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Abstract: Since the impoundment of the Three Gorges Reservoir area in 2003, the potential risks
of geological disasters in the reservoir area have increased significantly, among which the hidden
dangers of landslides are particularly prominent. To reduce casualties and damage, efficient and
precise landslide susceptibility evaluation methods are important. Multiple ensemble models have
been used to evaluate the susceptibility of the upper part of Badong County to landslides. In this
study, EasyEnsemble technology was used to solve the imbalance between landslide and nonlandslide
sample data. The extracted evaluation factors were input into three bagging, boosting, and stacking
ensemble models for training, and landslide susceptibility mapping (LSM) was drawn. According
to the importance analysis, the important factors affecting the occurrence of landslides are altitude,
terrain surface texture (TST), distance to residences, distance to rivers and land use. The influences of
different grid sizes on the susceptibility results were compared, and a larger grid was found to lead
to the overfitting of the prediction results. Therefore, a 30 m grid was selected as the evaluation unit.
The accuracy, area under the curve (AUC), recall rate, test set precision, and kappa coefficient of a
multi-grained cascade forest (gcForest) model with the stacking method were 0.958, 0.991, 0.965, 0.946,
and 0.91, respectively, which a significantly better than the values produced by the other models.

Keywords: landslides; susceptibility; ensemble model; data balance; Three Gorges

1. Introduction

As the most common geological disaster, landslides are harmful and destructive and
can have a serious impact on human lives and the safety of public facilities [1]. A landslide
is a disaster phenomenon in which a rock and soil mass on a slope, under the influence of
natural conditions and human engineering activities, slides down the slope as a whole or
scatters along the failure surface under the action of gravity. In such cases, if the slope mass
is in an unstable state, the event may evolve into a landslide [2]. Landslide disasters have
occurred frequently in the Three Gorges area. The Three Gorges Reservoir project has had
large influences on the environment, geological disasters, society and the economy, and
the region has received extensive research attention. More than 2500 slope failure sites are
known in this area [3]; due to the construction of dams, the risk of landslides in the area
has increased, and these landslides have huge potential risks. If an effective and accurate
landslide susceptibility prediction system can be established, the extent of losses caused by
landslide disasters will be minimized [4].

Landslide susceptibility evaluation is particularly important for the prediction and
management of landslides. By analysing and quantifying the relationship between land-
slides and landslide-influencing factors, landslide-prone areas can be predicted to avoid
deaths and economic losses caused by landslide disasters. In this paper, the landslide
susceptibility in Badong County was evaluated using a data balance method and three
ensemble model methods of bagging, boosting and stacking.
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The occurrence of landslides is related to many environmental factors, and landslide
susceptibility assessment explores the connections among them. Through investigations of
landslide data from a project in 2020, a detailed landslide inventory map was established.
Using correlation coefficient analysis, environmental factors were selected as independent
variables. These environmental factors were extracted from digital elevation model (DEM)
data, geological maps, Landsat-8 images, basic geographic databases and land cover data;
the factors included profile, slope, aspect, altitude, slope length, slope height, slope pattern,
plane curvature, middle slope location, terrain surface texture (TRI), terrain convergence
index (TCI), terrain surface convexity (TSC), topographic position index (TPI), TST, valley
depth, flow path length, catchment slope, distance to rivers, topographic wetness index
(TWI), stream power index (SPI), land use, distance to roads, distance to residences, nor-
malized difference vegetation index (NDVI), and structure data. Using the grid unit as the
evaluation unit, the quantitative relationship between 25 landslide factors and landslide lo-
cation was calculated by using representative models based on the three ensemble methods
of bagging, boosting, and stacking: random forest (RF), extreme gradient boosting (XG-
Boost) and gcForest. Finally, the evaluation accuracy of landslide susceptibility was verified
by comparing the AUC, test set precision, accuracy and recall rate for a known landslide.

In this paper, ArcGIS 10 software, SAGA-GIS software, PyCharm software, and the
SPSS 20 statistical program were used for data processing, statistics, and mapping. The
technical roadmap of this paper is shown in Figure 1.
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2. Previous Work

Landslide susceptibility is evaluated by determining the combination of factors that
have the greatest impact on the occurrence of landslides after detailed analysis of the
landslide generation conditions; consequently, the possibility of landslides occurring in
a given area can be estimated [5]. Economic development and the continuous expansion
of the scope of human engineering activities have led to an increased impact of human
beings on the environment; the number of landslide disasters has increased continually,
and the resulting losses have become increasingly serious. Therefore, the use of efficient
and reliable landslide hazard evaluation technology for landslide susceptibility evaluation
is critical to quickly and accurately identify areas highly prone to landslide hazards and
predicting the locations of new landslide hazards. This approach can provide efficient
disaster forecasts and reduce the losses caused by landslide hazards. Auxiliary opinions can
also be provided for the prevention of geological disasters. To study landslide susceptibility
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mapping, early researchers proposed various methods and techniques to improve the
accuracy of landslide prediction.

Research on the susceptibility evaluation of landslide hazards began in the 1960s. Since
the 1990s, mathematical statistics, probability theory, information theory, and fuzzy mathe-
matics theory have been continually introduced into the field of geological disaster research.
Traditional qualitative research has gradually moved towards quantitative research—that
is, analyses based on data and information—to more objectively and scientifically reflect the
true conditions of landslide geological disasters. At present, GIS-based methods for land-
slide geological hazard evaluation can be roughly divided into quantitative and qualitative
evaluation approaches. With the continuous development of instruments and methods to
obtain spatial data, the quality and quantity of spatial data have improved. Data-driven
models, such as support vector machines (SVMs) [6], RF [7], artificial neural networks
(ANNs) [8], and weight-of-evidence [9,10] models, have been used to produce regional
LSM. In the data-driven model category, machine learning models provide a better pre-
diction effect and higher accuracy than other approaches, such as expert-opinion-based
methods and analytical methods [11]. SVM and ANN models are widely used in landslide
mapping and generally yield good prediction results.

Although some machine learning methods perform well in terms of mathematics,
explanations of the internal connections between landslide hazards and various factors
remain unavailable. Before constructing an LSM, to analyse the effects of influencing
factors on landslide occurrence, the mechanism of landslide occurrence must be fully
understood, especially in areas threatened by different types of landslides [12]. Factor
correlation analysis can eliminate the highly correlated factors that influence landslides,
and importance analysis can be used to discern the effects of factors influencing landslides
on landslide occurrence, thereby providing a powerful technical approach for selecting
the important factors that influence landslides and performing landslide development
trend analysis. However, a single learner is prone to underfitting or overfitting. To obtain
a learner with high prediction accuracy and no overfitting, multiple individual learners
can be combined through a certain combination strategy. This method of combining
multiple individual learners is called ensemble learning. Some studies [13,14] have applied
integrated models to landslide susceptibility modelling, but few researchers have compared
and analysed the integration of three models for assessing landslide susceptibility. Some
landslide susceptibility studies [15] used a variety of integrated models but did not consider
the problem of landslide data imbalance or other study areas.

Landslide databases are usually unbalanced because landslide data are stored in
raster format, and landslide grids are much less common than nonlandslide grids. The
data imbalance problem affects the prediction performance of machine learning models
by creating bias towards the dominant class. This problem can be overcome through
data set balancing. At present, there are many studies on data balancing. The most
common method is random sampling [7], which is used to make nonlandslide and landslide
data sets roughly the same size. Agrawal et al. compared random oversampling and
synthesized oversampling for landslide prediction [16]. As a new approach to correct
imbalanced landslide datasets, a generative adversarial network (GAN) was tested at
Chukha Dzongkhag, Bhutan. The results show that both the GAN and synthetic minority
oversampling technique (SMOTE) data balancing approaches help improve the accuracy
of machine learning models [17]. Compared with the above works, this study compares
the prediction effects of integrated bagging, boosting and stacking models based on a
landslide sensitivity assessment in Badong County, the Three Gorges region. Additionally,
the EasyEnsemble method was used to deal with unbalanced sample data.

3. Study Area

The Three Gorges area was formed by the severe incision of lower Palaeozoic and
Mesozoic massive limestone mountains (Jialinjiang Group, J1) along narrow fault zones
in response to Quaternary uplift [18]. Steep slopes are widely developed on outcrops of
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erodible or “soft” materials, and landslides are common in these areas [19]. The Three
Gorges region of the Yangtze River is in a mountainous gorge area where Sichuan and
Hubei are connected. The area contains many mountains and steep slopes. In the event
of heavy rain or earthquakes, disasters such as landslides, mudslides or rockslides easily
occur. The study area is in Badong County (Figure 2). Located in the middle of Wu Gorge
and Xiling Gorge in the Three Gorges region of the Yangtze River, Badong County is the
area with the most complex geological conditions in the region. Folds and faults are widely
distributed, and the geological structure is complex in this area. The whole Badong area
has steep terrain, with a relative elevation up to 600 m.
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4. Data Sources

Historical landslide catalogue data included information such as location, geological
hazard body, area, and volume and were used to establish landslide distribution maps.
Shuttle Radar Topography Mission (SRTM)1 DEM data with a spatial resolution of 30 m
were used to extract topography and geomorphology information. Data acquired from
the 1:250,000 national basic geographic database were used to determine the locations of
residential areas, rivers, and roads. Bands 4 and 5 of the 2018 Landsat 8 image were used
to obtain the NDVI. The 30-m global land cover data were the land use data. The NGAC-
200,000 national geological map data provided information on the regional geological
structure, strata, and lithology.

5. Primary Factors of Landslide Occurrence

In this paper, the main factors affecting the occurrence of landslides, such as topogra-
phy, geomorphology, hydrological conditions, human engineering activities, surface cover,
and basic geology, are discussed (Table 1). ArcGIS software and SAGA-GIS software were
used to extract the following topographic factors from SRTM1 DEM data: profile, slope,
aspect, altitude, slope length, slope height, slope pattern, plane curvature, middle slope
location, TRI, TST, TPI, TSC, and TCI.
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Table 1. Descriptions of the causative factors of landslides.

Data Type Factors Source

Topographic features

Profile DEM
Slope DEM

Aspect DEM
Altitude DEM

Slope length DEM
Slope height DEM
Slope pattern DEM

Plane curvature DEM
Middle slope location DEM

TRI DEM
TST DEM
TPI DEM
TSC DEM
TCI DEM

Hydrological conditions

Valley depth DEM
Flow path length DEM
Catchment slope DEM
Distance to rivers GIS database

SPI DEM
TWI DEM

Human engineering activities
Land use Surface coverage data

Distance to roads GIS database
Distance to residences GIS database

Surface cover NDVI Landsat-8 remote sensing
images

Basic geology Structure Geological map

SAGA-GIS software was used to extract the valley depth, flow path length, catchment
slope, distance to rivers, SPI, and TWI under hydrological conditions from SRTM1 DEM
data. The distance to rivers, distance to residences, and distance to roads were obtained
using 1:25 million national basic geographic databases to establish a buffer zone. The
NDVI was obtained by calculations of the Landsat-8 image, the land use type was derived
from the 30-metre global land cover data, and the geological structure was obtained from
the geological map data. ArcGIS 10 software was used to extract the landslide impact
factor layer and the landslide layer to the vector points and make them easy to analyse.
The data set included 2,131,599 rows (number of grids) and 26 columns (25 factors and
landslide data). Bivariate correlation analysis in SPSS software was used, and the Pearson
correlation coefficient was used to calculate the correlation coefficient matrix of 25 landslide-
influencing factors (Figure 3). Most of these 25 factors displayed low correlation coefficients,
and the linear correlations between these factors were weak. Therefore, the 25 landslide
impact factors were incorporated into the landslide susceptibility evaluation system to
build the probability prediction model of landslide occurrence.
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6. Method for Balancing Data Categories

The prediction of landslide disasters is a two-class problem in which the prediction
results are only landslides or nonlandslides. An area should contain many more nonland-
slide areas than landslide areas. Assuming that a landslide in the training data is grouped
into class A and that a nonlandslide is grouped into class B, A:B = 1:99. In this case, if
all samples in class A are classified as B, the error rate is only 1/100; however, if three
samples in class B are classified as A, the error rate is 3/100. Achieving higher accuracy
is the objective of most machine learning algorithms. The classification algorithms that
strictly aim to maximize accuracy often ignore the correct classification of small samples,
often leading to poor prediction results when processing unbalanced category samples [20].

In this case, the algorithm tended to predict all class A samples as class B samples.
Landslide disasters are extremely harmful. If high-risk areas are classified as low-risk areas
and a landslide occurs, it may cause many casualties and high economic losses. However,
if low-risk areas are classified as high-risk areas, the loss is relatively small (generally,
only an economic investment is made to prevent landslide disasters). Thus, the cost of
misclassification of the two types of samples is different, and the spatial prediction of
landslide disasters remains a cost-sensitive issue.

The problem of imbalance between the sample categories in landslide areas and
nonlandslide areas can be solved at two levels: the algorithm level and the data level.

At the data level, the following three main data-level solutions are applicable: random
sampling, SMOTE, and the EasyEnsemble method. For random sampling, to make the
number of samples in the landslide and nonlandslide areas approximately the same, when
selecting the training data set, the same amount of data was randomly sampled from land-
slide and nonlandslide areas. The important drawback of this scheme is that if the sample
ratio was 1:10 and extraction without replacement was used, a maximum of 2 data points
could be extracted, that is, a maximum of 2/11 data points could be included in the training
set. This could lead to an insufficient training data set and make model training insufficient;
consequently, the prediction accuracy could be low. In addition, if random sampling with
replacement was used, the small-sample category would be repeatedly sampled many
times, which may cause model overfitting, resulting in insufficient predictive ability.
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The SMOTE algorithm can solve the overfitting problem in random sampling, and
its core idea is to increase the quantity of data in low-sample categories to achieve data
equalisation [21]. The new sample obtained by this method is related to the original sample
and the neighbouring samples but retains important sample differences. This algorithm
can improve the accuracy of landslide spatial prediction to a certain extent. However, this
method is prone to overlap issues between new samples.

Another problem in random sampling is information loss. This problem can be
solved using EasyEnsemble technology. EasyEnsemble technology is used to train a
number of classifiers for ensemble learning by repeatedly combining positive samples
with the same number of randomly sampled negative samples. This approach effectively
solves the problem of unbalanced data types and reduces the loss of information due to
undersampling. Therefore, EasyEnsemble technology was applied in this study to solve
the problem of unbalanced sample types for landslide and nonlandslide samples. The
technical process can be described as follows (Figure 4): (1) The entire training data set
was divided into two categories, namely, majority and minority, which correspond to
nonlandslide and landslide areas, respectively. (2) In each training, the nonlandslide area
was randomly divided into n parts, and all samples in the landslide area were 1 part.
(3) One piece was randomly selected from the nonlandslide sample to form a new training
data subset, together with a landslide area. This subset was used to train the classifier,
obtain the classification result and save it. (4) Steps (2) and (3) were repeated n times to
obtain n classification results. (5) The average of the category scores of the n classification
results was calculated to obtain the final classification result.
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The solution at the algorithm level involves using the cost matrix to set the weights
corresponding to different categories. The idea is that the cost of misclassification of differ-
ent categories varies, and different categories are assigned different penalty coefficients in
the algorithm. The purpose is to distinguish as few samples as possible.

7. Ensemble Model

Landslide susceptibility is evaluated by predicting the possibility of landslides in a
certain area by selecting the most favourable combination of factors for landslide occurrence
after analysing the landslide occurrence conditions. Many scholars have used landslide
susceptibility evaluations to identify potential high-risk areas within a region and reduce
the dangers of landslides, and they have obtained good results. A landslide susceptibility
evaluation includes the division of evaluation units and the selection of evaluation factors.
Choosing a suitable model is important for obtaining satisfactory prediction results for
landslide susceptibility evaluation.

In 1962, the idea of ensemble learning began to appear. The first appearance of a
cascading multiclassifier ensemble system was in a book by Sebestyen. Ensemble learning
became broadly studied in the 1990s when Hansen et al. proposed a neural network
ensemble model that used voting to integrate output results and obtain a better classifier
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than a single neural network. Bagging, boosting and stacking are three typical approaches
in ensemble learning. By combining several machine learning algorithms into a meta-
algorithm for prediction modelling, errors can be reduced, and satisfactory predictions can
be obtained.

The bagging ensemble algorithm [22] is an ensemble learning algorithm in the field of
machine learning that was originally proposed by Leo Breiman. The combination of the
bagging integration algorithm and other algorithms can effectively enhance the prediction
accuracy and stability of classification methods. The main content of the algorithm involves
establishing a training set S of size N and evenly selecting n subsets Si of size N from S
with replacement (self-service sampling method) as a new training subset. By using these n
training subsets, n training results can be obtained, and the analysis results are obtained
through strategies such as averaging or voting (Figure 5). The main advantage is that
formation learners that are not dependent on each other are generated in parallel. The
bagging ensemble algorithm is suitable for prediction based on small-sample data sets and
displays a good application effect in the field of machine learning.

Int. J. Environ. Res. Public Health 2023, 20, x FOR PEER REVIEW 8 of 19 
 

 

In 1962, the idea of ensemble learning began to appear. The first appearance of a cas-
cading multiclassifier ensemble system was in a book by Sebestyen. Ensemble learning 
became broadly studied in the 1990s when Hansen et al. proposed a neural network en-
semble model that used voting to integrate output results and obtain a better classifier 
than a single neural network. Bagging, boosting and stacking are three typical approaches 
in ensemble learning. By combining several machine learning algorithms into a meta-al-
gorithm for prediction modelling, errors can be reduced, and satisfactory predictions can 
be obtained. 

The bagging ensemble algorithm [22] is an ensemble learning algorithm in the field 
of machine learning that was originally proposed by Leo Breiman. The combination of the 
bagging integration algorithm and other algorithms can effectively enhance the prediction 
accuracy and stability of classification methods. The main content of the algorithm in-
volves establishing a training set S of size N and evenly selecting n subsets Si of size N 
from S with replacement (self-service sampling method) as a new training subset. By us-
ing these n training subsets, n training results can be obtained, and the analysis results are 
obtained through strategies such as averaging or voting (Figure 5). The main advantage 
is that formation learners that are not dependent on each other are generated in parallel. 
The bagging ensemble algorithm is suitable for prediction based on small-sample data 
sets and displays a good application effect in the field of machine learning. 

 
Figure 5. Flowchart of the bagging method. 

The boosting algorithm [23] first uses the training set and initial weights to train weak 
learner 1. A weak learner refers to a learner with generalisation performance slightly bet-
ter than that for a random guess [24]. Usually, different weights are assigned according to 
the classification accuracy, and the samples with low accuracy are given higher weights 
[25]. The samples with higher weights are considered by subsequent learners. Weak 
learner 2 is trained according to the training samples after adjusting the weights. The 
above steps are repeated t times to generate T base classifiers. The boosting framework 
algorithm assigns weights and fuses the N base classifiers to produce an improved classi-
fication result. After weighted fusion by the weak learners, the data are typically re-
weighted to strengthen the classification of previously misclassified data points. During 
the training of the boosting algorithm, the classifier is trained based on the samples with 
errors in the previous classification step, such that the algorithm can reduce the classifica-
tion error rate of the model; as the training process progresses, the training set is increas-
ingly correctly classified, and the variance of the model increases (Figure 6). However, the 
random sampling of features for training can reduce the correlation between submodels, 
thereby reducing the variance of the overall model [26]. 

Figure 5. Flowchart of the bagging method.

The boosting algorithm [23] first uses the training set and initial weights to train weak
learner 1. A weak learner refers to a learner with generalisation performance slightly better
than that for a random guess [24]. Usually, different weights are assigned according to the
classification accuracy, and the samples with low accuracy are given higher weights [25].
The samples with higher weights are considered by subsequent learners. Weak learner 2
is trained according to the training samples after adjusting the weights. The above steps
are repeated t times to generate T base classifiers. The boosting framework algorithm
assigns weights and fuses the N base classifiers to produce an improved classification
result. After weighted fusion by the weak learners, the data are typically reweighted to
strengthen the classification of previously misclassified data points. During the training
of the boosting algorithm, the classifier is trained based on the samples with errors in the
previous classification step, such that the algorithm can reduce the classification error rate
of the model; as the training process progresses, the training set is increasingly correctly
classified, and the variance of the model increases (Figure 6). However, the random
sampling of features for training can reduce the correlation between submodels, thereby
reducing the variance of the overall model [26].
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In the stacking method [27], the primary learner is trained first, and then the prediction
result of the primary learner is used as the new input to train the secondary learner. In the
training phase, the secondary learner is generated by the primary learner. If the prediction
results of the primary learner are directly used to generate the training set for the secondary
learner, the risk of overfitting is high. Therefore, the initial training set is divided into k
parts, and cross-validation is used to train each learner (Figure 7) [28].
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Each of the three ensemble methods, bagging, boosting, and stacking, has multiple
models. This article uses three representative models with the ensemble methods for
landslide susceptibility prediction: an RF with bagging, the XGBoost model with boosting,
and the gcForest model with stacking.

An RF is a classifier with multiple decision trees, each of which is a classifier [29].
After the decision trees are integrated, voting is used to determine the prediction result;
that is, the prediction result is the category with the most votes. The random forest model
is suitable for large-scale data prediction, especially for cases in which other models yield
poor prediction results because of the high dimensionality of the sample. The accuracy
of the RF model in most learning and prediction tasks can reach the same level as that
of other models, and overfitting rarely occurs. The RF model has been widely used in
competitions and practical applications. The model has two important parameters: the
number of subtrees and the maximum number of features for a single decision tree.

The XGBoost algorithm is an improved method. The core idea of this algorithm is that
multiple experts individually judge a complex task; then, the results are synthesized to
reach a conclusion. The conclusion drawn after the synthesis is better than that provided
by any one of the experts alone. The XGBoost algorithm is based on the regression tree
model. The basic idea is to repeatedly extract certain variables to construct a regression tree
model, obtain hundreds of regression tree models, and combine them linearly to obtain the
final model.

The gcForest integration method is a new method based on decision tree forest aggre-
gation. The gcForest integration method can make the data set of gcForest automatically
learn its representation structure. The reason for this is that the method can automatically
generate a decision tree forest with a higher-dimensional cascade structure. For example,
when the decision tree input is a high-dimensional data set, the gcForest method can use a
multigranular scanning method to increase the dimensional features, such that gcForest
can effectively perform structural learning. In addition, in the gcForest method, the level of
model complexity is automatically set, and the number of layers in the cascading forest is
adaptively determined; consequently, the model can be trained with data sets of different
sizes. In other words, gcForest automatically stops when the calculation result of the last
cascade layer is lower than the expected value. Therefore, the gcForest method is suitable
for both small-scale data and large-scale data training. In terms of the number of model
parameters, the gcForest model has fewer parameters than ANN models, and it is also
reliable for the parameter setting of the neural network.
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8. Landslide Susceptibility Mapping

The grid unit was used as the evaluation unit in this study, and the multivalue
extraction-to-point function in ArcGIS 10 software was used to extract 25 factors that
influence landslides. The data set of the study area included 2,131,599 rows (number of
grids) and 26 columns (25 factors and landslide data). With a 30 m grid, 269,421 pieces of
data were labelled landslides, and 2,104,657 pieces of data were labelled nonlandslides;
the ratio of landslide data to nonlandslide data was approximately 1:10. Therefore, we
first randomly selected 25,000 landslide data and 205,000 nonlandslide data. Among the
above data, we selected 5000 landslide data and 5000 nonlandslide data as test data and the
remaining 20,000 landslide data and 200,000 nonlandslide data as training data. Extracting
training data in this way can make the ratio of landslides to nonlandslides in the training
data close to the actual ratio in the study area. Because the impact of grids of different
sizes on landslide susceptibility needed to be compared, the data from 60 m and 90 m grids
were processed similarly and organized into training and test sets. After an EasyEnsemble
data balance was performed on the data set, the data were used to train the RF model with
bagging, the XGBoost model with boosting, and the gcForest model with stacking. The
training results were used to predict the probability of landslides for all samples from each
model. The prediction results were added to the attribute table of the vector points in the
study area, and then the vector point data were converted into raster data to create the
maps of landslide-prone areas for the three models.

Feature importance measures the contribution of each input feature to the prediction
results of a model and highlights the degree of correlation between a feature and the target.
In this paper, the importance of 25 factors was calculated for the three tested models. The
test results show that the altitude, TST, distance to residences, distance to rivers and land
use are the main factors that affect landslide susceptibility (Figure 8).
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The influence of altitude on the landslide distribution is mainly reflected in the local
water collection platform caused by the topographic slope differences between different
altitude ranges, the differences between the intensities of free surface and human engineer-
ing activities that are prone to landslides in different altitude ranges, and the characteristics
of different vegetation types, coverages and atmospheric rainfall levels in different altitude
ranges. Therefore, elevation is an important factor in landslide-prone environments. Ac-
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cording to Table 2, the frequency ratio (FR) is greater than 1 in the altitude range from 49 m
to 594 m. With increasing elevation, the frequency ratio decreases, which suggests that
landslides are mainly distributed in low-elevation areas.

Table 2. Statistical zoning table for the top five impact factors.

Evaluation
Factors

Classification
Level

Number of
Pixels in
Domain

Number of
Landslides

Percentage of
Domain

Percentage of
Landslides FR

Altitude

49–594 533,942 18,846 0.25 0.70 2.79
594–937 579,737 6980 0.27 0.26 0.95
937–1241 420,759 802 0.20 0.03 0.15

1241–1561 349,147 333 0.16 0.01 0.08
1561–1984 179,724 11 0.08 0.00 0.00
1984–3096 67,119 0 0.03 0.00 0.00

Terrain surface
texture level

0.06–9.03 287,378 9355 0.13 0.35 2.57
9.03–14.31 456,151 8470 0.21 0.31 1.47
14.31–18.88 500,238 5491 0.23 0.20 0.87
18.88–23.28 433,011 2840 0.20 0.11 0.52
23.28–28.21 313,383 659 0.15 0.02 0.17
28.21–44.91 140,267 127 0.07 0.00 0.07

Distance to
residences (m)

0–614.82 625,674 13,253 0.29 0.49 1.67
614.82–1040.46 773,592 11,579 0.36 0.43 1.18

1040.46–1489.75 473,118 1977 0.22 0.07 0.33
1489.745–2104.56 174,421 133 0.08 0.00 0.06
2104.56–3121.37 60,809 0 0.03 0.00 0.00
3121.37–6029.93 22,547 0 0.01 0.00 0.00

Distance to
rivers (m)

0–451.15 820,030 17,434 0.38 0.65 1.68
451.15–1008.46 593,174 6963 0.28 0.26 0.93

1008.46–1645.39 412,379 1909 0.19 0.07 0.37
1645.39–2415.00 207,723 547 0.10 0.02 0.21
2415.00–3529.62 75,110 89 0.04 0.00 0.09
3529.62–6767.31 22,012 0 0.01 0.00 0.00

Land use

Cultivated land 580,187 16,364 0.27 0.61 2.23
Forest 1,414,552 8388 0.66 0.31 0.47

Grassland 93,621 813 0.04 0.03 0.69
Water bodies 32,002 768 0.02 0.03 1.90

Artificial surfaces 8823 605 0.00 0.02 5.42

Terrain surface texture is one of the main parameters for representing the development
characteristics of landforms. In places with complex terrain, such as ridges and valleys, the
texture feature values are large, and in smooth and flat places, the texture values are small.
According to Table 2, the frequency ratio of terrain surface texture values is greater than 1
in the range of 0.06 to 14.31, and the frequency ratio is largest in the range of 0.06 to 9.03,
indicating that landslides in the study area are mostly distributed in areas with relatively
smooth and flat terrain.

Human engineering activities generally involve resource exploitation and infrastruc-
ture construction processes based on certain engineering and technical measures, such as
planning, design, construction, mining and operation. Human engineering activities can
cause land erosion and change the original landform. Such activities can cause gradual
and great harm. The areas where human engineering activities occur are often located
near residential areas (examples include urban construction, irrigation activities, and traffic
construction); thus, the distance from residential areas was used as an evaluation factor.
According to Table 2, the corresponding FR is greater than 1 between 0 and 1040 m from
a residential area, and the maximum ratio is within 614 m, indicating that the closer a
residential area the activity is, the more likely it is that a landslide will occur.
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The impact of rivers on landslide disasters in the study area mainly manifests in the
lateral erosion and erosion-based cutting of bank slopes by river water. On the one hand, a
river continuously creates higher and steeper bank slopes through erosion; on the other
hand, it continuously washes the slope toe, causing the slope to always be in an unstable
state. This process is important for the formation of new landslide masses and the revival
of old landslide masses. Therefore, the distance from a river was selected as an evaluation
factor to consider the impact of rivers on landslide disasters. Table 2 indicates that the FR is
greater than 1 within the range of 451.15 m from a river, and the frequency ratio decreases
with increasing distance from the river, indicating that landslides are more likely to occur
in areas that are close to a river.

Land use refers to the long-term or periodic use, protection and transformation of land
by using certain transformation means based on the natural attributes and characteristics
of the land of interest. Five main types of land cover exist in the study area: cultivated land,
forest, grassland, water bodies and artificial surfaces. According to Table 2, the regional
FRs of artificial surfaces, cultivated land and water bodies are greater than 1 (especially the
FR of artificial surfaces, which is the highest), and the FRs of grassland and forests are less
than 1. Therefore, the landslides in the study area are more distributed in the areas where
artificial surfaces, cultivated land and water bodies are located, and few landslides occur in
forests and grasslands.

According to the landslide occurrence probability predicted by the model, a landslide
susceptibility zoning map was created (Figure 9). The study area has five types of sus-
ceptibility levels: very low, low, medium, high, and very high. The RF model results are
illustrated with the susceptibility map. Compared with other models, the RF model yields
more extremely high landslide-prone areas and high landslide-prone areas. The gcForest
model predicts the fewest extremely high and high landslide-prone areas. Most of the very
low landslide-prone areas are in the southern and northern parts of the study area. The
extremely high landslide-prone areas and high landslide-prone areas obtained with the
three models are mainly located along the Yangtze River and in the middle and upper
sections of the study area. The RF model identified many areas that were been labelled
landslides in the past as high-susceptibility areas, such as the north bank in the western
section of the Yangtze River in the study area. The XGBoost model generally predicted the
locations where landslides occurred as high-susceptibility areas, and the gcForest model
predicted a few areas to be more prone to landslides, while most landslides were located in
highly prone areas.

The value obtained by dividing the landslide grid scale by the overall grid scale is the
FR of the vulnerability grade. The higher the FR is, the greater the number of landslide
grids per unit area at a given vulnerability level. Through the susceptibility results of the
three models with different grid sizes and the statistical zoning table of landslides, the FR
for each susceptibility level was calculated. The tables (see Tables 3–5 below) show that the
higher the susceptibility level is, the higher the FR is, indicating that most landslides are
in areas classified as highly and extremely highly prone to landslides, and the prediction
results are reasonable. In the case in which the same model is used, with the gcForest model
as an example, as the grid increases from 30 m to 90 m, the grid proportion for landslides in
extremely highly prone areas changes little, from 97% to 88%; however, the grid proportion
for highly prone areas increases by more than three times, from 3% to 10%. Therefore, the
frequency ratio of highly prone areas decreases from 30.1380 to 8.9695, and the prediction
effect of the model worsens. Therefore, a relatively small grid should be selected as the
evaluation unit in studies of landslide susceptibility. When the grid size remains the same,
the FR of the extremely highly prone areas identified with the RF model is the lowest, and
that of the gcForest model is the highest, indicating that the gcForest model predicts fewer
areas extremely highly prone to landslides but more areas that contain landslides; thus, its
prediction effect is the best.
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Table 3. RF zoning model of landslide susceptibility.

Grid Size
Landslide

Susceptibility
Level

Number of
Pixels in
Domain

Number of
Landslides

Percentage of
Domain

Percentage of
Landslides FR

30 m

Very low 1,153,876 38 0.54 0.00 0.0026
Low 347,494 382 0.16 0.01 0.0869

Moderate 260,594 2245 0.12 0.08 0.6812
High 239,440 7737 0.11 0.29 2.5551

Very high 128,884 16539 0.06 0.61 10.1469

60 m

Very low 219,759 5 0.41 0.00 0.0018
Low 110,687 56 0.21 0.01 0.0400

Moderate 77,065 342 0.15 0.05 0.3505
High 70,236 1192 0.13 0.18 1.3403

Very high 52,706 5122 0.10 0.76 7.6745

90 m

Very low 94,847 10 0.40 0.00 0.0083
Low 48,629 44 0.20 0.01 0.0709

Moderate 36,009 124 0.15 0.04 0.2700
High 32,648 501 0.14 0.17 1.2031

Very high 25,509 2352 0.11 0.78 7.2290

Table 4. XGBoost zoning model of landslide susceptibility.

Grid Size
Landslide

Susceptibility
Level

Number of
Pixels in
Domain

Number of
Landslides

Percentage of
Domain

Percentage of
Landslides FR

30 m

Very low 1,544,816 80 0.73 0.00 0.0041
Low 196,104 272 0.09 0.01 0.1097

Moderate 145,685 1082 0.07 0.04 0.5872
High 135,596 4738 0.06 0.18 2.7628

Very high 108,089 20,770 0.05 0.77 15.1937

60 m

Very low 318,751 18 0.60 0.00 0.0045
Low 71,661 52 0.14 0.01 0.0573

Moderate 49,886 175 0.09 0.03 0.2770
High 44,705 652 0.08 0.10 1.1516

Very high 45,451 5821 0.09 0.87 10.1126

90 m

Very low 138,775 28 0.58 0.01 0.0158
Low 32,145 61 0.14 0.02 0.1487

Moderate 22,725 94 0.10 0.03 0.3242
High 21,175 266 0.09 0.09 0.9846

Very high 22,823 2583 0.10 0.85 8.8705

Table 5. gcForest zoning model of landslide susceptibility.

Grid Size
Landslide

Susceptibility
Level

Number of
Pixels in
Domain

Number of
Landslides

Percentage of
Domain

Percentage of
Landslides FR

30 m

Very low 1,842,089 62 0.86 0.00 0.0027
Low 105,676 104 0.05 0.00 0.0778

Moderate 65,196 185 0.03 0.01 0.2244
High 50,857 414 0.02 0.02 0.6437

Very high 66,472 26,177 0.03 0.97 31.1380

60 m

Very low 328,806 24 0.62 0.00 0.0058
Low 72,528 59 0.14 0.01 0.0642

Moderate 49,390 132 0.09 0.02 0.2110
High 40,401 385 0.08 0.06 0.7524

Very high 39,329 6118 0.07 0.91 12.2830

90 m

Very low 118,010 16 0.50 0.01 0.0106
Low 42,356 42 0.18 0.01 0.0777

Moderate 28,854 92 0.12 0.03 0.2499
High 25,179 222 0.11 0.07 0.6911

Very high 23,244 2660 0.10 0.88 8.9695
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9. Validation of the Models

In an experiment comparing the influences of different grid sizes on the susceptibil-
ity results, the receiver operating characteristic (ROC) curves and AUC values of each
model were obtained. The ROC curves and AUC values were calculated by using the
probability obtained for the data predicted by the three models. The numbers of grids with
different sizes varied. The number of grids with a 30 m grid size was 2,131,599, including
26,942 landslide grids. For a grid size of 60 m, the number of grids was 532,335, including
6715 landslide grids. At 90 m, the number of grids was 238,296, including 3009 landslide
grids. Based on different grid sizes for the same model, the AUC value decreased with
increasing grid size. The AUC value was largest for the 30-m grid and smallest for the 90 m
grid. Based on different models with the same grid size, the AUC value of the gcForest
model was highest, and that of the RF model was lowest, indicating that the prediction
effect of the gcForest model was the best (Figure 10).
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The effects of different grid cell sizes on the susceptibility results were assessed, and
the larger the grid size was, the higher the accuracy of the training data and the lower the
accuracy of the test data (Table 6). This result suggests that model overfitting occurs with
increasing mesh size. As the grid becomes larger, the gap between the accuracy achieved
for the training data and test data becomes larger, especially for the gcForest model. When
the grid size was 90 m, the difference between the training data and test data accuracies of
the gcForest model was as high as 15.2%. Therefore, in this paper, a 30 m grid was selected
as the evaluation unit for landslide susceptibility modelling, such that high prediction
accuracy could be obtained without overfitting.
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Table 6. Accuracies of the models with different grid sizes for training data and test data.

Model 30 m 60 m 90 m

RF
Train 0.873 0.890 0.912
Test 0.862 0.851 0.838

XGBoost
Train 0.929 0.960 0.988
Test 0.912 0.887 0.872

gcForest Train 0.999 0.999 0.999
Test 0.958 0.890 0.847

The following Table 7 lists the prediction accuracies of the RF, XGBoost and gcForest
models for samples in the study area. The AUC is an evaluation index used to measure
the advantages and disadvantages of binary classification models. From the definition, the
AUC can be obtained by summing the areas of each part under the ROC curve; its value
represents the probability that a case is positively predicted. The recall rate indicates how
many positive examples in the sample are predicted correctly. The accuracy is the number
of samples correctly predicted for the positive class and accounts for the proportion of
all positive samples predicted. The kappa coefficient can be used to test consistency and
evaluate the accuracy of multiclass classification models. Whether the actual classification
results of the model are consistent with the prediction results is the consistency of the
classification problem. The kappa coefficient is obtained by calculating the confusion
matrix, and it varies between −1 and 1 but is generally greater than 0. The accuracy,
AUC value, recall rate, test set precision, and kappa coefficient of the gcForest model with
stacking were 0.958, 0.991, 0.965, 0.946, and 0.91, respectively, which are significantly better
than the values of the other two models.

Table 7. Statistical measures of different methods obtained for the training and test sets.

Data Set Learning
Method

Performance

Accuracy AUC Recall Precision Kappa

Training
set

RF 0.873 0.943 0.933 0.808 0.749
XGBoost 0.929 0.979 0.970 0.890 0.861
gcForest 0.999 0.999 0.999 0.999 0.999

Test set
RF 0.862 0.932 0.914 0.805 0.725

XGBoost 0.912 0.968 0.955 0.875 0.819
gcForest 0.958 0.991 0.965 0.946 0.910

10. Conclusions

This paper is a comparative study of multiple ensemble models of landslide suscep-
tibility assessment in the upper half of Badong County in the Three Gorges area. Pham
et al. noted that ensemble models provide excellent performance for future landslide
prediction [30]. The landslide data were obtained from historical landslide records. In
this landslide susceptibility analysis, 25 factors that influence landslides, including slope,
aspect, plane curvature, profile curvature, elevation, and others, were used. According to
the importance analysis, the important factors affecting the occurrence of landslides are
the altitude, TST, distance to residences, distance to rivers and land use. The influences
of different grid sizes on the susceptibility results were compared, and larger grids led
to overfitting of the prediction results, as also reported in other studies [31]. Therefore, a
30 m grid was selected as the evaluation unit, and the study area contains 2,131,599 grid
units. Due to the imbalance between the sample landslide data and the nonlandslide data,
ensemble data balance processing was performed on the sample to construct the test data
and the training data. The RF model with bagging, XGBoost model with boosting, and
gcForest with stacking were used for training and prediction, and LSM were generated.
According to LSM, the locations of the extremely high landslide-prone areas and high
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landslide-prone areas in the three models were generally consistent with the locations of
historical landslides. The surrounding areas of the Yangtze River and its tributaries and the
middle and upper areas of the study area are very prone to landslides.

The LSM was verified using the ROC results and known landslides. The quantitative
results show that the order of the AUC values from small to large is RF model > XGBoost
model > gcForest model. Additionally, the findings agree with those of Wei et al., who
reported that the prediction accuracy of an XGBoost model was higher than that of an RF
model [32]. The accuracy, AUC value, recall rate, test set precision, and kappa coefficient
of the gcForest model with stacking were 0.958, 0.991, 0.965, 0.946, and 0.91, respectively,
which are significantly better than the values of the other two models. In conclusion, the
analysed results obtained from the study provide very useful information for engineers
and planners involved in landslide hazard mitigation and infrastructure planning.

There were some deficiencies in this study. Affected by the basic data available,
only point data for historical disasters were used, and the buffer zones established for
analyses lacked precision; therefore, there will be errors in the process of vulnerability
assessment. There was also an insufficient understanding of the vulnerability model, and
there is still room for optimizing model parameters. In a follow-up study, more accurate
landslide data should be obtained via high-resolution remote sensing and combined with
landslide point data. It is necessary to deeply understand the model principle and param-
eters, obtain more optimized model parameters, and improve the accuracy of landslide
susceptibility evaluation.
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