, M1.5, and M1.2, with the last one of M1.3. This indicates that LF/HF has
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the most predictive potential for OTC, followed by FMSKT, HR, and FSKT, while SCL is
the last.

Thirdly, for all CLMM of TSV, the best model is M2.4, with the lowest AIC of 1040.80,
and the highest log likelihood of −499.85. The second one is M2.1, followed by M2.2, and
M2.5, while M2.3 is the last with the highest AIC of 1093.5, and the lowest log likelihood of
−540.75. This demonstrates that LF/HF has the best predictive potential for TSV, followed
by FMSKT, FSKT, and HR, while SCL is the last.

Lastly, comparing all predictive potential of physiological measures for OTC and
TSV shows that all the models of OTC perform better than that of TSV, with an apparent
difference in AIC and log-likelihood.

Table 5. Overview of models and syntax employed with cumulative link mixed models.

Dependent
Variable

Model
No. Syntax Independent

Variable
Random

Effect

OTC

M1.1 Clmm (OTC~FMSKT+(1|ID)) FMSKT

ID

M1.2 Clmm (OTC~FSKT+(1|ID)) FSKT
M1.3 Clmm (OTC~SCL+(1|ID)) SCL
M1.4 Clmm (OTC~LF/HF+(1|ID)) LF/HF
M1.5 Clmm (OTC~HR+(1|ID)) HR

TSV

M2.1 Clmm (TSV~FMSKT+(1|ID)) FMSKT
M2.2 Clmm (TSV~FSKT+(1|ID)) FSKT
M2.3 Clmm (TSV~SCL+(1|ID)) SCL
M2.4 Clmm (TSV~LF/HF+(1|ID)) LF/HF
M2.5 Clmm (TSV~HR+(1|ID)) HR

4. Discussion
4.1. Microclimate Condition and Its Effects of Thermal Strain and Thermal Physiology Response

The microclimate condition and participants’ physiological responses in this exper-
iment were rich with a wide range value of microclimate parameters, thermal strain,
as well as physiological measures, which provides a sound database for the further analy-
sis, as shown in Tables 2 and 3. Especially, the maximum of four physiological measures in
Table 3 indicates that participants experienced thermal stress during the experiment. This
can be proved by comparing the skin temperature response reported in Tianjin [17] as well
as Hall [52], the threshold of heart rate proposed by Moran et al. [53], the typical range
of skin conductance by Cacioppo [54], and the norms of LF/HF by Malike et al. [55] and
Shaffer et al. [29]. So, exploring the suitable physiological measures to predict thermal strain
in the outdoor environment is required and meaningful to make our city more comfortable,
and protecting people from heat-related diseases and even death in summer.

In our study, except SCL, the others all have significant correlations to thermal strain.
HRV has the most significant correlation with thermal strain. While there are few similar
outdoor experiments results that could be compared, several indoor experiments support
our finding. For example, Zhu et al. reported a clear pattern of LF/HF to both thermal
comfort and thermal sensation [56]. Moreover, Wu Guoshan et al. also found that LF/HF
would significantly fluctuate under different thermal stress, especially between neutral and
hot environments for mine workers [57].

The correlation coefficient of FSKT to OTC and TSV was lower than HRV, but higher
than other physiological measures, with a value of 0.43, which is not so expected high
compared to those reported results of indoor experiments [58]. However, our finding is
supported by Vanos et al., who presented that the correlation coefficient between skin
temperature and actual thermal sensation is 0.32 in outdoor environments [59].

There was no significant relationship between skin conductance and thermal strain,
which is similar with the results found in Singapore [60]. While it is different to findings
of indoor experiments [61], this may because of the excessive sweat that is secreted by
sweat glands and induced by the continued stimulus of thermal stress outdoor in summer.
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Furthermore, the sweat cannot be well-absorbed or evaporated due to the low wind speed
during the experiment. This finding indicates that, unlike indoor environments, skin
conductance in outdoor environments may not change according to the thermal stress
stimulus outdoor because of excessive sweat, especially when wind speed is low.

It is noted that the correlation coefficients of physiological measures to thermal sensa-
tion are all below 0.5, and higher than that to thermal comfort. There may be two reasons
that could explain this phenomenon. Firstly, the percentage of physiological measure that
can contribute to thermal stress evaluation was only around 50%, according to the previous
research [62]. Secondly, based on brain science, the consciousness of thermal sensation
is produced in the primary somatic sensory cortex, after it is passed through the thala-
mus [63,64]. In contrast, related research has proposed that thermal comfort is synthesized
in the frontal cortex and the limbic system, after it is passed through the hypothalamus [65],
which demonstrates that the neural pathway of thermal comfort is more complex than that
of thermal sensation.

4.2. The Best Predictive Potential of Physiological Measures of Human Thermal Strain in Summer

Based on AIC and log-likelihood, Table 6 demonstrates LF/HF is the best physio-
logical measure to predict both thermal comfort and thermal sensation by employing the
CLMM function in R. This finding is in agreement with Nkurikiyeyezu et al., who reported
HRV could precisely predict thermal state up to 93.7% by machine learning classification
algorithms [66]. Moreover, several indoor research results also proved LF/HF is a good
indicator for the prediction of thermal strain. For example, Zhu et al. proposed that higher
LF/HF indicates thermal discomfort, while low LF/HF presents a more acceptable thermal
state [35]. Moreover, Wu et al. found that a participant’s LF/HF is significantly different
between hot and neutral environment controlled by indoor climate chamber [57].

Table 6. Overview of CLMM models’ performance represented by log likelihood and AIC.

Model No. Log-Likelihood AIC Pr (>Chisq)

M1.1 −428.64 869.28 ***
M1.2 −434.17 880.35 ***
M1.3 −443.98 899.97 ***
M1.4 −421.35 854.70 ***
M1.5 −431.31 874.63 ***
M2.1 −514.39 1040.8 ***
M2.2 −522.99 1058.0 ***
M2.3 −540.75 1093.5 ***
M2.4 −499.85 1011.7 ***
M2.5 −529.15 1070.3 ***

Note: Pr column states whether the model performs significantly better than above. *** p < 0.001.

This may be because HRV represents the condition of the cardiac system, which is
the most important for the human thermal regulation system. The change rate of skin
temperature mediated by vasodilation and vasoconstriction, the sweating intensity, and
respiration frequency were all supported by the function of the heart, which is represented
by HRV. Take vasodilation as an example. When the participant is under thermal stress,
as well as body core temperature deviates from the acceptable range, a human body needs
to dissipate excessive heat. Thus, more blood will be transported to the skin surface to
dissipate heat through radiation and convection. These processes are supported by the
firing of sympathetic nerve that increases heart pumping volume, resulting in the increase
of low-frequency portion and the change of HRV.

At the same time, sweat glands are activated to secrete sweat thus dissipating the
heat through evaporation, due to the vibration of the sympathetic nervous system through
the sudomotor. To support and maximize evaporation, the sympathetic nervous system
secretes noradrenaline to increase heart rate and cardiac output. Thus, the cooler venous
blood could be circulated faster to lower core temperature, as well as to increase the water
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supply from vessel to sweat gland. This process would also increase the portion of low
frequency power of HRV.

Similarly, the increase of respiration, which is also a path to dissipate excessive body
heat, is mediated by high frequency power and needs to be coupled with the increase of
cardiovascular system circulation modulated by the sympathetic nervous system through
the heart.

After body core temperature falls into the acceptable range, the activity of potential
action of sympathetic nerve decreases, resulting in the decrease in low frequency and
the increase in HRV. So, HRV is somewhat like a signal amplifier that becomes the most
prominent index to reflect the thermoregulation process. Thus, it would have the most
predictive potential for thermal strain in the outdoor environment in summer.

An unexpected result comes up that finger maximum skin temperature has a predictive
potential, which is just lower than heart rate variability but higher than others. However,
we find that few research studies have investigated the predictive potential of maximum
skin temperature for thermal strain, but studied the gradient of skin temperature [67].
Only one piece of literature supported our finding and reported that the maximum skin
temperature could be used to discriminate thermal comfort and discomfort when it comes
to 39 degrees Celsius [68]. We speculate that two reasons would contribute to the result.
Firstly, the 3 min thermal perception period in each experiment is a little bit short. Secondly,
when the finger skin temperature comes to the maximum, a human body may experience
the extreme thermal stress of the perception period, particularly in summer. Furthermore,
this feeling of experience might be stored in the specific brain area which is responsible for
short-term memory storage, such as the pre-front cortex, hippocampus, and amygdala [69].

For skin conductance, interestingly, contrasted to those findings that propose skin
conductance level is a sound indicator, from much indoor research related to thermal
comfort [61] emotion [70], or landscape perception [71]. In this outdoor research, we found
SCL has no predictive potential for thermal strain. There are two reasons that can explain
the result. Firstly, excessive sweat was detained on the skin surface, because the activation
of the sympathetic nervous system continuously stimulates the sweat gland. At the same
time, sweat evaporation was suppressed, due to the low wind speed. So, excessive sweat
on the skin surface could not be evaporated nor absorbed, making the measurement of
SCL unable to reflect the change in the human body’s thermal state timely. Therefore, we
speculated that SCL might have the predictive potential when the wind speed is enough
to evaporate sweat from the skin surface or the sweat gland can absorb the excess sweat,
which also means SCL would be a good indicator when the human body feels warm but
not hot or very hot, such as in spring and autumn.

4.3. Limitations and Future Research

There are several limitations of this study that need to be improved in further research.
Firstly, due to the lack of body core temperature, the prediction potential difference between
HRV and body core temperature is unclear. Future studies can focus on comparing these
two indices. Secondly, other physiological measures that might also have predictive
potential for thermal strain, such as skin temperature gradient and electroencephalography
(EEG), can be taken into consideration in future research. Thirdly, participants of this study
were adults. Whether those results are applicable to children and older people needs to
be further investigated as an important topic. Fourthly, what contributes to the different
predictive potentials of HRV to thermal comfort and thermal sensation needs to be further
investigated more deeply from the perspective of neurology and brain science. Moreover,
our findings were just found in Shanghai, while they need to be further verified in other
places in the hot and humid area, even compared with results from other climate areas.
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Lastly, unlike indoor experiments, we cannot eliminate the environment inference
such as the sound effects in outdoor environments. Even those experiment sites chosen are
places where car horns are prohibited around the surrounding street. Future studies could
use other alternative methods to decrease the sound effect on the thermal stress as much as
possible.

5. Conclusions

This research proposed the research question: which non-invasive physiological
measures could be surrogates of body core temperature to determine when people are
too hot in an outdoor environment. Taking Shanghai as a case study, we conducted
outdoor experiments at three urban squares in summer, with microclimate measurement,
thermal stress questionnaire, and physiological measurement for 9 days between 20 July
and 21 August 2018. This research investigated the correlation and predictive potential
between each of the five physiological measures and thermal strain in the urban outdoor
environment in hot and humid climate areas in summer. HRV had the best predictive
potential for thermal strain, which can be the best surrogate of body core temperature,
followed by finger maximum skin temperature, finger mean skin temperature, and heart
rate. Skin conductance was unsuitable for predicting thermal strain outdoor environment
in summer. Notwithstanding several limitations, our research has demonstrated that HRV
has the potential to be employed to predict thermal strain in hot and humid climate areas
in summer.

The applications of the research findings will be beneficial in three aspects. Firstly,
HRV could be employed to design real-time outdoor thermal devices in the future, which
will adjust forms based on the prediction of people’s thermal strain received from the non-
invasive wearable sensors. Secondly, the results will be beneficial to the post-occupancy
evaluation of urban design which will generate evidence-based guidelines for planners,
designers, as well as policy makers to create a more livable, comfortable, and intelligent
urban outdoor environment. Lastly, the results suggest HRV could be the surrogate of core
temperature which can be used to protect the health of urban residents, thus improving
their well-being, especially in summer.
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