
Citation: Aragão, D.P.; Junior,

A.G.d.S.; Mondini, A.; Distante, C.;

Gonçalves, L.M.G. COVID-19

Patterns in Araraquara, Brazil: A

Multimodal Analysis. Int. J. Environ.

Res. Public Health 2023, 20, 4740.

https://doi.org/10.3390/

ijerph20064740

Academic Editor: Fernando Augusto

Lima Marson

Received: 26 January 2023

Revised: 3 March 2023

Accepted: 4 March 2023

Published: 8 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

International  Journal  of

Environmental Research

and Public Health

Article

COVID-19 Patterns in Araraquara, Brazil: A Multimodal Analysis
Dunfrey Pires Aragão 1,2 , Andouglas Gonçalves da Silva Junior 3 , Adriano Mondini 4 , Cosimo Distante 2

and Luiz Marcos Garcia Gonçalves 1,*

1 Pós-Graduação em Engenharia Elétrica e de Computação, Universidade Federal do Rio Grande do Norte,
Av. Salgado Filho, 3000, Lagoa Nova, Natal 59078-970, Brazil

2 Institute of Applied Sciences and Intelligent Systems-CNR, Via Monteroni sn, 73100 Lecce, Italy
3 Instituto Federal do Rio Grande do Norte, Rua Dr. Mauro Duarte, S/N, José Clóvis, Parelhas 59360-000, Brazil
4 Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Rodovia

Araraquara-Jaú, Km 1, Campus Ville, Araraquara 14800-903, Brazil
* Correspondence: lmarcos@dca.ufrn.br

Abstract: The epidemiology of COVID-19 presented major shifts during the pandemic period.
Factors such as the most common symptoms and severity of infection, the circulation of different
variants, the preparedness of health services, and control efforts based on pharmaceutical and non-
pharmaceutical interventions played important roles in the disease incidence. The constant evolution
and changes require the continuous mapping and assessing of epidemiological features based on
time-series forecasting. Nonetheless, it is necessary to identify the events, patterns, and actions
that were potential factors that affected daily COVID-19 cases. In this work, we analyzed several
databases, including information on social mobility, epidemiological reports, and mass population
testing, to identify patterns of reported cases and events that may indicate changes in COVID-19
behavior in the city of Araraquara, Brazil. In our analysis, we used a mathematical approach with the
fast Fourier transform (FFT) to map possible events and machine learning model approaches such as
Seasonal Auto-regressive Integrated Moving Average (ARIMA) and neural networks (NNs) for data
interpretation and temporal prospecting. Our results showed a root-mean-square error (RMSE) of
about 5 (more precisely, a 4.55 error over 71 cases for 20 March 2021 and a 5.57 error over 106 cases
for 3 June 2021). These results demonstrated that FFT is a useful tool for supporting the development
of the best prevention and control measures for COVID-19.

Keywords: COVID-19 dynamics; social distance; lockdown; time-series forecast

1. Introduction

Sarbecovirus SARS-CoV-2, the causative agent of the coronavirus disease known as
COVID-19, was responsible for one of the most important health emergencies in the world.
Infection with SARS-CoV-2 can be asymptomatic, present mild disease, or lead to upper
respiratory symptoms and extrapulmonary syndromes that can cause death [1].

The virus spread occurs mainly through airborne transmission and contact with
droplets and fomites [2,3]. In the absence of vaccines or other pharmaceutical interventions,
the first control measures to avoid a growth in incidences were the use of masks and a
reduction in community mobility. These non-pharmaceutical interventions (NPIs) were the
initial strategies to reduce the basic reproduction rate of the disease (also known as R0) in
different areas of the globe.

The relative success of these NPIs was demonstrated by their efficacy in controlling
COVID-19 [4–6]. The deployment of NPI measures helped to delay the massive growth
in cases in nations where such policies were adopted. The use of face masks, along
with social-distancing measures, were the first control strategies to restrain SARS-CoV-2
transmission [7,8]. In fact, these fast, standardized, and cost-effective countermeasures
were our only line of defense against the spread of COVID-19 incidences until the use of
vaccines was approved [9].
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Different studies have shown the positive effect of social distancing and the restriction
of human mobility in controlling the spread of SARS-CoV-2 [10–12]. However, NPIs such
as social distancing presented a major impact on poverty and inequality [13]. The epidemi-
ological value of such interventions was less evident in lower-income countries, as they
imposed a heavy burden on vulnerable groups [14,15]. Another important aspect of NPIs
and COVID-19 itself is the toll on mental health that may have affected the perception of risk
as well as the importance of individual and collective control measures [16–19]. Therefore,
the investigation of the potential outcomes related to the full and partial implementation of
NPIs is of paramount relevance for COVID-19 epidemiology.

In Brazil, the main reason for the adoption of NPIs was the increasing number of
cases in 2020–2021, especially in settings where no measures to avoid crowding were
implemented [20]. At that time, multiple cities suffered from an insufficiency of ICU beds
and a shortage of healthcare workers and supplies, which elevated the number of cases and
deaths [21,22]. In such a scenario, cities with a smaller gross domestic product and modest
health equipment structures struggled to manage the increase in healthcare demand due to
SARS-CoV-2 circulation. The failure of the country to implement effective control measures,
the denial of the pandemic’s severity, and the use of inefficient early COVID treatments
had a direct impact on the number of cases [23].

During 2020 and 2021, Brazil was under the government of the far-right president Jair
Bolsonaro, whose administration advertised non-evidence-based pharmacological inter-
ventions and disregarded dependable public health measures such as the use of face masks
and social distancing [23]. These actions also impaired the implementation of public health
services and policies at the federal level and in other spheres of administration. During this
period, the government made concerted efforts to demobilize analytical skills as a crucial
component of the National Healthcare System [24]. Such strategies exposed, in particular,
the somewhat unexpected size of the political bias regarding the spread of SARS-CoV-2
and the mortality rate of COVID-19 in Brazil, surpassing other important epidemiological
elements such as the level of poverty and the mutation of the virus. People were constantly
persuaded not to adopt restrictive measures [25,26]. Furthermore, the fomentation of anti-
COVID-19 measures by the federal government amplified the challenges of monitoring the
spread of the virus, to the extent that the daily count of cases and deaths was not properly
updated. Such coordinated actions influenced decision-making processes in several other
spheres of administration. Consequently, health managers were unaware of the true scope
of the epidemic, which may have hindered the deployment of control measures at key
points in the spread of SARS-CoV-2 [27].

States and cities run by political opponents of president Jair Bolsonaro deployed NPI
measures independently of federal sanitary orientations [28]. An example was the city of
Araraquara, São Paulo, Brazil. This city has an estimated population of approximately
238,000 people and a demographic density of 235 inhabitants/km2, according to IBGE [29].
Local authorities implemented different degrees of restrictive NPI measures, the red, yellow,
and green flags, in response to the severity of the epidemiological scenario. Araraquara
deployed strict social-distancing and lockdown measures to avoid the collapse of the health
system as the cases of COVID-19 started to increase. The so-called red-flag measures limited
certain economic activities and sectors but did not promote the complete shutdown of
services, which happened when lockdown measures were implemented. Araraquara also
issued two lockdown orders in 2021, one in February and another in June. As a result, there
was a 43.02% decrease in cases after the first ten days of these interventions. Additionally,
the time frame comprising March and June of 2021 presented more cases than reported in
the previous 10 months [30]. As one of the largest cities in the region, Araraquara stood
out nationally for implementing complete lockdown strategies and carrying out mass
testing for COVID-19, which culminated in a decrease in death rates associated with the
implementation of vaccination strategies in 2021 [31].

The diversity of the epidemiological patterns of COVID-19 during the pandemic was
a result of the circulation of different SARS-CoV-2 variants [32]. Thus, it is important to
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evaluate the evolution of common symptoms; the influence of environmental indicators
such as temperature, humidity, and air quality on the spread of the virus; the effect of
events such as vaccination and crowding; sociopolitical actions in neighborhoods or cities;
and the type of measures implemented to control the spread of the virus, which are among
the factors whose patterns change throughout pandemics, seasonally or non-seasonally.

In order to identify and understand some of these disease patterns, researchers
have demonstrated the association of COVID-19 cases with crowding and NPI
implementation [8,9,33–35]. In this sense, COVID-19’s spread is regarded as a multifaceted
sociopolitical problem, for which exploratory analysis and data comparison based on urban
mobility and sociodemographic indicators can provide useful epidemiological informa-
tion [36–40].

Hence, in order to better understand the pandemic scenario in Araraquara and what
the forecasting of COVID-19, we applied mathematical and epidemiological models in neu-
ral networks to forecast the number of cases and observe the possible effects of restrictive
measures in Araraquara, Brazil. Our assessment was based on previous studies that also
used urban mobility and temporal and quantitative epidemiological data. Furthermore, by
consulting the datasets thoroughly, we outlined the COVID-19 epidemiological scenario
in Araraquara in 2020 and 2021, as well as the community mobility and its potential con-
tribution to disease transmission. In addition, we used an initial Fourier transformation
application to identify the disease’s seasonal spread despite the implementation of control
measures, which demonstrated that there were seasonal events to which specific NPIs
could have been applied in certain key periods.

2. Materials and Methods

In this section of the manuscript, we provide a comprehensive description of the
datasets and methods used for the analysis. We also highlight important hallmark dates
that may have influenced the epidemiological patterns of COVID-19 in Araraquara.

2.1. Dataset

In order to better comprehend the phenomena, we compared information from three
different data sources:

• Community mobility reports (CMRs) from Google to analyze social dynamics;
• Municipal daily reports (MDRs) from bulletins provided by local authorities;
• Health department reports (HDRs) from local health authorities.

The CMRs [41] comprise data collected from tracked mobile phones/smartphones.
The entries are associated with the activities and mobility of users in different sites and
environments such as work, residential neighborhoods, and public areas. The CMRs
are divided into six categories: retail and recreation, parks, groceries and pharmacies,
workplaces, public transit, and residential. We collected mobility entries from February
2020 to June 2021. The CMRs include different levels of geographical organization, such as
country, state, and city. The analysis of this dataset provided inputs of community mobility
dynamics and local incidences during the red-flag and lockdown periods in Araraquara.

The COVID-19 epidemiological data present in the MDR dataset were obtained from
daily bulletins provided by the local government [42]. This dataset is organized as a time
series of cases, with the first registry dated 3 March 2020, and all subsequent data added
daily. The dataset includes information such as the date of the report, Brazilian province,
city, number of cases, number of deaths, estimated population, city code, percentage of
cases per 100,000 inhabitants, and death rate.

The Health Department of Araraquara maintained a weekly updated database (HDR
dataset) that was partially used in our analysis. The dataset comprised reports of 77,809 RT-
PCR and rapid tests, including antibody or antigen test, and additional variables collected
from 1 April 2020 to 31 May 2021, and was composed of 26 columns, organized as follows:
identification column; three columns containing report date, date of onset of symptoms,
and type and date of diagnostic test; one column related to the test result; one column
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identifying whether the user was a health professional; and other columns related to the
patient’s chart, such as possible diseases and symptoms presented (see Table 1).

Table 1. Health department reports (HDRs) data columns.

Report number Sore throat Obesity

Report date Dyspnea Coryza

Date of onset of symptoms Fever Asymptomatic

Test date (PCR/rapid) Cough Race/color

Result (PCR/rapid) Others Pregnant

Olfactory disorders Headache Diabetes

Chronic heart disease Taste disorders Puerperium (up to 45 days after labor)

A healthcare professional? Carrier of chromosomal diseases or
immunologically fragile state

Advanced-stage chronic kidney disease
(grades 3, 4, or 5)

Uncompensated chronic respiratory
diseases

Finally, we considered important dates for our analyses, as organized in Table 2.
The first dates were the national elections, which occurred on 15 and 29 November 2020,
resulting in crowding. Additionally, Araraquara’s government implemented NPIs (red-
flag alerts) during 2020 on 23 March, 1 May, 4 September, and 22 December. They also
implemented NPIs on 2 April 2021. Further, they declared a lockdown on 21 February 2021,
spanning to 2 March, and from 20 June to 27 June. Some of these dates explain the behavior
of the temporal trends in Araraquara, as will be shown below.

Table 2. Calendar of main events in Araraquara.

National Elections NPI Lockdown

15 November 2020 23 March 2020 21 February 2021
29 November 2020 1 May 2020 20 June 2021

4 September 2020
22 December 2020
2 February 2021

2.2. t-Distributed Stochastic Neighbor Embedding (t-SNE)

The community mobility reports (CMRs) dataset provided a complex arrangement of
mobility that evolved through many community sectors and changed over time when local
events occurred. To generate independent variables capable of generalizing a temporal
event or circumstance and simplify the data interpretation and visualization by reducing
dimensionality through projecting the data to a lower-dimensional domain and preserving
local structures, we used the t-Distributed Stochastic Neighbor Embedding (t-SNE) method
proposed by Van der Maaten and Hinton [43], based on Stochastic Neighbor Embedding
(SNE) [44]. However, there was a trade-off between precision (achieved through high
dimensionality) and interpretability (given low-throw dimensions).

We identified works that used different methods for this task, such as those that used
the PCA method, including the approach presented by Aragão et al. [34]. We adopted
t-SNE, however, because it could take a high-dimensional dataset and reduce it to a low-
dimensional graph while retaining the original information and meaning in the data.
PCA (Principal Component Analysis) is a method for reducing the number of variables
(generating principal components—PCs) in order to generalize the projections without
losing substantial information [45]. To set up the sorting PC, the algorithm measures
the average value of all dimensions of the data to avoid an unequal contribution from
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a given dimension into the process and applies a standardizing method to generate an
input in a standard scale. Afterwards, the covariance of the variables is computed, and
the covariance matrix A is established, followed by the use of a linear transformation to
find the characteristic vectors (also known as eigenvectors). The chosen PC variables are
the eigenvectors with the highest eigenvalues. The results are presented using an orthogonal
axis designed to explain the maximum amount of variance in the set, which may result in
information loss.

The t-SNE method worked by first calculating the Euclidean distances between points
on the dataset, which were then translated into conditional probabilities that reflect the
similarity between each pair of sites using:

pi|j =
exp(

−|xi−xj |2

2σ2
i

)

∑k 6=i exp(−|xi−xk |2
2σ2

i
)

(1)

in which the division represents each possible cluster with different densities.
The next step was to create a random dataset in low-dimensional space and compute a

joint probability distribution based on k-features (our target, in general, was 2 dimensions
as the outcome). We established a joint probability distribution for this set of points, but at
this stage utilized the t-distribution rather than the Gaussian distribution, as was the case
in the initial dataset, adopting:

qi|j =
(1 + |yi − yj|2)−1

∑k 6=l(1 + |yk − yl |2)−1 (2)

Finally, we used the Kullback–Leiber (KL) divergence measure to get as near to the
original dataset’s joint probability distribution of data points in the low-dimensional space
as possible. The value of the KL divergence decreases as the distributions become more
similar, eventually reaching 0 when the distributions are identical. The KL divergence is
defined as:

DKL(P|Q) = ∑
x∈X

P(x)log
(

P(x)
Q(x)

)
(3)

In the approach presented in this work, we applied this method to the CMR dataset.
However, we removed the component that represented residential mobility, keeping only
those components relating to the different interactions across the city.

2.3. Fast Fourier Transform—FFT

Certain events occur in a seasonal manner, and COVID-19 is influenced by seasonal
events. Two examples are the temperature and humidity indexes, which are seasonal and
have a relation to the dynamics of COVID-19 [33,46,47]. The Fourier transform (FT) may
help us comprehend the construction of the COVID-19 curve using an alternative method.

First, a periodic signal can be represented by a Fourier series, which is an infinite sum
of sinusoidal functions (cosine and sine), each with a frequency that is an integer multiple
of f = 1/T:

f (t) = a0 +
∞

∑
m=1

amcos
2πmt

T +
∞

∑
n=1

bnsin
2πnt

T (4)

where a0, am, and bn represent the Fourier series coefficients, which determine the relative
weights for each of the sinusoids.

In order to depict a function as a continuous or integral superposition of complex
exponential functions, we can then use the Fourier transform. A series can thus be repre-
sented in the frequency domain. To perform this method, we used decomposition, which
converts (or extracts) the signal as a sum of other signals or as the sum of a series of n-sine
waves represented as continuous signs.



Int. J. Environ. Res. Public Health 2023, 20, 4740 6 of 21

In the case of non-continuous problems with information about a set of data rather than
a continuous function, the discrete Fourier transform (DFT) could assist in transforming
this dataset into an equal-sized set with information about the frequencies of the function
that satisfies the dataset, or it could provide the discretized form of the Fourier transform.
An arbitrary function that is periodic on a certain domain must be projected into orthogonal
function directions by expanding it as a sum of sines and cosines as well as periods on that
domain. For the 1-dimensional DFT (y[k]) of length N, we used the following definition:

y[k] =
N−1

∑
n=0

x[n]e−2πnk/N , k = 0, . . . , N − 1 (5)

where the daily number of SARS-CoV-2 cases reported on the nth day of the time series is
represented by x, and y[k] denotes the magnitude of the kth frequency on the n-day of the
time series. By converting the time series of the number of new daily SARS-CoV-2 cases to
the frequency domain, we used the DFT to estimate the period’s length in the COVID-19
data spectrum.

To compute the discrete Fourier transform of a signal, a computer needs to complete
N multiplications × N additions, resulting in an algorithm with a complexity of O(N2)
operations. The fast Fourier transform (FFT), as the name indicates, is a method that finds
the discrete Fourier transform of an input much quicker than computing it directly. The
FFT algorithm decreases the number of calculations required for a problem of size N from
O(N2) to O(NlogN), using the so-called divide-and-conquer approach. Rather than working
with big signals, the algorithm breaks them into smaller ones and applies the DFT to these,
before summing all of the smaller DFT results to obtain the final outcome, asymptotically
providing a significant advantage. Hence, the FFT is an algorithm that allows one to
quickly transform a series of discrete signals into a sample containing the frequencies of
these signals, as long as certain properties are met.

Given this advantage, the intent was to consider the time series of COVID-19 cases
extracted from the MDR dataset. The FFT allowed us to extract and map event frequencies
for the city of Araraquara, displaying seasonality throughout the year. The frequencies were
determined by the function and reported in a graphical form using four categories: (1) those
representing events with seasonality ranging from 9 to 12 months (40–52 weeks); (2) those
representing events with seasonality ranging from 6 to 9 months (26–40 weeks); (3) those
representing events with seasonality ranging from 3 to 6 months (12–26 weeks); and (4) those
representing events with seasonality ranging from 1 week to 3 months (1–12 weeks).

If a frequency peak appeared in a specific sector, such as between 3 and 6 months, it
meant that the city had a high rate of COVID-19 cases, which repeated itself in a 3–6 month
period. This method may enable one to map the events that correspond to each seasonality
frequency and identify the best times to implement a measure, in addition to understanding
its magnitude in the context of case control reporting.

2.4. Seasonal Auto-Regressive Integrated Moving Average—SARIMA

The ARIMA and SARIMA methods are used in several applications, especially in
univariate tasks. It is possible to refer to many works that used these methods to per-
form regression during the COVID-19 pandemic [34,48–52]. The methods consist of com-
bining auto-regressive (AR) and moving-average models (MA) and then defining the
ARIMA(p, d, q) model, allowing one to accommodate different types of non-stationary
time series (d is the order of differentiation applied for the time series).

AR(p) is a p-order auto-regressive model that is based on a linear combination of
past observations Xt = α1Xt−1 + α2Xt−2 + ... + αpXt−p + εt, where α is constant and εt is a
stochastic disturbance from the white noise process. When adjusting the parameters of an
auto-regressive model, the parameter αk must be estimated, resulting in the equation:

Yt = µ + Xt = µ + α1Xt−1 + . . . + αpXt−p + εt (6)
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On the other hand, MA models are an extension of the white noise process, consisting
of a linear combination of the disturbance εt added to recent disturbances εt−1, εt−2, . . . , εt−q.
Thus, a q-order MA model can be defined as follows:

Xt = εt + β1εt−1 + β2εt−2 + . . . + βqεt−q (7)

Seasonal Auto-regressive Integrated Moving Average (SARIMA), also known as Sea-
sonal ARIMA, was created to support univariate time series based on ARIMA models. It
contains a second set of parameters (P, Q, D)s referring to seasonal auto-regression in the
seasonal period s.

The advantage of using the SARIMA model is that there are fewer hyper-parameters,
making the configuration file readily manageable if the model is put into production.
However, when p and q rise in value, there are more coefficients to fit, increasing the
time complexity exponentially. If p and q are large, the procedure becomes difficult to fit,
depending on the complexity of the dataset.

2.5. Transformers

Certain methods are useful for situations that cannot be addressed linearly. In such
circumstances, neural networks allow one to detect the degree of links among variables,
such as those in our study, because non-linear variables cannot be described. Hence, neural
networks show promise for univariate, bivariate, and multivariate regression issues.

One possible approach is to use the Transformer Multi-Head Attention model (or
simply the Transformer model), which excels at managing sequential data, allowing one
to tackle sequential and temporal topics without being limited in prediction. The core of
the Transformer model’s architecture is based on attention mechanisms [53]. Transformers
have demonstrated outstanding performance in natural language processing and (espe-
cially) in computer vision, which the scientific community has exploited in the time-series
domain [54]. This method has the advantage of capturing long-term data dependencies
and relationships and producing better data visualizations.

The Transformer model’s outermost structure consists of an encoder and a decoder,
and the core is built on self-attention method processes. When adding positional encoding
to the input and output sequence embedding, self-attention allows the model to search
at other points in the input sequence for hints that might assist in better encoding a
target sequence. This approach uses positional encoding appended to input embedding
to describe the input series representation, with no recurrence or convolution operations.
The inputs to both the encoder and decoder components use the same embedding and
positional encoding logic, taking both sequences of input and output tokens and converting
them into vectors with no order (a query vector, key vector, and value vector for each input).
Afterwards, a component of the embedding vectors called the positional encoding converts
the sequence to sine and cosine frequencies. In this case, nearby elements have a similar
positional encoding.

Each encoder block has a multi-head self-attention module and a position-wise feed-
forward network (FFN), while each decoder block inserts cross-attention models between
the multi-head self-attention module and the position-wise feed-forward network. The
multi-head attention mechanism uses the values, keys, and queries in the so-called Scaled
Dot-Product Attention process to calculate the attention weights based on:

Attention(Q, V, K) = so f tmax(
QKT
√

dK
)V (8)

where Q, K, and V are queries, keys, and values, respectively, and dK is the dimension key,
which are used to regularize the result with a softmax function. The softmax function layer
then turns these scores into probabilities (all positive, adding up to 1.0). The cell with the
highest probability is chosen, and the input associated with it is identified as the output of
the time step.



Int. J. Environ. Res. Public Health 2023, 20, 4740 8 of 21

The network adopted in this work had a head size of 200 blocks, with 4 heads con-
taining transformer blocks connected to an MLP with 128 units and a dropout of 30%. We
used the univariate model based on COVID-19 daily cases as the input data to predict two
different outcomes: the next day following a true sequence, and the next day following a
sequence that was constructed based on each sequential prediction. The learning algorithm
was asked to output the function f : R→ R in order to complete this task.

3. Experiments and Results

We started by extracting information based on graphs that were constructed for data
from the MDR, HDR, and CMR datasets during 2020 and 2021.

3.1. COVID-19 Patterns in Araraquara

From the HDR dataset, we identified 77,809 records, and the overall sum of posi-
tive tests (including RT-PCR and fast tests) was 14,729; tests that presented negative to
COVID-19 comprised 47,432 records. Additionally, 52 sample records were designated as
inconclusive or uncertain. From the 14,729 COVID-19-positive tests, 1838 (approximately
12.5%) were reported as individuals with symptoms, whereas 12,891 (approximately 87.5%)
were recognized as COVID-19-positive individuals who were asymptomatic and did not
report symptoms.

The most frequently reported symptoms among the positive-RT-PCR patients were
cough (reported by 41.16%), fever (30.06%), sore throat (29.30%), and headaches (27.69%),
as shown in Figure 1. Additionally, we observed that when users were identified as positive,
the symptoms related to olfactory, gustatory, and dyspnea disorders were the least reported.

0 2000 4000 6000 8000 10,000 12,000 14,000
Notifications

Sore throat

Dyspnea

Fever

Cough

Others

Headache

Taste Disorders

Olfactory Disorders

Coryza

Sy
m

pt
om

s

Result
Negative
Positive

Figure 1. Symptoms reported by suspected (blue) and confirmed (orange) COVID-19 patients from
Araraquara, São Paulo, Brazil, from March 2020 to July 2021.

Among those individuals identified as positive cases, 2456 had some condition or
comorbidity that characterized them as a special-attention case or was considered a risk
factor (Figure 2). This group was distributed under the following classifications according
to the individual’s condition: obesity; postpartum or pregnant women; patients with
chronic respiratory, cardiac, renal, or chromosomal diseases or frailty; and patients with
diabetes or immunosuppression.

In relation to the importing and exporting of cases, the movement of the disease
between cities within the state of São Paulo and its neighboring states had a significant
influence. For example, 7888 out of the 77,809 case records identified as Araraquara resi-
dents were imported from cities in other states, such as Curitiba, located in the neighboring
Paraná state. The distance between Araraquara and Curitiba is approximately 664.3 km.
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0 200 400 600 800

Decompensated chronic respiratory diseases

Chronic heart disease

Diabetes

Advanced-stage chronic kidney disease (grades 3, 4, or 5)

Immunosuppression

Pregnant

Carrier of chromosomal diseases or immunologically fragile state

Puerperal women (up to 45 days of delivery)

Obesity Reports

Figure 2. Types of comorbidities and health conditions presented by residents of Araraquara, São
Paulo, Brazil, comprising cases reported from March 2020 to July 2021.

The state of São Paulo borders four other states: Rio de Janeiro, Minas Gerais, Paraná,
and Mato Grosso do Sul. Figure 3 depicts the cases imported and exported to/from
other states, including Minas Gerais and Rio de Janeiro. These three states are the most
populated states in Brazil according to the IBGE [29], with São Paulo representing 21.9% of
the Brazilian population, Minas Gerais 10.1%, and Rio de Janeiro 8.2%. Considering the
states with more than 80 instances imported or exported to another state, the emigration
from Paraná to São Paulo represented 7664 records, and that from Minas Gerais and Rio
Grande do Sul to São Paulo accounted for 104 and 94, respectively. Emigration from São
Paulo to Minas Gerais accounted for 89 of the instances. The remaining cases for São Paulo
originated in the state itself (69,442 cases).

0 10,000 20,000 30,000 40,000 50,000 60,000 70,000
Notifications

(São Paulo, São Paulo)

(Paraná, São Paulo)

(Minas Gerais, São Paulo)

(Rio Grande do Sul, São Paulo)

(São Paulo, Minas Gerais)

(São Paulo, Rio de Janeiro)

St
at

es

State of notification, State of residence

Figure 3. Autochthonous and imported reported cases, state of São Paulo, Brazil, 2020–2021.

3.2. Community Mobility and Frequency Events

It was possible to extract event-based information for 2020 and 2021, in particular, in
relation to the variation in COVID-19 daily cases. To this end, we used the MDR dataset
that is graphically represented in Figure 4. In this graph, for ease of understanding, we
applied a moving average of 7 days and included all official public holidays in Brazil as red
lines. Additionally, the events presented in Table 2 (Section 2) were included, i.e., national
elections, NPIs, and lockdown measure implementations.

Lockdown periods are represented as blue stripes, indicating the exact length in
relation to the timeline and the determined period span. Green stripes correspond to
NPI measures, representing the first day of the measure’s implementation plus the seven
days following. We adopted this approach as it could make it easier to observe how these
measures graphically demonstrated their outcomes in the period of 7 days. As shown in
Figure 4, these types of measures, such as NPIs and lockdowns, were implemented when
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the curve’s trend was at its local peak (when considering a short period, this could be
determined as the peak of cases in the selected period).
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Figure 4. Cases reported (blue line) by health authorities from Araraquara, São Paulo, Brazil, from
March 2020 to July 2021.

There was a local peak between August and September 2020. During this period, the
government of Araraquara authorized bars and restaurants to operate, which may have
contributed to the increasing number of cases. Given the increasing number of cases during
other periods, we assumed that the purpose of implementing these measures was to cause
a recession or spread stagnation. Furthermore, we observed that at least half of the holiday
dates appeared to precede an increase in daily cases, contributing to the upward trend of
the curve. This was visible during periods such as the holidays preceding the March 2021
lockdown (03-21 in the graph). Some holidays in 2021 followed the same pattern, such
as those in April and June (04-21 and 06-21 in the graph). It is important to note that the
lockdown periods were implemented immediately after the highest rates of COVID-19
daily cases in Araraquara.

We used data from the CMR database and ran them through the t-SNE method to help
us understand how these high numbers of daily COVID-19 cases came to be. However,
first, we verified if there was a correlation between the CMR features (Figure 5). With the
exception of transit stations, residential mobility had an inverse connection with all other
components. The other elements were positively connected to one another. Furthermore,
the strongest negative correlation was between the residential and workplace features.
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Figure 5. CMR feature correlation.
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Furthermore, before employing t-SNE, we conducted a Shapiro–Wilk test [55] to see
if the distributions were close to normal distributions (Figure 6). All CMR characteristics
had p-values equal to 0.000, leading us to reject the null hypothesis H0 (that the data would
follow a pattern of development) and indicating that the data did not display Gaussian
distribution behavior.
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Figure 6. Shapiro–Wilk outcomes: (a) Residential. (b) Parks. (c) Transit Stations. (d) Groceries and
pharmacies. (e) Workplaces. (f) Retail and Recreation.

The t-SNE method could help us reduce the number of community mobility compo-
nents analyzed from five (retail and recreation, parks, groceries and pharmacies, work-
places, and public transit) to two, as shown in Figure 7. The algorithm looked for similarities
between all the points based on their distance and divided them into two groups, which
we will refer to as Component 1 and Component 2.

Comparing the components generated by the t-SNE method and the holidays, NPIs,
and lockdown measure implementations, we could determine that:

• The first NPI was adopted one month before the first wave of cases in the city.
• The second and third NPIs were implemented at a time of a high and stable number

of cases.
• The mobility behaviors presented in the first and second lockdowns were not similar.

The first lockdown demonstrated a greater effective mobility restraint force compared
to the second.
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• Comparing with Figure 4, it was observed that the mobility restrictions could reduce
the number of cases but were not so efficient as to decrease the number of daily cases
to zero.

• The rises in the curves of the urban mobility components, in general, were preceded
by a holiday.

We then applied the FFT in an attempt to specify if there were periods during which
events were distributed that influenced the case curve. It is important to note that in this
case, the FFT method was only used to identify the Fourier frequency spectrum, and the
method was applied to the original temporal record of cases, i.e., the series was applied
without using a moving average.

05-20 06-20 07-20 08-20 09-20 10-20 11-20 12-20 01-21 02-21 03-21 04-21 05-21 06-21 07-21
Date (mm-yy)

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

t-S
NE

 C
om

po
ne

nt
s C

M
R

1e1
Component 1
Component 2
Holiday
NPI
Lockdown

Figure 7. t-SNE Components.

Figure 8 depicts a frequency spectrum with endpoints at junctions that correspond
to COVID-19’s case peaks. It was necessary to convert this to a semi-logarithmic annual
scale, in which each peak is represented by its magnitude (on the y-axis) and k-frequency
(on the x-axis). Without the 7-day moving average treatment, the DFT was applied to the
original curve.
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Figure 8. COVID-19 FFT frequency events.

The graph shows a frequency peak for the 7-day cycle associated with the case noti-
fication process (with accumulated cases reported on Sunday and Monday), which was
repeated 52 times a year (k = 52), where 52 is the number of weeks in a year. Furthermore,
we discovered another point with a high magnitude on the extreme left side of the spectrum
that was not categorized as a peak, which was a phenomenon that occurred every 6 to
9 moths of the year during the observation period. This implied that the repeat cycle was
roughly k = 1.55. This phenomenon could be identified as the presence of so-called popular
waves, defined as a sudden increase in the number of cases compared to the city’s average.
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Furthermore, three other phenomena or events recurred over a period of 3 to 6 months
(k = [2.33, 3.12, 3.9]). Except for the event at k = 52, we could identify this as a single
moment that appeared to be repeated every 1 to 3 months, that is, with k = 5.46.

3.3. Forecasts

In the following, we present some predictions that could support and help in determin-
ing if it is possible to introduce the hypothesis that lockdowns were an important measure
to contain or reduce the COVID-19 daily cases in Araraquara.

3.3.1. SARIMA

The first regression approach for the two lockdown measure periods used the SARIMA
model. In the training step, it was observed that the model maintained the curve’s trend
and its patterns when compared to the ground truth throughout the predictions, as shown
in Figure 9.
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Figure 9. SARIMA model forecasts for the first lockdown from 21 February to 2 March in Araraquara.

Figure 9 presents the results from a trained SARIMA model. The base data for the
training step ranged from the first reported case (25 February 2020) to the day of the
first lockdown (21 February 2021). The model parameters—included in the definition
SARIMA(p, d, q)(P, D, Q)s—were determined using the Box and Jenkins approach [56,57].
The model applied for the first lockdown period was defined in the order (0, 1, 0), with the
seasonality order (7, 1, 0, 7).

We also considered that an infected person’s symptoms begin to appear approximately
4 or 5 days after infection, as presented by Johansson et al. [58]; hence, if the transmission
took place on day d, we could observe its results on day d + 7 [1,59]. Given this, when
choosing the period for prediction (the data used in the test), we considered that results
could occur within a timespan of 6 days after the first day of lockdown implementation,
representing the future outcome of the implemented measures in terms of COVID-19
daily cases.

The predictions made by the model in the test step demonstrated that it was expected
that the curve’s trend and the number of cases would increase. The real number of cases
in 20 March 2021 was 71. For the same date, the model predicted a value of 166.17,
representing a value difference of approximately 94 cases. Most importantly, the RMSE
extracted based on the sweeping curve was RMSE = 4.55 cases.

Furthermore, the model was trained for the second lockdown period and defined in
the order (0, 1, 0), with the seasonality order (8, 1, 0, 7). The predictions for the second
lockdown are shown in Figure 10.

We observed different patterns for the curve’s trend and different COVID-19 daily case
expectations in this prediction set. In contrast to the first lockdown, the forecasts showed
that the number of cases would remain stable, with no significant increases. This result
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may have been based on the previous data pattern curve, which was presented above for
the beginning of that timespan.

The real number of cases in 3 June 2021 was 106. The model predicted a value of 97.09
for the same date, representing a value difference of approximately 9 cases. However, the
model showed a significant value divergence for previous dates in that period. The RMSE
extracted based on the complete curve was RMSE = 5.57 cases.
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Figure 10. SARIMA model forecasts for the second lockdown from 20 to 27 June in Araraquara.

3.3.2. Transformer Model

Next, we present the predictions made using the Transformer models. We decided
that, in order to predict one day, a sequence of seven days had to be presented, which
meant that in order to predict the eighth day, we had to first present data corresponding
to seven consecutive days of COVID-19 cases. The model received a sequence of data in
both the training and testing stages, forming a vector of information. Similarly, to predict
day 9, we presented a 7-day sequence that corresponded to days 2–8. To forecast day 10,
we presented data from days 3 to 9.

Figure 11 depicts the actual COVID-19 daily cases, those predicted by the model for the
same timeline, and the forecast for cases immediately after the lockdown was implemented
on 21 February 2021. This last predicted series was obtained with the assumption that the
forecast day should be included in the following time series used with the forecast. In this
case, suppose we use the real series from days 1 to 7 to forecast the next day (eight days):
[1d, 2d . . . 6d, 7d]→ 8p. Once the forecast for day 8 is complete, its value is attached to the
next series as a data entry, which means that for day nine, we consider days 2 through
7 plus the previously predicted eighth day: [2d, 3d . . . 7r, 8p]→ 9p.
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Figure 11. Transformer model forecasts for the first lockdown from 21 February to 2 March
in Araraquara.
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As observed, the pattern learned by the model demonstrated that the predicted data
expected that the trend in the number of cases would continue to rise, although not as
sharply as the current data presented. This could be explained by hidden information that
was not presented, such as the fact that crowding had occurred in the previous period,
which could be critical for the model to determine a trend more effectively and accurately.
As with the SARIMA model’s predictions, once real temporal information was not provided,
the model predicted an increase in the number of cases due to COVID-19. At the test stage,
the model had an RMSE of 13.30. The sum of COVID-19 cases during the test period was
2783, while the sum of values predicted by the model for the same time period was 2878.

Similarly, Figure 12 demonstrates the same pattern in predicting the days that occurred
after the first lockdown. In this second timespan, the pattern diverged from the predictions
made by the SARIMA model. This showed that the restriction measure’s implementation
had a significant impact, preventing the recognized standard expectation of an increase in
cases due to the oversaturation of the health system. In this process, the model presented
a slightly higher RMSE than in the previous stage, with a value of 14.39 in the test step.
For the test data, the total number of COVID-19 cases was 1746, whereas the sum amount
predicted by the model was 1745.
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Figure 12. Transformer model forecasts for the second lockdown from 20 to 27 June in Araraquara.

4. Discussion

In the present study, we were able to assess the epidemiological profile of COVID-19
in a medium-sized city in Brazil, applying mathematical models and neural networks
to analyze disease reports, community mobility, and NPIs. The ability of the models to
properly forecast disease patterns in Araraquara supported their use as potential algorithms
for situation diagnosis in different epidemiological scenarios. Additionally, our data
strongly suggested that lockdown measures were of paramount importance in decreasing
COVID-19 incidences in the city after only a few days of implementation.

It is not possible to state that the only factor that influenced the curve of cases was the
use of NPIs. However, we identified that the implementation of lockdowns was a crucial
factor that was independent of other factors, as demonstrated in Figure 4, and showed
that as the pandemic progressed, the city benefited from the drastic drop in the number
of cases. Additionally, in terms of epidemiology, vaccination itself helped decrease cases
independently of other strategies. More research will be carried out in the future to gain a
more comprehensive understanding.

Autoregressive models have been widely used to predict infectious diseases, espe-
cially COVID-19 [60]. SARIMA models were accurate and reliable in predicting deaths in
12 countries that presented high incidences for COVID-19. Importantly, the models prop-
erly adapted to the implementation of data, despite seasonality and complex patterns [61].
SARIMA and ARIMA models were used to generate a 60-day forecast of cumulative
COVID-19 cases for the top 16 countries. The models were country-specific and were
able to classify three categories of case growth [62]; the autoregressive models properly
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predicted dengue infection [63], monkeypox disease [64], and cases of hemorrhagic fever
with renal syndrome [65].

The changes in epidemiological patterns shown in our analysis varied as the pandemic
progressed, which is expected in time-series assessments [66]. Thus, the evolution of control
measures and the management of cases had to be correlated with the variability of the
patterns exhibited in one urban setting. In the case of Araraquara, symptoms, for example,
presented different patterns during our analysis. For instance, initially, the community and
governors focused on symptoms related to olfactory and taste disorders [67–71], but as
shown in Figure 1, it is possible to highlight that the symptoms most related to positive
cases were fever, cough, and sore throat (and those described as Others). Furthermore,
the relative rate of positive and asymptomatic cases showed that the silent spread of the
disease once voluntary consent to be tested was provided frequently occurred after the
symptoms were experienced. Understanding these pattern changes could also contribute
to greater community adherence to undergoing mass testing programs.

The more aspects revealed, the more reasonable the disease perception and under-
standing were; however, this also demonstrated how complex it is to produce accurate
forecasts due to multi-factor deliberations. Non-temporal external static variables could be
considered; in other words, a location in a city, for example, is a static variable, because it
has multiple inherent features that make it unique.

The Brazilian political, economical, and social scenarios influenced the deployment
of public health policies at a time when SARS-CoV-2 spread was a complicated issue with
multiple contributing factors [72] also occurred in Araraquara. Another important aspect
is the anti-vaccine or anti-public-media movement [73–75], which is frequently fueled by
influential misinformation [76]. Aside from these anti-social factors, various environmental
and anthropogenic disaster contexts have emerged as being interconnected in the fight
against COVID-19 [77].

To improve the comprehension of this problem, once implemented in Araraquara, a
massive testing program could assist in counting and demonstrating the value of preventing
under-reporting; understanding the origins of epidemics; and the ability to take immediate
action to ensure the containment of infected people, whether they are symptomatic or not.
The significant efficacy of detecting such profiles via an efficient surveillance system, both
quantitatively and qualitatively, as well as case analysis, leads to a better understanding of
disease dynamics.

The Brazilian cities and states that implemented lockdowns exhibited positive but
varied results, and in general the lockdown decisions were made due to crowding and
a lack of ICU beds, not as a measure to prevent disease spread [78,79], as demonstrated
in Figures 4 and 7 (Section 3.2). Despite the positive results, not all governments decided
to implement this type of measure, which may also have contributed in numbers to their
territorial neighbors who implemented lockdowns. Considering these factors, therefore, it
is important to analyze the periodicity of case numbers and the mapping of key events, in
addition to the need for mass tests. Approaches such as those shown in Figure 8 (Section 3.2)
could help with this mapping.

These measures may aid in the reduction of forecasting noise. On the one hand, the
model should be highly adaptive; on the other hand, time sequences can be fairly complex
or noisy, while others can be modeled simply with naive seasonal predictors and output
prediction intervals that reflect the prediction uncertainty. This justifies the mapping of
events, as well as the mapping of events inducing crowding (holidays) [34] based on
community mobility, and local climate changes. For example, the discussions conducted
by Wu et al. [46] and by Aragão et al. [36] showed that weather indices and the spread of
COVID-19 were related.

5. Conclusions

This work aimed to provide a better understanding of the COVID-19 scenario that
occurred in the city of Araraquara during 2020-21, considering the import and export
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of reported cases and the main symptoms presented by the population. Furthermore,
some intriguing questions arose from Figure 7, showing the two components produced
by the t-SNE method, which simplified our understanding of urban mobility in the city.
Considering these components, we observed that mobility measures could be important
for certain contexts, such as holidays, to avoid a worse scenario. It was also observed that
after the implementation of lockdowns, there was a drastic decrease in urban mobility rates,
which contributed to the drop in the number of cases of COVID-19 after a few days, but the
same behavior did not necessarily apply to other NPI implementations.

Different regression models such as SARIMA and the Transformer model could present
different results but similar behaviors, that is, the expectation was an increasing number of
COVID-19 cases until the moment the lockdown measure was implemented. Nonetheless,
because the virus contagion problem was multi-factorial, this factor (the imposition of the
lockdown measure) was only one of the possible variables of interest that could influence
the dynamics of COVID-19. It was observed that once a lockdown was implemented, the
number of cases decreased but did not reach zero, and that after the restrictive measure was
lifted, the number of cases increased again, reaching a similar level to before the lockdown.
This could be explained by the extreme contagion rate of COVID-19, which maintains its
transmission from person to person even with a low mobility rate within the population.
Those who travel were still able to maintain viral transmission. Subsequently, when the
restrictive measures were lifted, the virus achieved full activity in the population again.
We believe that this behavior will continue until the whole population is vaccinated or the
number of infected people who cannot be re-infected becomes high enough.

Aside from producing significant findings indicating that we are on the correct track,
our existing data were not definitive, and more efforts are needed to provide a full and final
decision on the strengthening of forecasting models. To this end, future studies will need
to rank elements, taking into consideration the literature’s agreement on the determinants
of the COVID-19 infection rate, such as the work presented by Fermo et al. [80] identifying
more than 50 possible factors. Additionally, it is possible to observe that the use of the
FFT could be essential in the mapping of events over the year, helping decision-making
governors fight COVID-19. The findings could help us catch seasonal patterns that repeat
over a period of a year. Instead of implementing measures for several repeated outbreaks,
this would help in planning and implementing measures at a specific frequency. Without
a precisely specified periodicity, Fourier spectrum analysis might be useful for compre-
hending COVID-19 waves that return with cycles of varied lengths (1 year or less). Finally,
using a large number of variables as the input may reduce the noise in predicting the case
numbers and make the model independent of these COVID-19 case registries.

Identifying a social event related to crowding and the way the disease manifested in
the infected group could aid in future control measures and help identify potential events
where an NPI should be used. We would need to compare cities in the same region to
understand if these containment measures varied in their ability to decrease incidences,
which we intend to evaluate in future work.
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