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Abstract: Accidental falls represent a major cause of fatal injuries for construction workers. Failure
to seek medical attention after a fall can significantly increase the risk of death for construction
workers. Wearable sensors, computer vision, and manual techniques are common modalities for
detecting worker falls in the literature. However, they are severely constrained by issues such
as cost, lighting, background, clutter, and privacy. To address the problems associated with the
existing proposed methods, a new method has been conceived to identify construction worker falls
by analyzing the CSI signals extracted from commercial Wi-Fi routers. In this research context, our
study aimed to investigate the potential of using Channel State Information (CSI) to identify falls
among construction workers. To achieve the aim of this study, CSI data corresponding to 360 sets of
activities were collected from six construction workers on real construction sites. The results indicate
that (1) the behavior of construction workers is highly correlated with the magnitude of CSI, even
in real construction sites, and (2) the CSI-based method for identifying construction worker falls
has an accuracy of 99% and can also accurately distinguish between falls and fall-like actions. The
present study makes a significant contribution to the field by demonstrating the feasibility of utilizing
low-cost Wi-Fi routers for the continuous monitoring of fall incidents among construction workers.
To the best of our knowledge, this is the first investigation to address the issue of fall detection using
commercial Wi-Fi devices in real-world construction environments. Considering the dynamic nature
of construction sites, the new method developed in this study helps to detect falls at construction
sites automatically and helps injured construction workers to seek medical attention on time.

Keywords: channel state information; fall detection; construction worker; construction safety; commercial
Wi-Fi router

1. Introduction

Construction workers are often subjected to physically demanding work, and the
construction industry records a significant number of workplace injuries, making it the
most perilous occupation in the United States [1]. Falls are a primary cause of injury
for construction workers, accounting for 15–30% of occupational injuries [2–4]. Occupa-
tional injuries that are similar in nature can have numerous adverse effects on construction
projects, including schedule delays, increased project costs, and significant worker com-
pensation claims [5–8]. The effectiveness of body treatment following a fall often depends
on promptly detecting the fall and seeking medical assistance [9]. Delaying a worker’s
access to medical attention after a fall can significantly increase the risk of death and lead to
serious project accidents [10]. Identifying workers who have fallen and providing prompt
assistance in case of a fall are crucial for mitigating project risks and ensuring the safety of
construction workers.
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Previous studies aiming to mitigate the hazards associated with fall accidents mainly
focus on (1) using accident reports to analyze and avoid the main causes of falls [11–13]
or relying on safety training and safety managers [14,15]; this approach is highly sub-
jective and time-consuming, and it is difficult for the safety manager to cover the entire
construction site comprehensively. (2) Automatic fall detection methods based on wearable
devices [16–21]; these systems are only effective if users wear appropriate body sensors,
which can negatively impact the work efficiency of construction workers. The additional
weight and discomfort of the equipment may be unsuitable for use on hazardous con-
struction sites and can also raise concerns related to health risks, high costs, and personal
privacy. (3) Vision-based fall detection [22,23], which involves using cameras to monitor
worker activity and identify falls. This technology raises concerns related to privacy, as
the use of cameras can compromise it. In addition, the cost of installation is high, and the
cameras can only detect falls from specific angles and are susceptible to interference from
light [24,25].

Given the limitations of previous studies, there is an increasing demand for automated,
non-invasive, and continuous monitoring methods that can effectively monitor falls among
construction workers. The Wi-Fi-based approach is an emerging solution for fall recognition
that addresses the above limitations [26]. Channel State Information, also known as CSI,
is how the Wi-Fi signal is emitted from the transmitter and is attenuated by a series
of refractions and reflections to the receiver [27]. The CSI changes as a result of body
part movements, altering how the wireless signal is reflected [28]. By monitoring CSI data
streams that correspond to various activities and comparing them with a trained model, it is
possible to identify human movements. Fall detection can be achieved by extracting features
from the CSI data streams and applying appropriate machine-learning techniques for model
training. Commercial Wi-Fi routers are widely used in our daily lives [26]. Compared to
other behavior recognition methods, Wi-Fi-based activity recognition is low-cost and easy
to deploy without purchasing additional dedicated equipment. The three primary types
of Wi-Fi signals used to identify activities are received signal strength indicators (RSSI),
signals based on specialized radio hardware, and channel status information (CSI) [29].
It is challenging to recognize human activity at a finer scale using RSSI due to its limited
sensing capacity and low signal resolution. Dedicated radio hardware is also costly to set
up because it is not readily accessible. Therefore, this study proposes using CSI signals to
recognize construction workers’ fall accidents. In the context of this research, this study
aims to investigate the feasibility of using CSI for worker fall monitoring at construction
sites, thereby enabling a new research direction for construction safety. The flowchart
for implementing worker fall recognition using CSI is shown in Figure 1. The initial step
involves gathering Channel State Information (CSI) data with a laptop and Wi-Fi router,
followed by CSI pre-processing, and finally, a classification model is used to identify the
CSI data.
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This paper is structured as follows: Section 2 provides a comprehensive review of
the related literature in the field. The methodology employed in the study is thoroughly
discussed in Section 3. The process of collecting CSI data and the results of the recognition
experiment are described in Sections 4 and 5, respectively. The findings are then analyzed
and discussed in Section 6, and a conclusion is drawn in Section 7.

2. Background

Falls on construction sites are a common cause of accidents for workers [30], which are
sometimes fatal. Accidental falls are a serious and ongoing issue in many nations [31–33].
Fall hazards result from prolonged exposure to fall hazards that arise from environmental
or perceived factors [34]. A lack of concentration and physical fatigue due to overwork
without adequate rest are the main reasons why construction workers are prone to falls
at construction sites [34–37]. In addition, unsafe conditions such as slippery surfaces,
uneven platforms, ground obstacles, and stairs, which are often found on construction sites,
can also expose construction workers to the risk of falls [38,39]. The construction site is,
therefore, a highly dangerous place, especially concerning the potential for falls.

2.1. Common Fall Detection Techniques Used on Construction Sites
2.1.1. Manual-Based Fall Monitoring Methods

Over the years, construction companies have tried to use adequate safety training and
the intervention of safety managers to reduce the likelihood of worker accidents [40,41].
However, this traditional manual approach is inadequate to deal with the various fall
hazards in today’s dynamic working environment. As the construction work environment
is constantly changing and not easily controlled, it is impractical to rely solely on the
safety manager to continuously and remotely monitor all worker risks throughout the
workplace [38,41,42]. Workers are still exposed to environments with a high risk of falls.
In order to cope with the uncertainty of the modern construction environment, advanced
technological aids are needed to improve the timeliness and continuity of fall detection.

2.1.2. Wearable-Device-Based Fall Monitoring

Recently, many studies have demonstrated the effectiveness of wearable technology
for worker fall monitoring. Wearable technology can collect a large amount of data from
recognized physical responses and thus be used to monitor physical changes while working in
the workplace. These devices include accelerometers, gyroscopes, and other technologies that
provide solutions for measuring falls [19,43,44]. Typically, measuring the loss of balance (LOB)
is the primary method of monitoring worker falls using wearable sensors [45]. When a worker
is in danger of falling, the worker will develop an abnormal gait pattern, which can be used
to detect falls [46]. A large number of studies have therefore used IMU sensors attached to the
waist or other body parts to measure the LOB caused by fall hazards [19,44,45,47–49].

Similarly, wearable insole pressure systems are used to measure plantar pressure and
ground reaction forces to extract information for fall detection in construction workers [50].
Only if all sensors are worn or carried by the worker at the moment of the fall accident will these
fall detection systems work. It is challenging for construction workers to comply with the rule
that sensors must always be worn on the body. The extra burden of equipment is particularly
uncomfortable for construction workers involved in complex labor tasks for long periods.

2.1.3. Vision-Based Fall Monitoring

Computer-vision-based fall detection relies on cameras mounted at specific locations
to capture images or video sequences for activity recognition and classification. The fall
activity is separated from other events using an activity classification algorithm. The latest
research based on infrared and depth cameras has expanded their range of applications and
has demonstrated their high recognition accuracy [24,25,51]. However, these methods are
significantly hampered by several challenges, including high installation costs, dependence
on adequate lighting, invisibility, and privacy concerns [24,25].
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2.2. CSI-Based Fall Monitoring for Construction Workers
2.2.1. Basic Theory

Activity recognition technology using wireless signals is a non-intrusive and privacy-
protective method [52,53]. Based on the IEEE 802.11 series, ordinary home wireless devices
are commonplace. The cost of using Wi-Fi signals is very low, as Wi-Fi signals are uni-
versally available. With the development and commercialization of Wi-Fi technology,
CSI-related research can be carried out using common commercial Wi-Fi equipment, which
significantly reduces the cost of research [54–56].

The transmission of a signal by a transmitter undergoes a series of attenuations and
reflections before it reaches the receiver, and this variation is referred to as the Channel State
Information (CSI). CSI captures the path of a wireless signal at a specific carrier frequency
from the transmitting antenna to the receiving antenna. The basis of CSI-based activity
recognition lies in the fact that the amplitude and phase of the CSI signal will deviate from
their normal measurements when an object or a person moves between the transmitter and
the receiver antenna, thereby inducing movement-related perturbations.

2.2.2. The Relationship between CSI and Worker Falls

We can measure the value of CSI propagated by the transmitter and receiver for
behavior recognition purposes. As shown in Figure 2, the wireless propagation model is
established based on the path attenuation model [52]. Wi-Fi signals are propagated through
physical space by reflections from various objects. The propagation of wireless signals is
limited by physical space, resulting in the signals received carrying information regarding
the routes through which they have traveled. If construction workers are present in the
environment, scattering from the human body introduces additional signal paths [53]. CSI
must therefore have some connection to worker falls.
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The formula of the overall propagation model is as follows:

Pr(d) =
PtGtGrλ2

(4π)2(d + 4h + ∆)2

where Pt represents the transmit power; Pr(d) is the received power; Gt and Gr are the
amount of transmit gain and the amount of receive gain, respectively; λ indicates the
wavelength; d and h are the propagation distance and indoor space height, respectively;
and ∆ denotes the approximate amount of signal disturbance caused by the presence
of personnel.
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CSI describes the quality change in the environmental reflection experienced by the
signal during the propagation process and is based on the evaluation matrix of the sig-
nal propagation quality at the signal-receiving end in Orthogonal Frequency Division
Multiplexing (OFDM) technology [57]. The physical layer of current commercial wireless
devices uses OFDM, complies with IEEE 802.11 n/ac standards, and allows Multi-Input
Multi-Output (MIMO) technology to communicate. This advantage provides sufficient
conditions for extracting adequate CSI information [56].

2.3. Knowledge Gaps and Research Objectives

As described in Section 2.1, previous research was based on manual detection, wear-
able devices, computer vision, and other techniques to detect worker falls on construction
sites. However, they have obvious limitations. To overcome the limitations of these stud-
ies, this study proposes using CSI data extracted from Wi-Fi devices for fall monitoring
of workers at construction sites. The first advantage of using CSI is its objectivity and
time-saving nature. Unlike manual detection, which requires the safety manager to always
focus on all workers, CSI-based methods can detect falls automatically and provide imme-
diate alerts. This approach can save time and reduce the risk of human error in detecting
falls. Another advantage of using CSI is its non-invasive nature. Unlike wearable sensors,
which can be uncomfortable and require individuals to wear them, CSI uses existing Wi-Fi
infrastructure, which does not interfere with individuals’ daily activities. Additionally,
CSI does not require line of sight or complex camera setups, making it a low-cost and
easy-to-deploy approach for fall detection. CSI also provides privacy advantages, as it does
not capture images or personal data. This is especially important for workers who may be
reluctant to wear sensors or cameras due to privacy concerns. By using CSI, privacy can be
maintained, and individuals can be assured that their personal information is not being
recorded. However, one of the main disadvantages of using CSI is that its accuracy can be
affected by various factors, such as the location of the Wi-Fi router and interference from
other moving objects. In addition, CSI is susceptible to interference from other wireless
transmitter devices on the same frequency, which may also affect Wi-Fi signal variations.
Despite these limitations, CSI-based fall detection remains a promising approach to pre-
venting falls in the workplace and improving the safety of workers. Although the use of
CSI signals to detect falls is a promising strategy, no study has analyzed and experimented
with its feasibility. In this context, this paper investigates the feasibility of using CSI to
detect falls among construction workers. Specifically, this study demonstrates that CSI
signals can accurately identify construction worker falls on actual construction sites, which
helps provide timely access to medical care for injured construction workers.

3. Methodology
3.1. Data Collection Method

The collection of CSI data is a crucial step in the process of fall detection in construction
sites. Channel State Information (CSI) is a wireless communication concept that pertains
to information about the characteristics of the wireless channel between a transmitter
and a receiver. It encompasses crucial information, including the signal’s amplitude,
phase, and frequency response, which can be utilized to extract various signal features.
CSI is particularly sensitive to movement and location changes of objects and people in
the environment. The foundation of CSI-based activity recognition is grounded in the
observation that the amplitude and phase of the CSI signal will undergo alterations from
their typical measurements when an object or person moves between the transmitter and
receiver antenna. This causes movement-related perturbations, which can be detected and
utilized to recognize various activities.

The widespread usage of commercial routers in these environments makes them
an attractive choice for data collection. Two popular tools used for CSI data acquisition are
the Linux 802.11n CSI Tool and the Atheros CSI Tool. The Linux 802.11n CSI Tool, although
effective, requires outdated hardware and often necessitates modifications to the computer
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being used. As a result, the Atheros CSI Tool is preferred, as it is an open-source tool that
enables the extraction of wireless communication data from Wi-Fi network cards. This
information includes CSI, the received packet payload, and other relevant details, such as
the Timestamp, RSSI per antenna, and Data Rate.

The receivers and transmitters are two Wi-Fi routers with built-in Atheros AR9580
NICs equipped with OpenWrt systems. In this study, the injector monitor mode was used
to send and receive CSI data. The monitor mode allows the modulation of the transmission
rate, the number of packets sent, the number of transmitting antennae, and the short/long
guard interval. It is essential to invoke the monitor mode, which allows for more standard
CSI data to be obtained for subsequent model training. Two laptops with Intel Core i5 series
processors, Windows 10, Xshell6, and Winscp were selected as the processing terminals to
extract the received CSI data.

This study represents a significant advancement in prior research through the design
of a system that incorporates Tx-Rx communication to calculate the Channel State Infor-
mation (CSI) and collect data for analysis. The system operates by having the transmitter
continuously transmit Wi-Fi packets while the receiver receives the data and computes
the CSI. In order to address the limitation of the router’s limited data storage capacity, the
system has been optimized through the following measures: (1) the transmitter transmits
data to the receiver, which then calculates the CSI; (2) the raw CSI data are extracted from
the receiver by the user’s laptop and processed, saved, and visualized using MATLAB
R2021a. The procedure for obtaining CSI data is illustrated in Figure 3.
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3.2. CSI Data Pre-Processing Method

CSI data consist of two components: phase and amplitude. During the subsequent
data analysis in this paper, we use only amplitude information for fall identification. As
the transmit power and rate vary, unpredictable impulsive noise is generated between the
transmitter and receiver. The raw CSI data received have a lot of noisy information that
is irrelevant to the worker’s actions. To avoid losing any possible data information, the
pre-processing of CSI data in this paper is limited to the removal of obvious noise. In this
study, a median filter was introduced for noise reduction. The change in the amplitude of
CSI data before and after noise reduction is shown in Figure 4 below.
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3.3. Fall Detection Method

Previous studies have investigated the application of various machine-learning algo-
rithms for fall recognition, including deep recurrent neural networks (RNNs), support vector
machines (SVMs), and logistic regression algorithms. The selection of a particular algorithm
is based on its ability to analyze and classify the collected CSI data, leading to accurate fall
detection. The action recognition process is akin to speech recognition. The utilization of
Long Short-Term Memory (LSTM) can mitigate the potential for gradient disappearance or
explosion during neural network training and result in high recognition accuracy [58].

Fall behavior often exhibits both pre-fall features, such as body tilt, and post-fall fea-
tures, such as body smoothness. To consider both past and future information, bidirectional
LSTM (BLSTM) is used for activity recognition in this paper. BLSTM provides a compre-
hensive understanding of both pre-fall and post-fall features. The use of LSTM offers two
advantages. Firstly, LSTM is capable of automatically extracting features, obviating the
need for pre-processing data, which meets our expectations. Secondly, LSTM preserves
the temporal state information of the activity, enabling differentiation between similar
activities such as “lie down” and “fall”. Although these activities exhibit similar velocity
characteristics, they have distinctive pre-states and post-states. The memory capacity of
LSTM allows for the identification of these activities.

4. Experiments
4.1. Experimental Design

The experiment was carried out using two Wi-Fi routers with Atheros 9580 NIC chips
and two laptops. One laptop served as a transmitter, and the other acted as a receiver;
both were connected to a single network. Data are sent and received through a local area
network between the transmitter and receiver before being sent to the computer performing
the processing. The transmission rate must be high enough (around 1 kHz) to record the
instant of a recently completed fall for the CSI to demonstrate substantial changes brought
on by movement. This is because when the sampling rate is around 50 Hz, we observe
serious degradation in the performance of the classification method, even though it runs
much faster. The cost of denoising and feature extraction increases when the sampling rate
is increased because more samples are taken. Accurate recognition may not be improved
by increasing the sample rate. Therefore, a good compromise between the computational
cost and accuracy can be obtained by choosing a suitable sampling rate (approx. 1 kHz). In
total, 1000 Wi-Fi packets are delivered every second, and the Atheros CSI Tool extracts the
CSI from the Wi-Fi signal. In the experiment, two receiving antennae and one broadcasting
antenna were set up, making a total of two communication lines. Personnel operation
information was collected at a 2.4 GHz center frequency.
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To collect the most realistic experimental data on the fall behavior of construction
workers, the experiment was set up on an actual construction site. The distance between
the transmitter and receiver was set at 4.0 m, and the height was set at 0.5 m for line-of-
sight circumstances (this was set to obtain a larger signal-to-noise ratio for sensing human
movement). The transmitter and receiver were positioned 1 m above the ground to provide
a clear signal path. The perceived real-life experimental scenario and its planar structure
are shown in Figure 5.
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4.2. Description of the Dataset

Six construction workers who were present at the site provided the CSI data for this
experiment (two carpenters and four electricians). Traditional CSI-based behavior recognition
typically focuses on undisturbed laboratory environments, but actual construction sites are
subject to numerous disruptive factors, such as construction noise, vibrations, and irregular
building walls, which can affect the propagation of CSI. To demonstrate the experiment’s rigor,
the test site was located in a wastewater treatment facility renovation project in Chengdu,
Sichuan Province, which included an operating tower crane and excavator. Collecting data
in this way realistically captures CSI fluctuations due to background factors. Data collection
began on 4 September 2022. Four men and two women, ages 20 to 50, with five to sixteen
years of work experience in the construction industry, made up the participants. None of the
individuals reported having any clinical issues that would limit their capacity for everyday
activities on a physical or mental level. The six construction workers’ demographic details
and the number of groups for which data were gathered are shown in Table 1.

Table 1. The demographic information for participants in the experiment.

Worker No. Age (Years) Height (cm) Weight (kg) Working
Experience (Years) Occupation Gender Number of

Experiments

1 33 185 79 5 Carpenter Male 60

2 32 183 80 9 Carpenter Male 60

3 29 175 75 6 Electrician Male 60

4 40 165 63 15 Electrician Male 60

5 41 169 65 16 Electrician Female 60

6 38 172 69 9 Electrician Female 60

The various characteristics of different individuals can increase the variety of training
samples and make it easier to identify various worker falls using artificial neural networks.
There may be differences in the detection rates among workers based on their height,
weight, and gender. The accuracy of CSI-based fall detection depends on the signal strength
and quality of the received Wi-Fi signals, which may be affected by the worker’s body
composition and orientation. For instance, taller or heavier workers may cause more signal
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attenuation due to the increased number of obstacles and absorption of the Wi-Fi signal.
Similarly, the orientation of the worker’s body may also affect the signal. Gender may also
play a role in the accuracy of fall detection since men and women tend to have different
body compositions and postures, leading to differences in signal attenuation and variations
in the received Wi-Fi signal.

These factors can be mitigated by increasing the sample size. For example, collecting
data from more workers can reduce the impact of individual worker characteristics, such as
height, weight, and gender, on the accuracy of the test. This approach can help in obtaining
more reliable results and enhancing the generalizability of the findings. There is no clear
rule for how many samples are required to train a neural network; instead, it is an iterative
process. The quantity of data required for the dataset depends on the difficulty of the
activity and the technique used. A total of 60 sets of experiments were conducted by each
of the six construction employees who were given the task of participating in the study.
These activities were “LieDown”, “FallDown”, “Jump”, “Sit”, “StandUp”, and “Walking”.
The details of these activities can be seen in Figure 6.
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CSI data for actions other than falls were collected to demonstrate that a CSI-based
fall recognition model can accurately distinguish between falls and fall-like behaviors.
Only predefined actions were executed at intermediate intervals during the entire data
acquisition process. More specifically, the worker was virtually steady at the start and
finish of the data collection. The experiment was manually run, so there was always
a chance that the times it took to start and end would vary slightly. Each worker performed
each action ten times, with the duration of individual tasks set at approximately 15 to
25 s. The overall image was recorded at the same time as the data were collected, thus
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ensuring that the timestamps correspond to the data annotation at a later stage. A total of
360 data streams (6 worker activities, 10 repeated trials, and 6 participants) were gathered
for this study. Each action dataset contains 56 subcarriers, each containing approximately
20,000 samples. The relationship corresponding to the fall occurrence and the change in
CSI signal amplitude is shown in Figure 7 below. The fall behavior occurred during sharp
fluctuations in CSI amplitude.
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The CSI amplitudes of the 56 subcarriers collected for the 6 actions as a function of
time are shown in Figure 8 below. It can be seen that the different worker actions have
significantly different effects on the actual CSI signal.
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5. Results

The LSTM technique differs from traditional approaches in that it can directly extract
CSI features without using PCA or STFT. The network receives 56 × 19,000 (feature samples)
features as its input and outputs a probability for each of the six classes. Two hundred
hidden units are picked, with just one hidden layer being taken into consideration. We
utilized Stochastic Gradient Descent (SGD) for the numerical optimization of cross-entropy
with a batch size of 200 and a learning rate of 1 × 10−4. One disadvantage is the lengthy
training period associated with employing LSTM in this manner. However, one may also
leverage GPUs and accelerate training by utilizing deep learning tools such as TensorFlow.
The test may be completed quickly after LSTM has been trained. To assess the effectiveness
of the classification model, we measured the precision, loss rate, and accuracy.

Figure 9 provides an illustration of the accuracy and loss of the proposed fall detection
system’s training process. We can observe that, during training, the network’s performance
stabilizes after around 100 iterations.
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The CSI values for various activities vary, which affects the recognition accuracy. For
each activity, we use a confusion matrix (also known as an error matrix) to indicate how well
our suggested classifier performed. The rows correspond to the predicted categories, while
the columns correspond to the actual classes. The results in the confusion matrix (Figure 10)
show an accuracy of over 88% for all of these activities. For “LieDown”, “FallDown”,
“Jump”, “Sit”, “StandUp”, and “Walking”, the mean detection rates for the six movements
were 97%, 99%, 100%, 88%, 91%, and 99%, respectively.
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Table 2 illustrates the fall detection accuracy of the CSI-based fall detection system
proposed in this study in comparison to fall detection systems based on computer vision
and wearable sensors. The table reveals that the CSI-based fall detection technology is
capable of meeting practical usage requirements in terms of fall detection accuracy.

Table 2. Fall detection accuracy of fall detection systems using different methods.

Methods Accuracy References

Computer Vision
98.0% [59]

99.0% [60]

Wearable Sensor
97.6% [61]

94.1% [62]

Channel State Information (CSI) 99.0%

Activities that involve more prominent limb movements, such as “FallDown”, “Jump”,
and “Walking”, exhibit higher recognition accuracy (as shown in Figure 10) due to their
significant impact on CSI features. In addition, the recognition rate of fall activity is of the
utmost importance for fall detection. The BLSTM networks we trained were 99% accurate
for fall recognition, which makes these models very effective for fall detection systems on
construction sites. Another observation is the relatively low accuracy of recognition of the
actions “Sit” and “StandUp”. One possible explanation for this phenomenon is that these
activities result in similar changes in CSI values, as they involve similar movement speeds.
Nonetheless, the recognition accuracy is considered acceptable, and the problem could
potentially be resolved in the future by expanding the dataset.

6. Discussion and Future Work
6.1. Performance of CSI-Based Fall Detection Method

This paper presents a low-cost Wi-Fi-based fall detection method for construction
workers. The approach employs wireless routing to acquire a CSI signal, which is subse-
quently utilized to extract features and identify construction worker falls. The findings of
this study demonstrate that worker behavior can impact the CSI signal, and these inter-
ferences can be measured using the proposed LSTM. The study investigates six different
types of common behaviors on construction sites. The results show a robust correlation
between worker behavior and the amplitude of the CSI signal. These observations indicate
that the proposed method can effectively identify the fall events of construction workers
with a high fall detection accuracy.

The use of CSI data extracted from Wi-Fi devices for fall monitoring of workers
at construction sites can overcome the limitations of previous research. Unlike manual
detection, which demands continuous attention, CSI-based methods mitigate the likelihood
of human error. In addition, CSI technology does not disrupt daily operations and does not
necessitate line-of-sight or intricate arrangements. Furthermore, CSI-based methods do not
capture images or collect personal data, making them particularly valuable for individuals
who have privacy concerns.

6.2. Limitations

This study demonstrates the potential of the suggested method for detecting falls of
construction workers in controlled experimental settings, but there are still some limitations
to consider. Firstly, the conducted experiment only tested activity without any additional
tasks, such as carrying materials. Carrying objects can alter the body’s center of gravity
and modify the pattern of radio waves reflected by the body, potentially impacting the
accuracy of the CSI-based fall detection system. Therefore, it is necessary to investigate
the impact of carrying objects and other disruptions on CSI in real-world settings to
demonstrate the feasibility of the proposed approach. Moreover, the study needs to explore
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how diverse characteristics of construction workers, including work experience, age, and
gender, affect CSI.

Secondly, to ensure the safety of construction workers, the experimental scenarios
were conducted on relatively flat construction site roads. This led to a lack of specific
data on falls in more complex construction scenarios, such as falls in workers climbing
ladders or walking on high-altitude scaffolding. Furthermore, the presence of other moving
objects around workers, such as construction equipment, can result in significant changes
in the CSI amplitude and phase. Future research should focus on improving the model’s
robustness to function effectively in complex scenarios involving multiple moving objects.
Although the preliminary results are promising, the system described is still in its early
stages, and more complex scenarios should be investigated and analyzed to enhance the
decision module of the fusion system.

Finally, to implement the CSI-based fall detection system in practical construction
site scenarios, the limitations of manual data transmission and model training need to be
addressed to reduce the cost of human technological resources. Future research needs to
extend this study to develop a fully automated system for recognizing worker fall activities,
which includes creating an operation-friendly visual monitoring interface and embedded
systems. Such investigations could provide valuable insights into the limitations and
potential of using CSI for fall detection in real-world scenarios.

6.3. Future Directions

Several outstanding challenges require further attention in future work, including
utilizing the phase information of CSI in addition to the magnitude, determining the
optimal placement location for the equipment, and identifying the behavior of multiple
workers simultaneously.

6.3.1. CSI Phase Information

The underutilization of phase information derived from Channel State Information
(CSI) for activity recognition in the literature can be attributed to the presence of errors,
including Carrier Frequency Offset (CFO) and Sampling Frequency Offset (SFO). Neverthe-
less, these errors can be effectively mitigated by subtracting the phase information from
neighboring antennae, resulting in the calculation of the phase difference. The phase differ-
ence is correlated with the Angle of Arrival (AOA); any variations in the target’s position
lead to corresponding fluctuations in the AOA and, subsequently, the phase difference. The
rapid and substantial motion of the target scatters the signal in a more randomized manner,
leading to a more dynamic and rapid change in the AOA and phase difference. Utilizing
these variations in phase difference and amplitude as features for activity classification
through the implementation of a suitable machine-learning algorithm remains an area for
future investigation.

6.3.2. Wi-Fi Router Placement in Construction Sites

The focus of this work is on the use of CSI-based methods for fall detection on
construction sites. However, finding the best location to install a Wi-Fi router to ensure
good signal coverage and excellent detection performance is not easy. In the future, we
plan to investigate the best locations to place the routers to optimize signal coverage and
fall detection.

6.3.3. Multi-Worker Activity Recognition

The present study focused on the recognition of falls in a single construction worker.
However, recognizing falls among multiple workers simultaneously presents a more com-
plex and intriguing challenge. The deployment of multiple receivers may offer an added
advantage in accurately differentiating between the activities of multiple individuals. Fur-
ther investigation in this direction is an area for future study.
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7. Conclusions

This study investigated the potential of using CSI data from commercial Wi-Fi routers
to monitor construction workers’ falls at construction sites. To achieve this, data were
collected from six construction workers in a fall experiment with 360 sets of activities.
The results showed that (1) there was a significant correlation between changes in the
CSI amplitude and construction workers’ fall behavior and (2) CSI signals extracted from
commercial routers could accurately discriminate between falls and fall-like movements,
identifying fall movements with 99% accuracy. The main contribution of this study is
to demonstrate the feasibility of using commercial Wi-Fi routers for construction worker
fall monitoring. This research is the first attempt to use the new CSI data for the fall
identification of construction workers on construction sites. The objective and continuous
fall monitoring of construction workers, in a non-invasive manner, is important due to the
complexity and dynamic nature of their behavior. This study will enable timely access to
medical care for injured workers and improve the overall safety of the construction site.

This study also suggests future research directions for using CSI data for fall detection
on construction sites. One area is utilizing the phase information of CSI in addition to
the magnitude of activity recognition. The study also highlights the need to determine
the optimal placement location for Wi-Fi routers to ensure good signal coverage and
excellent detection performance. Simultaneously recognizing falls among multiple workers
is another area for future investigation, which may involve deploying multiple receivers.

Author Contributions: Conceptualization, H.L.; Methodology, R.G.; Software, R.G.; Validation,
R.G. and D.H.; Formal analysis, R.G.; Investigation, R.G.; Resources, R.G.; Data curation, R.G.;
Writing—original draft, R.G.; Writing—review & editing, R.G., H.L., D.H. and R.L.; Visualization,
R.L.; Supervision, H.L.; Project administration, H.L. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The datasets generated and/or analyzed during the current study are not
publicly available due to ethical restrictions.

Acknowledgments: The authors would like to acknowledge financial support from The Hong Kong
Polytechnic University, which provided salary support during the course of this research.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Dong, X.; Men, Y.; Fujimoto, A. The Construction Chart Book. In USA, CPWR—The Center for Construction Research and Training;

Silver Spring: Montgomery County, MD, USA, 2018; Volume 6.
2. Kim, B.J.; Robinson, C.J. Postural control and detection of slip/fall initiation in the elderly population. Ergonomics 2005, 48,

1065–1085. [CrossRef]
3. Ling, F.Y.Y.; Liu, M.; Woo, Y.C. Construction fatalities in Singapore. Int. J. Proj. Manag. 2009, 27, 717–726. [CrossRef]
4. Nenonen, N. Analysing factors related to slipping, stumbling, and falling accidents at work: Application of data mining methods

to Finnish occupational accidents and diseases statistics database. Appl. Ergon. 2013, 44, 215–224. [CrossRef]
5. Antwi-Afari, M.F.; Li, H.; Edwards, D.J.; Pärn, E.A.; Seo, J.; Wong, A.Y.L. Biomechanical analysis of risk factors for work-related

musculoskeletal disorders during repetitive lifting task in construction workers. Autom. Constr. 2017, 83, 41–47. [CrossRef]
6. Antwi-Afari, M.F.; Li, H.; Edwards, D.J.; Pärn, E.A.; Owusu-Manu, D.-G.; Seo, J.; Wong, A.Y.L. Identification of potential

biomechanical risk factors for low back disorders during repetitive rebar lifting. Constr. Innov. 2018, 18. [CrossRef]
7. Kong, L.; Li, H.; Yu, Y.; Luo, H.; Skitmore, M.; Antwi-Afari, M.F. Quantifying the physical intensity of construction workers,

a mechanical energy approach. Adv. Eng. Inform. 2018, 38, 404–419. [CrossRef]
8. Umer, W.; Antwi-Afari, M.F.; Li, H.; Szeto, G.P.Y.; Wong, A.Y.L. The prevalence of musculoskeletal symptoms in the construction

industry: A systematic review and meta-analysis. Int. Arch. Occup. Environ. Health 2018, 91, 125–144. [CrossRef] [PubMed]

http://doi.org/10.1080/00140130500071028
http://doi.org/10.1016/j.ijproman.2008.11.002
http://doi.org/10.1016/j.apergo.2012.07.001
http://doi.org/10.1016/j.autcon.2017.07.007
http://doi.org/10.1108/CI-05-2017-0048
http://doi.org/10.1016/j.aei.2018.08.005
http://doi.org/10.1007/s00420-017-1273-4
http://www.ncbi.nlm.nih.gov/pubmed/29090335


Int. J. Environ. Res. Public Health 2023, 20, 4998 15 of 17

9. Alwan, M.; Rajendran, P.J.; Kell, S.; Mack, D.; Dalal, S.; Wolfe, M.; Felder, R. A smart and passive floor-vibration based fall detector
for elderly. In Proceedings of the 2006 2nd International Conference on Information & Communication Technologies, Damascus,
Syria, 24–28 April 2006; Volume 1, pp. 1003–1007.

10. Wild, D.; Nayak, U.S.; Isaacs, B. How dangerous are falls in old people at home? Br. Med. J. Clin. Res. Ed. 1981, 282, 266–268.
[CrossRef] [PubMed]

11. Beavers, J.E.; Moore, J.R.; Schriver, W.R. Steel erection fatalities in the construction industry. Constr. Eng. Manag. 2009, 135,
227–234. [CrossRef]

12. Chi, C.-F.; Chang, T.-C.; Ting, H.-I. Accident patterns and prevention measures for fatal occupational falls in the construction
industry. Appl. Ergon. 2005, 36, 391–400. [CrossRef]

13. Chi, C.-F.; Lin, S.-Z.; Dewi, R.S. Graphical fault tree analysis for fatal falls in the construction industry. Accid. Anal. Prev. 2014, 72,
359–369. [CrossRef] [PubMed]

14. Albert, A.; Hallowell, M.R.; Kleiner, B.; Chen, A.; Golparvar-Fard, M. Enhancing construction hazard recognition with high-fidelity
augmented virtuality. J. Constr. Eng. Manag. 2014, 140, 4014024. [CrossRef]

15. Albert, A.; Hallowell, M.R.; Kleiner, B.M. Enhancing construction hazard recognition and communication with energy-based
cognitive mnemonics and safety meeting maturity model: Multiple baseline study. J. Constr. Eng. Manag. 2014, 140, 4013042.
[CrossRef]

16. Bianchi, F.; Redmond, S.J.; Narayanan, M.R.; Cerutti, S.; Lovell, N.H. Barometric pressure and triaxial accelerometry-based falls
event detection. IEEE Trans. Neural Syst. Rehabil. Eng. 2010, 18, 619–627. [CrossRef] [PubMed]

17. Bourke, A.K.; O’brien, J.V.; Lyons, G.M. Evaluation of a threshold-based tri-axial accelerometer fall detection algorithm. Gait
Posture 2007, 26, 194–199. [CrossRef] [PubMed]

18. Dai, J.; Bai, X.; Yang, Z.; Shen, Z.; Xuan, D. PerFallD: A pervasive fall detection system using mobile phones. In Proceedings of
the 2010 8th IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops),
Mannheim, Germany, 29 March–2 April 2010; pp. 292–297.

19. Dzeng, R.J.; Fang, Y.C.; Chen, I.C. A feasibility study of using smartphone built-in accelerometers to detect fall portents. Autom.
Constr. 2014, 38, 74–86. [CrossRef]

20. Huynh, Q.T.; Nguyen, U.D.; Irazabal, L.B.; Ghassemian, N.; Tran, B.Q. Optimization of an accelerometer and gyroscope-based fall
detection algorithm. J. Sens. 2015, 2015, 452078. [CrossRef]

21. Spasova, V.; Iliev, I. A survey on automatic fall detection in the context of ambient assisted living systems. Int. J. Adv. Comput. Res.
2014, 4, 94.

22. Bian, Z.-P.; Hou, J.; Chau, L.-P.; Magnenat-Thalmann, N. Fall detection based on body part tracking using a depth camera. IEEE J.
Biomed. Heal. Inform. 2014, 19, 430–439. [CrossRef]

23. Kong, X.; Meng, L.; Tomiyama, H. Fall detection for elderly persons using a depth camera. In Proceedings of the 2017 International
Conference on Advanced Mechatronic Systems (ICAMechS), Xiamen, China, 6–9 December 2017; pp. 269–273.

24. Foroughi, H.; Aski, B.S.; Pourreza, H. Intelligent video surveillance for monitoring fall detection of elderly in home environments.
In Proceedings of the 2008 11th International Conference on Computer and Information Technology, Khulna, Bangladesh, 24–27
December 2008; pp. 219–224.

25. Yu, X. Approaches and principles of fall detection for elderly and patient. In Proceedings of the HealthCom 2008-10th International
Conference on E-health Networking, Applications and Services, Singapore, 7–9 July 2008; pp. 42–47.

26. Ma, Y.; Zhou, G.; Wang, S. WiFi sensing with channel state information: A survey. ACM Comput. Surv. 2019, 52, 1–36. [CrossRef]
27. Yousefi, S.; Narui, H.; Dayal, S.; Ermon, S.; Valaee, S. A survey on behavior recognition using WiFi channel state information.

IEEE Commun. Mag. 2017, 55, 98–104. [CrossRef]
28. Ding, J.; Wang, Y. A WiFi-based smart home fall detection system using recurrent neural network. IEEE Trans. Consum. Electron.

2020, 66, 308–317. [CrossRef]
29. Chowdhury, T.Z.; Leung, C.; Miao, C.Y. WiHACS: Leveraging WiFi for human activity classification using OFDM subcarriers’

correlation. In Proceedings of the 2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Montreal, QC,
Canada, 14–16 November 2017; pp. 338–342.

30. Guo, H.; Yu, Y.; Skitmore, M. Visualization technology-based construction safety management: A review. Autom. Constr. 2017, 73,
135–144. [CrossRef]

31. Carbonari, A.; Giretti, A.; Naticchia, B. A proactive system for real-time safety management in construction sites. Autom. Constr.
2011, 20, 686–698. [CrossRef]

32. Min, S.-N.; Kim, J.-Y.; Parnianpour, M. The effects of safety handrails and the heights of scaffolds on the subjective and objective
evaluation of postural stability and cardiovascular stress in novice and expert construction workers. Appl. Ergon. 2012, 43,
574–581. [CrossRef] [PubMed]

33. Ohdo, K.; Hino, Y.; Takanashi, S.; Takahashi, H.; Toyosawa, Y. Study on fall protection from scaffolds by scaffold sheeting during
construction. Procedia Eng. 2011, 14, 2179–2186. [CrossRef]

34. Lipscomb, H.J.; Glazner, J.E.; Bondy, J.; Guarini, K.; Lezotte, D. Injuries from slips and trips in construction. Appl. Ergon. 2006, 37,
267–274. [CrossRef]

http://doi.org/10.1136/bmj.282.6260.266
http://www.ncbi.nlm.nih.gov/pubmed/6779979
http://doi.org/10.1061/(ASCE)0733-9364(2009)135:3(227)
http://doi.org/10.1016/j.apergo.2004.09.011
http://doi.org/10.1016/j.aap.2014.07.019
http://www.ncbi.nlm.nih.gov/pubmed/25124170
http://doi.org/10.1061/(ASCE)CO.1943-7862.0000860
http://doi.org/10.1061/(ASCE)CO.1943-7862.0000790
http://doi.org/10.1109/TNSRE.2010.2070807
http://www.ncbi.nlm.nih.gov/pubmed/20805056
http://doi.org/10.1016/j.gaitpost.2006.09.012
http://www.ncbi.nlm.nih.gov/pubmed/17101272
http://doi.org/10.1016/j.autcon.2013.11.004
http://doi.org/10.1155/2015/452078
http://doi.org/10.1109/JBHI.2014.2319372
http://doi.org/10.1145/3310194
http://doi.org/10.1109/MCOM.2017.1700082
http://doi.org/10.1109/TCE.2020.3021398
http://doi.org/10.1016/j.autcon.2016.10.004
http://doi.org/10.1016/j.autcon.2011.04.019
http://doi.org/10.1016/j.apergo.2011.09.002
http://www.ncbi.nlm.nih.gov/pubmed/21986560
http://doi.org/10.1016/j.proeng.2011.07.274
http://doi.org/10.1016/j.apergo.2005.07.008


Int. J. Environ. Res. Public Health 2023, 20, 4998 16 of 17

35. Bentley, T.A.; Hide, S.; Tappin, D.; Moore, D.; Legg, S.; Ashby, L.; Parker, R. Investigating risk factors for slips, trips and falls in
New Zealand residential construction using incident-centred and incident-independent methods. Ergonomics 2006, 49, 62–77.
[CrossRef]

36. Hsiao, H. Fall prevention research and practice: A total worker safety approach. Ind. Health 2014, 52, 381–392. [CrossRef]
37. Nadhim, E.A.; Hon, C.; Xia, B.; Stewart, I.; Fang, D. Falls from height in the construction industry: A critical review of the

scientific literature. Int. J. Environ. Res. Public Health 2016, 13, 638. [CrossRef]
38. Bentley, T.A.; Haslam, R.A. Identification of risk factors and countermeasures for slip, trip and fall accidents during the delivery

of mail. Appl. Ergon. 2001, 32, 127–134. [CrossRef] [PubMed]
39. Chang, W.-R. The effect of surface roughness and contaminant on the dynamic friction of porcelain tile. Appl. Ergon. 2001, 32,

173–184. [CrossRef] [PubMed]
40. Kaskutas, V.; Dale, A.M.; Nolan, J.; Patterson, D.; Lipscomb, H.J.; Evanoff, B. Fall hazard control observed on residential

construction sites. Am. J. Ind. Med. 2009, 52, 491–499. [CrossRef] [PubMed]
41. Kaskutas, V.; Dale, A.M.; Lipscomb, H.; Evanoff, B. Fall prevention and safety communication training for foremen: Report of

a pilot project designed to improve residential construction safety. J. Saf. Res. 2013, 44, 111–118. [CrossRef] [PubMed]
42. Lee, H.; Lee, G.; Lee, S.; Ahn, C.R. Assessing exposure to slip, trip, and fall hazards based on abnormal gait patterns predicted

from confidence interval estimation. Autom. Constr. 2022, 139, 104253. [CrossRef]
43. Antwi-Afari, M.F.; Li, H. Fall risk assessment of construction workers based on biomechanical gait stability parameters using

wearable insole pressure system. Adv. Eng. Inform. 2018, 38, 683–694. [CrossRef]
44. Lim, T.K.; Park, S.M.; Lee, H.C.; Lee, D.E. Artificial Neural Network-Based Slip-Trip Classifier Using Smart Sensor for Construction

Workplace. J. Constr. Eng. Manag. 2016, 142, 04015065. [CrossRef]
45. Ahn, C.R.; Lee, S.; Sun, C.; Jebelli, H.; Yang, K.; Choi, B. Wearable Sensing Technology Applications in Construction Safety and

Health. J. Constr. Eng. Manag. 2019, 145, 03119007. [CrossRef]
46. Kim, H.; Ahn, C.R.; Yang, K. Identifying safety hazards using collective bodily responses of workers. J. Constr. Eng. Manag. 2017,

143, 4016090. [CrossRef]
47. Fang, Y.C.; Dzeng, R.J. Accelerometer-based fall-portent detection algorithm for construction tiling operation. Autom. Constr.

2017, 84, 214–230. [CrossRef]
48. Yang, K.; Aria, S.; Ahn, C.R.; Stentz, T.L. Automated detection of near-miss fall incidents in iron workers using inertial

measurement units. In Proceedings of the 2014 Construction Research Congress: Construction in a Global Network, CRC 2014,
Atlanta, GA, USA, 19–21 May 2014; pp. 935–944. [CrossRef]

49. Yang, K.; Jebelli, H.; Ahn, C.R.; Vuran, M.C. Threshold-based approach to detect near-miss falls of iron workers using inertial
measurement units. In Computing in Civil Engineering 2015; American Society of Civil Engineers: Reston, VA, USA, 2015; pp.
148–155.

50. Antwi-Afari, M.F.; Li, H.; Anwer, S.; Yevu, S.K.; Wu, Z.Z.; Antwi-Afari, P.; Kim, I. Quantifying workers’ gait patterns to identify
safety hazards in construction using a wearable insole pressure system. Saf. Sci. 2020, 129, 104855. [CrossRef]

51. Noury, N.; Fleury, A.; Rumeau, P.; Bourke, A.K.; Laighin, G.O.; Rialle, V.; Lundy, J.-E. Fall detection-principles and methods. In
Proceedings of the 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon,
France, 22–26 August 2007; pp. 1663–1666.

52. Ma, J.; Wang, Y.; Wang, Y.; Zhang, D.; Wang, H. When can we detect human respiration with commodity wifi devices? In
Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing UbiComp 2016 Adjunct,
Heidelberg, Germany, 12–16 September 2016; pp. 325–328. [CrossRef]

53. Zeng, Y.; Pathak, P.H.; Mohapatra, P. WiWho: WiFi-Based Person Identification in Smart Spaces. In Proceedings of the 2016 15th
ACM/IEEE International Conference on Information Processing in Sensor Networks, IPSN 2016, Vienna, Austria, 11–14 April
2016; pp. 1–12. [CrossRef]

54. Stone, E.E.; Skubic, M. Fall detection in homes of older adults using the Microsoft Kinect. IEEE J. Biomed. Heal. Inform. 2014, 19,
290–301. [CrossRef] [PubMed]

55. Youssef, M.; Mah, M.; Agrawala, A. Challenges: Device-free passive localization for wireless environments. In Proceedings of the
13th Annual ACM International Conference on Mobile Computing and Networking, Montreal, QC, Canada, 9–14 September
2007; pp. 222–229.

56. Zhang, J.; Wei, B.; Hu, W.; Kanhere, S.S. WiFi-ID: Human identification using WiFi signal. In Proceedings of the 12th Annual
International Conference on Distributed Computing in Sensor Systems, DCOSS 2016, Washington, DC, USA, 26–28 May 2016;
pp. 75–82. [CrossRef]

57. Zhang, J.; Wei, B.; Hu, W.; Kanhere, S.S.; Tan, A. Human identification using WiFi signal. In Proceedings of the 2016 IEEE
International Conference on Pervasive Computing and Communication Workshops, PerCom Workshops 2016, Sydney, Australia,
14–19 March 2016; pp. 1–2. [CrossRef]

58. Graves, A.; Mohamed, A.; Hinton, G. Speech recognition with deep recurrent neural networks. In Proceedings of the 2013 IEEE
International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 6645–6649.

59. Mobasheri, B.; Tabbakh, S.R.; Forghani, Y. An Approach for Fall Prediction Based on Kinematics of Body Key Points Using LSTM.
Int. J. Environ. Res. Public Health 2022, 19, 13762. [CrossRef]

http://doi.org/10.1080/00140130612331392236
http://doi.org/10.2486/indhealth.2014-0110
http://doi.org/10.3390/ijerph13070638
http://doi.org/10.1016/S0003-6870(00)00048-X
http://www.ncbi.nlm.nih.gov/pubmed/11277504
http://doi.org/10.1016/S0003-6870(00)00054-5
http://www.ncbi.nlm.nih.gov/pubmed/11277510
http://doi.org/10.1002/ajim.20698
http://www.ncbi.nlm.nih.gov/pubmed/19363784
http://doi.org/10.1016/j.jsr.2012.08.020
http://www.ncbi.nlm.nih.gov/pubmed/23398712
http://doi.org/10.1016/j.autcon.2022.104253
http://doi.org/10.1016/j.aei.2018.10.002
http://doi.org/10.1061/(ASCE)CO.1943-7862.0001049
http://doi.org/10.1061/(ASCE)CO.1943-7862.0001708
http://doi.org/10.1061/(ASCE)CO.1943-7862.0001220
http://doi.org/10.1016/j.autcon.2017.09.015
http://doi.org/10.1061/9780784413517.0096
http://doi.org/10.1016/j.ssci.2020.104855
http://doi.org/10.1145/2968219.2971394
http://doi.org/10.1109/IPSN.2016.7460727
http://doi.org/10.1109/JBHI.2014.2312180
http://www.ncbi.nlm.nih.gov/pubmed/24733032
http://doi.org/10.1109/DCOSS.2016.30
http://doi.org/10.1109/PERCOMW.2016.7457075
http://doi.org/10.3390/ijerph192113762


Int. J. Environ. Res. Public Health 2023, 20, 4998 17 of 17

60. Sultana, A.; Deb, K.; Dhar, P.K.; Koshiba, T. Classification of Indoor Human Fall Events Using Deep Learning. Entropy 2021, 23, 328.
[CrossRef]

61. Lee, S.; Koo, B.; Yang, S.; Kim, J.; Nam, Y.; Kim, Y. Fall-from-Height Detection Using Deep Learning Based on IMU Sensor Data
for Accident Prevention at Construction Sites. Sensors 2022, 22, 6107. [CrossRef] [PubMed]

62. Chai, X.; Wu, R.; Pike, M.; Jin, H.; Chung, W.-Y.; Lee, B.-G. Smart wearables with sensor fusion for fall detection in firefighting.
Sensors 2021, 21, 6770. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3390/e23030328
http://doi.org/10.3390/s22166107
http://www.ncbi.nlm.nih.gov/pubmed/36015868
http://doi.org/10.3390/s21206770

	Introduction 
	Background 
	Common Fall Detection Techniques Used on Construction Sites 
	Manual-Based Fall Monitoring Methods 
	Wearable-Device-Based Fall Monitoring 
	Vision-Based Fall Monitoring 

	CSI-Based Fall Monitoring for Construction Workers 
	Basic Theory 
	The Relationship between CSI and Worker Falls 

	Knowledge Gaps and Research Objectives 

	Methodology 
	Data Collection Method 
	CSI Data Pre-Processing Method 
	Fall Detection Method 

	Experiments 
	Experimental Design 
	Description of the Dataset 

	Results 
	Discussion and Future Work 
	Performance of CSI-Based Fall Detection Method 
	Limitations 
	Future Directions 
	CSI Phase Information 
	Wi-Fi Router Placement in Construction Sites 
	Multi-Worker Activity Recognition 


	Conclusions 
	References

