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Abstract: Background: Sedentary behavior, which is highly prevalent among office workers, is asso-
ciated with multiple health disorders, including those of the musculoskeletal and cardiometabolic
systems. Although prior studies looked at postures or physical activity during work or leisure time,
few analyzed both posture and movement throughout the entire day. Objective: This cross-sectional
pilot study examined the movement behavior of sedentary office workers during both work and
leisure time to explore its association with musculoskeletal discomfort (MSD) and cardiometabolic
health indicators. Methods: Twenty-six participants completed a survey and wore a thigh-based
inertial measuring unit (IMU) to quantify the time spent in different postures, the number of transi-
tions between postures, and the step count during work and leisure time. A heart rate monitor and
ambulatory blood pressure cuff were worn to quantify cardiometabolic measures. The associations
between movement behavior, MSD, and cardiometabolic health indicators were evaluated. Results:
The number of transitions differed significantly between those with and without MSD. Correlations
were found between MSD, time spent sitting, and posture transitions. Posture transitions had nega-
tive correlations with body mass index and heart rate. Conclusions: Although no single behavior was
highly correlated with health outcomes, these correlations suggest that a combination of increasing
standing time, walking time, and the number of transitions between postures during both work
and leisure time was associated with positive musculoskeletal and cardiometabolic health indicators
among sedentary office workers and should be considered in future research.

Keywords: office workers; movement behavior; sedentary workers; musculoskeletal discomfort;
cardiometabolic health indicators

1. Introduction

Sedentary time has been steadily increasing while physical activity has been decreasing
worldwide [1]. The World Health Organization (WHO) reported that 31% of people who
are 15 years or older take part in less than 2.5 h per week of moderate activity and roughly
3.2 million deaths per year are associated with such sedentary lifestyles [2]. The impact of
sedentary behavior is vast and includes higher healthcare costs, loss in productivity, and
increased disability-adjusted life-years (DALYs) [3]. Further, sedentary behavior continues
to grow as leisure activities include computers or screen watching [4–7] and the number of
sedentary jobs increases at the expense of physically active ones [8]. With an average of
8 to 12 h per day [9,10], office employees are among those workers that are most sedentary,
accounting for almost 81.8% of their work hours.

Prior literature indicates that sedentary time is highly associated with musculoskeletal
discomfort (MSD) [11–15] and adverse cardiometabolic outcomes [16–21]. Prolonged
sitting time has a negative impact on resting heart rate, adiposity, vascular function [17,20],
plasma glucose, HDL-cholesterol, and triacylglycerol [19]. In addition to cardiometabolic
outcomes, prolonged sitting was associated with diminished endothelial function in the
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leg vasculature and more frequent urinary tract symptoms [22–25]. Prolonged sitting also
leads to increased and sustained intradiscal pressure since compressive forces are higher
when sitting compared with standing [13,15,26], which is detrimental to the hydration and
nutrition of the intervertebral disc [14], thus having a negative impact on the low back
both in terms of musculoskeletal pain and biomechanical load when sustained for long
durations [11,27]. However, periodic breaks in sedentary time that include brief episodes
of standing or walking, as well as higher total physical activity, were found to be helpful to
nourish the nucleus pulposus and intervertebral disc [26] and to reduce adiposity [19].

Studies documented the inverse relationship between increased standing time and
all-cause mortality rates among people who primarily sit [28,29]; even 10 breaks per day
were associated with positive cardiometabolic outcomes, including decreased waist cir-
cumference, systolic blood pressure, triglycerides, glucose, and insulin and with increased
HDL-cholesterol [16]. Thus, experts recommended that office-based workers should in-
clude at least 2 h per day of standing and walking during working hours [30]. Nonetheless,
it is important to distinguish between periodic and prolonged standing, the latter of which
has harmful effects as well [31–38]. Since numerous studies have associated prolonged
standing with poor cardiometabolic and musculoskeletal outcomes [34], the recommen-
dation to increase standing time is unique to those who spend most of their time in a
seated position, and even then, frequent short intervals of standing time are recommended
throughout the day versus one long bout.

Increasing movement through posture transitions, walking, or even micromovements
while seated, which is defined by small changes in one’s position without large changes
in postures, was suggested as a potential way to mitigate the negative health effects on
the musculoskeletal and cardiometabolic systems associated with prolonged sedentary be-
havior [39–44]. WHO guidelines recommend that adults should undertake 150 to 300 min
of moderate-intensity physical activity, 75–150 min of vigorous-intensity physical activ-
ity, or some equivalent combination of moderate-intensity and vigorous-intensity aerobic
physical activity per week [45]. Walking was identified as the most effective method
to improve MSD and cardiometabolic outcomes among sedentary workers [46–48] since
walking changes the demands on the musculoskeletal system and increases energy ex-
penditure compared with both sitting and standing [49]. Previous research shows that
more frequent walking during a sedentary time was negatively associated with body mass
index (BMI), waist circumference, 2 h plasma glucose, triglycerides [50–53], and MSD [54].
However, the frequency and duration required for maximum benefit remain unclear. In
addition, transitioning between postures may be beneficial to both musculoskeletal and
cardiometabolic health. Sit–stand workstations were implemented as a way to support
transitions between sitting and standing [11], and task-based walking, such as “walk and
talk” meetings, was implemented as a way to transition between sitting or standing and
walking. Micromovements can be quantitatively assessed, for instance, by tracking the
trunk’s center of pressure using force platforms or pressure-sensitive mats [42,43,55–57].
Although micromovements were suggested as a coping strategy to reduce discomfort once
it has developed [42,43,57,58], people who perform a higher number of micromovements
proactively have a lower probability of developing low back pain; thus, interventions
designed to increase micromovements before pain develops may prevent or prolong MSD
from developing [59–63].

A Comprehensive Movement Behavior Model

Considering prior studies on movement, MSD, and cardiometabolic outcomes [11–15],
we present a framework (Figure 1) to assess daily movement behavior among sedentary
workers to determine which measurements are most important to optimize their health
outcomes. The first strategy was to determine the total time spent sitting, standing, and
walking each day. This was based on the evidence that prolonged sitting time is associated
with MSD symptoms [13,15,26], and that bouts of standing and walking of suitable duration
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can mitigate discomfort and improve cardiometabolic measures [26,30,48,52,53,64–67].
These variables are interrelated; as one sits less, they will stand or walk more.
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is defined as a shift between two of sitting, standing, and walking. Each behavior was characterized
by dedicated indicators.

The second strategy was to describe the movement that occurs while sitting, standing,
or walking. While sitting and standing, micromovements can be quantified by sway
patterns (sway path and area), mean pressure, and in-posture movements that capture
quick shifts of the body [42]. Walking, which is a general term that can differ substantially
by person or environment, can also be further defined by quantifying step count and
cadence, which captures the rate of steps.

A third strategy to quantify movement behavior was to measure the number of
transitions between sitting, standing, and walking, which provides feedback on the pattern
of whole-body posture changes. Transitions are defined by moving from sitting to standing,
standing to walking, or sitting to walking (Figure 1). As noted above, numerous studies
identified benefits associated with transitions and more work is being done to understand
how to optimize their frequency and timing [13,51,59,68,69]. Although transitions are often
prompted by discomfort, this reactive approach may be “too little too late” to mitigate
MSD. Ideally, transitions should occur proactively as part of a comprehensive strategy to
prevent MSD and contribute to one’s overall daily energy expenditure.

Although prior research investigated the relationships between certain measures
of movement behavior, musculoskeletal discomfort, and adverse cardiometabolic out-
comes [11–15,26,30,48,52,53,64–67], it is still unclear which, singularly or in combination,
are the most impactful. Additionally, little is known about whether different movement
strategies are more important during work or leisure time.

In summary, although multiple strategies were identified as ways to mitigate the
negative health effects associated with prolonged sitting among sedentary office workers, a
comprehensive approach to quantifying these movements is needed to understand which
combinations and patterns of movement are most important for optimizing musculoskele-
tal and cardiometabolic health. By measuring movement behavior more comprehensively
and consistently during both work and leisure time, we can help sedentary office work-
ers to optimize their movement behavior throughout their day. Furthermore, consistent
measurement of movement behaviors may increase our understanding of the effectiveness
and efficacy of interventions designed to increase movement in sedentary office workers.
Therefore, in addition to developing the comprehensive Movement Behavior Model used
to quantify sedentary postures and movement, the aim of this pilot study was twofold:
(1) investigate the existence of differences in movement behavior metrics between those
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with MSD and those without MSD; and (2) examine the relationships between movement
behavior metrics (during work and leisure time), MSD, and cardiometabolic outcomes.

2. Methods
2.1. Participants

In total, 31 office workers at the University of California, Berkeley applied to take
part in this cross-sectional pilot study. Among them, twenty-six met the inclusion criteria
and were enrolled in this study. Recruitment methods included posting flyers throughout
campus and sending emails through department listservs. The inclusion criteria specified
that participants must have a sit–stand desk, work at the desk for at least thirty hours per
week, and be capable of standing for at least twenty minutes. Exclusion criteria included
any MSD or illness that would prevent the worker from standing while working at their
desk. This study was approved by the University of California, Berkeley Committee for
Protection of Human Subjects (protocol code 2019-10-12607).

2.2. Procedure

All data were collected at the UC Berkeley campus in participants’ offices at the
beginning of their work shifts. Upon arrival, participants signed an informed consent
form and anthropometric measurements were collected. Participants were informed that
they could withdraw at any time during the study without consequences. Subjects were
asked to complete a baseline survey through a Qualtrics link sent via SMS text message.
The survey gathered data on demographic characteristics, physical activity, and MSD using
the 0 to 10 Numeric Pain Rating Scale (NRS).

Additionally, participants were instructed to wear the activPAL monitor (Glasgow, UK)
on their thighs for at least 48 h to record activity and posture data [70], and wore an Acti-
heart heart rate monitor (Boerne, TX, USA) and Spacelabs blood pressure cuff (Snoqualmie,
WA, USA) for 24 h.

2.3. Measures

Height and weight were measured by means of an ultrasonic digital height meter
(Soehnle 5003, Soehnle, Germany) and a digital scale (RE310, Wunder, Italy), respectively.
BMI was calculated by dividing the individual’s body mass (expressed in kilograms) by
their stature (meters squared); values of BMI lower than 18.5 identify underweight, between
18.5 and 25 is considered in the healthy range, while 25 to 30 and higher than 30 fall in
the overweight and obese ranges, respectively. Regarding the hip–waist measurement, the
WHO protocol was followed [71]; a lower hip–waist ratio indicates a healthier distribution
of body fat and lower risks of health problems (0.95 or less for men and 0.80 or less for
women [72]).

Activity and posture were quantified using step count and the duration of time spent
sitting, standing, and walking. Postural transitions were defined as changes between sitting,
standing, and walking. Activity and posture data were sampled at a rate of 20 Hz.

The MSD scores were grouped into four regions: (1) head, neck, and shoulders;
(2) upper and lower back; (3) hips, knees, feet, and ankles; and (4) elbows, hands, and
wrists. A composite MSD score was generated by summing the NRS scores across the four
regions for a maximum score of 40.

Cardiometabolic data, including heart rate (HR), mean arterial pressure (MAP),
and pulse pressure (PP) was based on 1 min and 30 min (6 a.m.–10 p.m.) or 60 min
(10 p.m.–6 a.m.) sampling rates, respectively. Resting HR was calculated by taking the
average of the five lowest values throughout the day, while the average HR was calculated
using the data from the 24 h period; a lower HR (optimal range 60–80 bpm [73]) is an
indicator of cardiovascular health. The MAP, which is the average blood pressure per
cardiac cycle, was calculated by doubling the diastole measurement, adding the systole
measurement, and dividing the value by three [74]; similarly to HR, a low MAP identifies
healthier subjects. The PP represents the difference between systolic blood pressure and
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diastolic blood pressure [75]; with regular physical activity, the elasticity of blood vessels
improves, resulting in a lower PP, both during rest and exercise.

2.4. Analysis

According to the self-reported questionnaire on MSD, people with a composite pain
score of 2 or greater were categorized in the group titled “MSD”, whereas those who had a
composite MSD score less than 2 in all four regions were sorted into the “NO-MSD” group.
Self-reported work hours from the baseline survey were also used to stratify the movement
behavior by work and leisure time for each participant.

Two-tailed independent-sample t-tests were used to assess differences in demograph-
ics, cardiometabolic outcomes, and movement activity (daily, work, and leisure) between
the MSD and NO-MSD groups.

Spearman correlation coefficients were used to understand whether activity levels at
work matched those during leisure time, and to explore the relationship between motor be-
havior, MSD, and cardiometabolic data. For absolute values of r, 0.0 to 0.39 was considered
weak, 0.4 to 0.69 was moderate, 0.7 to 0.99 was strong, and 1 was perfect [76].

All analyses were completed using SPSS v26. An alpha of 0.05 was used as the
threshold for significance and all independent variables were between subjects.

3. Results

Demographic analysis (Table 1) showed that most of the participants were female, and
the average age of the subjects was 33.2 ± 9.4 years old. Only two participants had a current
medical condition and one subject had diabetes. One participant had a previous injury.

Table 1. Demographics and cardiometabolic data of participants.

All MSD NO-MSD

N 26 17 9
Gender *

Male 9 8 1
Female 16 9 7
Other 1 - 1

Age (years) * 33.2 (9.4) 32.3 (7.9) 34.9 (12.1)
Children

No 20 15 5
Yes 6 2 4

BMI 24.6 (3.9) 24.7 (3.5) 24.5 (4.9)
Hip:Waist ratio 1.2 (0.1) 1.2 (0.1) 1.2 (0.1)
Cardiometabolic data

Resting heart rate (HRrest, rpm) 58.8 (9.7) 58.7 (9.2) 58.9 (11.2)
Average heart rate (HRaverage, rpm) 76.5 (10.4) 78.2 (9.6) 78.3 (11.7)
Average arterial pressure (MAP, mmHg) 87.4 (8.3) 86.7 (7.9) 88.8 (9.5)
Average pulse pressure (PP, mmHg) 42.4 (6.7) 41.4 (6.7) 44.1 (6.8)

Work hours 8.1 (0.5) 8.1 (0.5) 8.2 (0.4)

The symbol * identifies a significant difference between the two groups (p < 0.05).

Scores for MSD reported during the baseline survey are reported in Table 2. Daily,
work, and leisure activity data of participants are presented in Table 3. There were minimal
differences between the MSD and NO-MSD activity levels; however, participants in the
MSD group transitioned significantly more frequently compared with those in the NO-MSD
group during working hours.

The activity data (Table 3) and composite MSD score (Table 2) were used for the
analyses in Table 4. Moderate positive correlations were found between the composite
MSD score and transitions, while a negative relationship was evidenced with time spent
standing (Table 4).
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Table 2. Summary of musculoskeletal discomfort levels collected at baseline. Values are expressed as
mean (standard deviation).

All MSD NO-MSD

Head/neck/shoulders 1.5 (1.4) 2.2 (1.1) -
Upper/lower back 1.9 (2.1) 2.9 (1.9) -

Hips/knees/feet/ankle(s) 1.2 (1.5) 1.8 (1.5) -
Elbow(s)/hands/wrists 1.2 (1.1) 1.7 (1.0) 0.1 (0.3)

Composite MSD 5.7 (5.0) 8.7 (3.5) 0.1 (0.3)

Data on MSD of the 4 different body regions are presented; these values were summed to provide a composite
discomfort score.

Table 3. Summary of the mean (SD) activity levels during work, leisure, and the entire day for the
participants in the two groups.

MSD (n = 17) NO-MSD (n = 9)

Daily Work Leisure Daily Work Leisure

Steps 9468.8 (2925.1) 5153.5 (2086.0) 4337.8 (1880.7) 10,055.8
(3556.8) 5810.3 (3146.0) 4245.4 (1594.2)

Transitions 52.5 (10.3) 25.4 (4.3) 27.1 (8.2) 49.6 (12.8) 22.7 (9.0) * 26.8 (6.6)
Hours standing 5.9 (1.7) 3.0 (1.1) 2.9 (1.1) 7.3 (2.4) 4.1 (1.6) 3.2 (1.0)
Hours walking 1.7 (0.5) 0.9 (0.3) 0.8 (0.3) 1.8 (0.6) 1.0 (0.5) 0.8 (0.2)
Hours sitting 10.0 (1.8) 6.0 (1.3) 4.0 (1.0) 9.2 (2.1) 5.1 (1.4) 4.1 (1.0)

Hours sleeping 8.5 (0.7) - - 8.1 (1.2) - -

* p < 0.05.

Table 4. Spearman correlations between transitions, step count, and durations spent in various
postures for those with composite musculoskeletal discomfort at baseline.

Composite MSD

Daily Work Leisure

Steps −0.26 0.10 −0.18
Posture transitions 0.38 0.46 * 0.20

Hours standing −0.39 * −0.27 −0.30
Hours walking −0.31 0.09 −0.21
Hours sitting 0.20 0.29 0.13

Hours sleeping 0.21 - -

Composite musculoskeletal discomfort was generated by summing the Numeric Pain Rating scale (0–10) across
four regions. * p < 0.05.

Correlations between movement behavior metrics during work and leisure are pre-
sented in Table 5. Time spent in a seated position during leisure was negatively associated
with the number of steps and the standing and walking time at work. Sleeping time was
positively correlated with the number of steps, transitions, and walking time at work.

The average cardiometabolic measurements showed moderate correlations with
activity measures (Table 6). In particular, transitions were negatively correlated with
BMI and heart rate; walking time during leisure was positively associated with average
pulse pressure.
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Table 5. Spearman correlations between the time spent standing, sitting, and walking during work
and leisure time.

Work

Steps Transitions Standing Time Walking Time Sitting Time

Leisure

Steps 0.04 −0.05 0.01 0.00 −0.07
Transitions −0.07 0.24 −0.26 −0.05 0.18

Standing time 0.03 −0.29 0.21 −0.02 −0.31
Walking time −0.02 −0.19 0.01 −0.04 −0.05
Sitting time −0.42 * −0.20 −0.64 ** −0.42 * 0.36

Sleeping time 0.41 * 0.47 * 0.07 0.40 * −0.05

* p < 0.05, ** p < 0.01.

Table 6. Spearman correlations between activity levels and cardiometabolic data.

Time Hip:Waist
Ratio BMI HRRest HRAverage MAPAverage PPAverage

Steps
Daily 0.07 −0.09 −0.27 −0.23 −0.09 0.28
Work 0.04 0.02 −0.17 −0.16 −0.11 −0.05

Leisure −0.02 −0.21 −0.34 −0.29 0.06 0.55

Transitions
Daily −0.08 −0.10 −0.43 * −0.58 ** −0.40 0.04
Work 0.12 0.29 −0.28 −0.33 −0.43 0.18

Leisure −0.22 −0.39 * −0.44 * −0.52 ** −0.34 −0.04

Standing
time

Daily 0.16 −0.05 −0.09 −0.19 0.22 −0.08
Work 0.18 0.03 −0.14 −0.14 0.10 −0.33

Leisure −0.15 −0.28 0.06 −0.25 0.04 0.28

Walking time
Daily 0.12 −0.12 −0.21 −0.23 −0.01 0.33
Work 0.08 −0.05 −0.17 −0.13 −0.21 −0.18

Leisure 0.05 −0.25 −0.20 −0.20 0.25 0.58 *

Sitting time
Daily −0.16 −0.07 0.09 0.16 −0.11 0.36
Work 0.14 0.16 0.15 0.23 −0.12 0.53

Leisure −0.38 −0.19 −0.08 0.06 −0.29 −0.04
Sleeping time Daily −0.23 0.50 ** 0.03 0.16 0.05 −0.32

* p < 0.05, ** p < 0.01.

4. Discussion

In this cross-sectional pilot study, we looked at the relationships between movement
behavior measures, pain, and cardiometabolic outcomes to inform future studies on which
measurements may be important indicators of health during work and leisure time.

Overall, the results showed that participants were primarily sedentary, sitting for
an average of more than 9 h per day. People with MSD transitioned significantly more
throughout their working time relative to people without MSD. This is consistent with
previous publications stating that people suffering from back pain tended to move more
frequently than those without pain, as frequent posture changes provided relief and rest for
passive and active structures that accumulate pressure during static postures, especially of
the spine [11,26]. However, despite the participants in the MSD group transitioning more
frequently, they also spent one hour less standing compared with those in the NO-MSD
group, though this difference was not statistically significant. It is unclear whether the
reduced amount of standing contributed to increased MSD, or whether perceived MSD
contributed to less standing. The average amount of standing time per hour at work was
18 min in the MSD group and 24 min in the NO-MSD group. Therefore, on average, both
groups stood more than what was reported in other studies, and what was recommended
in previous papers [77,78]. Since the development of pain, especially low back pain, can
occur during relatively short standing bouts [79–86], it is possible that participants with
MSD spent less time in a standing posture because the development of pain was quicker
than those without MSD [87]. This trend was also confirmed when investigating the corre-
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lation between MSD score and movement behavior indicators since MSD was positively
correlated with postural transitions at work and negatively correlated with daily standing
time. It is possible that the recommendation for people with MSD should focus on more
posture transitions to avoid static standing postures that can result in increased pain and
discomfort levels.

Regarding the relationship between movement behavior and cardiometabolic out-
comes, we found negative associations for leisure and daily (leisure and work) transitions
with BMI, resting heart rate, and average heart rate. This may indicate that in addition to
reducing MSD, changing posture more frequently throughout the day (particularly during
leisure time) may be important for cardiometabolic health outcomes. Our findings are
consistent with prior studies that examined the relationships between breaks that interrupt
sedentary time and improve cardiometabolic outcomes [50,51,88] emphasizing the impor-
tance of "sitting less and moving more". Although the time spent standing and walking
did not have any relationship with cardiometabolic outcomes in our population, it is pos-
sible that our analysis was underpowered and included a generally healthy population
that stood and walked more than other study populations [30,47,48,52,53,64]. Overall,
in addition to time spent sitting, standing, and walking [89], our findings indicate that
quantifying daily leisure and work transition metrics might be beneficial to optimizing
MSD and cardiometabolic health. While further investigation is needed to ascertain the
relative importance of these variables, these data and the developed Movement Behavior
Model may serve as a general model for quantifying and further clarifying activity levels,
MSD, and cardiometabolic risk in office workers.

In this study, it was also evaluated whether participants’ movement behavior during
work was consistent with their movement behavior during leisure time since movement
behavior during both work and leisure time was proposed as an important strategy to
reduce the risk of cardiometabolic disorders and MSD [90,91]. The results showed that
participants who were more sedentary at work were also more sedentary during leisure and
had less sleep duration than those who were active. Although this is consistent with prior
studies that found moderate physical activity to contribute toward improving both sleep
quality and duration, the relationship here was not bound to moderate physical activity
and included all non-sitting time [92]. If, in fact, more non-sitting time and transitions
throughout the day improve sleep, this could be an additional benefit to encourage more
movement during work and leisure time, especially in a sedentary population. Further
studies should be performed to understand how interventions that reduce sedentary
behavior at work also impact sedentary behavior during leisure time, and whether the
increase in movement impacts sleep.

It should be noted that our Movement Behavior Model did not quantify the intensity
of physical activity, which is something that was identified as important for cardiometabolic
health and sleep quality [90,91]. Future studies should quantify heart rate while walking
and performing other physical activity for exercise during the day (Figure 2). Further,
it is possible that tracking work and leisure time metrics separately may facilitate more
consistent movement throughout the day, thereby reducing prolonged sitting bouts. While
further investigation is needed to ascertain the relative importance of the metrics presented
here, these data and the Movement Behavior Model may serve as a general model for
quantifying and further clarifying the metrics that are most important for optimizing
musculoskeletal and cardiometabolic health among sedentary office workers.

Some considerations can be drawn on the basis of the obtained results. First, since
time is limited in nature, spending more time on one activity (such as sitting, standing,
or walking) will result in less time available for other activities. More time standing
means less time sitting or walking. Increased time spent working reduces leisure time and
the likelihood of physical activity during leisure time. This means that these measures
are somewhat dependent on one another. Larger datasets could allow for a more robust
statistical approach that accounts for data dependency, as well as their pattern of occurrence
throughout the day. Perhaps, rather than the total amount of time spent on each activity, the
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timing, frequency, and duration of each occurrence are more important when studying their
impact on health outcomes. For example, the association of posture transitions with MSD
and cardiometabolic outcomes may differ if the analysis focuses on the pattern of posture
transitions throughout the day instead of just the overall number of occurrences. The same
could be true for patterns of sitting, standing, and walking. This should be explored in
future studies. Some limitations of the study should be acknowledged. Data collection
began at the end of 2019; therefore, given the COVID-19 pandemic, our sample size was
limited. Larger populations are needed to fully understand the relationships investigated.
Further, our sample of convenience from the university was a more active cohort than
many sedentary workers, having a higher average standing time than cohorts in other
studies [72]. More variance in the movement behaviors of participants may be needed
in order to strengthen the observed correlations and to generalize the results presented.
Moreover, as previously mentioned, the intensity of physical activity was not included
in our analysis; its inclusion would likely improve the presented model and should be
considered in future work (Figure 2). Furthermore, while our Movement Behavior Model
features in-chair fidgeting, sway patterns, and mean pressure, these metrics were largely
investigated in previous work [43]. Exploring all of these metrics together in a larger cohort
may be needed to better understand the relative importance of each metric. Lastly, the cross-
sectional design of this study did not allow for investigating causality between movement
behavior measures, MSD, and cardiometabolic outcomes. Future research may include
longitudinal studies to track changes in these parameters over time to better characterize
the causal relationships that exist between them. This could contribute to the development
of predictive models or activity scores that help sedentary workers take a comprehensive
approach to increasing movement throughout the day.
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5. Conclusions

This cross-sectional pilot study offers preliminary insights into the relationship between
work and leisure time movement behavior measures, MSD, and cardiometabolic outcomes.
The findings may be helpful for further study of these relationships and their application to
interventions that prevent adverse health outcomes associated with sedentary behavior. Further
investigation of a larger cohort may help to quantify the relative contribution of each measure
and should consider the additional benefit from engagement in physical activities of different
intensities. Ideally, the most important variables could be integrated into a user-friendly index,
the impact of which could be investigated as an intervention.
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