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Abstract: Understanding the relationship between ecosystem service value and ecological risk evolu-
tions holds great theoretical and practical significance, as it helps to ensure the quality management
of ecosystems and the sustainable development of human–land system interactions. We analyzed
this relationship in the Dongting Lake area in China from 1995 to 2020 using data from remote
sensing-interpreted land use with ArcGIS and Geoda. We used the equivalent factor method to
estimate the ecosystem service value, constructed a landscape ecological risk index to quantitatively
describe the ecological risk of Dongting Lake, and analyzed their correlation. The results show
that: (1) over the last 25 years, the ecosystem service value decreased by 31.588 billion yuan, with
higher values in the middle of the area and lower values in the surroundings—the highest value
was found in forested land and the lowest was for unutilized land; (2) the ecological risk index also
decreased slowly over time, from the perspective of single land use type, the ecological risk value
of construction land was the lowest, followed by woodland, grassland, and cultivated land, with
water area being the highest—the ecological risk level presents the distribution state of whole piece
and local aggregation; and (3) the ecological risk index in Dongting Lake area demonstrated positive
spatial correlation, and the spatial agglomeration of land with similar risk levels showed a decreasing
trend. Areas with strong partial spatial correlations between ecosystem service value and ecological
risk index are mainly distributed in the central water areas and their surrounding areas. This study
investigates the rational utilization of land resources, and the sustainable development of regional
ecological security in Dongting Lake area.

Keywords: ecosystem service value; ecological risk evolution; spatial characteristics; correlation;
Dongting Lake area

1. Introduction

Ecosystem service value and ecological risk are important types of ecological environ-
mental assessments, which are closely related to ecological security. These assessments
represent the embodiment of sustainable development of a complex human–land system [1]
and can also help to ensure the successful growth of the social economy [2,3]. In recent
years, there has been a continuous destruction of the ecological environment along with a
gradual weakening of ecological service function [4,5] due to natural hazards caused by
global climate change [6,7], accelerated population migration caused by the promotion of
the integration of urban and rural development [8–10], and the expansion of space occupa-
tion caused by the continuous gathering of various spatial elements [11]. The sustainable
development goals (SDGs) of the United Nations clearly set out to protect, restore, and
promote the sustainable use of terrestrial ecosystem and sustainable forest management,
to prevent and control desertification, and to stop and reverse land degradation and curb
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the loss of biological diversity. China has made good progress in implementing SDGs, but
the ecological environment remains a challenge for China’s realization of the 2030 strategic
goal of sustainable development [12,13]. Thus, preserving the ecological environment and
ensuring ecological security have become common global problems and have attracted
widespread attention to strengthen the construction of ecological civilization [14–17].

There has been substantial research focused on the assessment of ecosystem service
value and landscape risk, including the introduction of ecosystem services into the assess-
ment of ecological risks for development and improvement. Ecosystem services have been
evaluated from different perspectives such as regional scope and time scale [18,19], and
several studies have demonstrated that the forest coverage rate [20], landscape pattern [21],
topographic features [22], and land use structure [23] are the main factors affecting ecosys-
tem services. Based on the landscape ecological risk assessment (ESRISK) framework [24],
some constructed an ecological security pattern [25] based on ecosystem services. In one
study, ecological service degradation was considered a sign of loss, and the researchers con-
structed a probability representation index system from the dimensions of terrain, human
behavior, ecological resilience, and landscape vulnerability [26]. The fuzzy comprehensive
evaluation method [27], spatial auto-correlation analysis [28], and extensive application of
the geographic information system (GIS) [29] have also been used to conduct comprehen-
sive research on ecosystem service value and landscape ecological risk. It is also necessary
to incorporate ecosystem services into an environmental risk management program and to
determine ecological risks according to the ecosystem value and function [30,31].

Based on past research, we have proposed management strategies for areas with differ-
ent risk levels. Overall, eco-support products and services, the value assessment of which
form the base for decision-making for ecological protection, ecological regionalization,
economic accounting of the ecological environment, and ecological compensation, were
directly or indirectly obtained through the structure, process, and function of an ecosys-
tem [32–36]. Ecological risk assessment involves evaluating the possibility of ecological
effects caused by exposure to multiple risk stressors of the ecosystem and its components,
which then forms the premise for risk control [37–40]. Although numerous studies have
estimated the ecological service value and its distribution in time and space, research
focusing on the effective correlation between the change of the ecological environment and
the sustainable development of the system is relatively sparse. Effective analysis would
need to consider the evolution of ecological service value and risks to propose management
strategies for different risk levels through assessing their correlations.

Toward this end, in the present study, we used Landsat Thematic Mapper (TM)
remote sensing images of the Dongting Lake area in China from 1995 to 2020 as the
basic data source to obtain the land cover data of the region through human–computer
interactive interpretation. The equivalent factor method and the spatial analysis model
were then used to analyze the spatial-temporal distribution and changes of ecosystem
services in the Dongting Lake area. As the title of our paper indicates, we have used a
landscape ecological risk assessment model to investigate the spatial-temporal variation of
the ecological risk index. Our analysis of the correlation between the ecosystem service
value and the ecological risk assessment puts a “price” on nature, providing a framework
for more efficient utilization of land resources. Doing so will help establish more stable
regional ecological security patterns in the Dongting Lake area and propel the sustainable
development of regional ecology.

2. Materials and Methods
2.1. Research Area

Dongting Lake, the second largest freshwater lake in China, is in the Northern Hu-
nan Province (28◦00′–30◦20′ N, 110◦30′–114◦30′ E), south of Jingjiang River in the reach
of the Changjiang River (Figure 1). Thus, Dongting Lake is an important regulating
lake and ecological functional area in the middle and lower reaches of the Changjiang
River. The protection of its ecological environment plays an important role in ensuring
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the safety of water resources in the Changjiang river basin and maintaining the ecological
balance of the Dongting Lake area. The area of Dongting Lake selected for this study is
mainly from the Changde, Yiyang, and Yueyang of Hunan Province, with a total area of
453.7 km2. The study area has a subtropical monsoon humid climate with typical conti-
nental climate characteristics. In this area, there are developed water systems, four distinct
seasons, and abundant rainfall. The annual precipitation is 1300–1600 mm, the average
annual temperature is 16–20 ◦C, and the altitude is 30–50 m. The land resources are mainly
mountains and hills, the topography is very undulating, the forest coverage rate is high,
and rice is the main crop grown in the region.
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2.2. Data Source and Preprocessing

Six Landsat TM/Enhanced Thematic Mapper (ETM) remote sensing images of land
use in the study area from 1995 to 2020 were derived from the Data Center for Resources
and Environmental Sciences, Chinese Academy of Sciences. We chose Landsat TM images
of 1995, 2000 and 2005, Landsat EMT+ images of 2010 and Landsat OLI remote sensing
images of 2015 and 2020 as remote sensing images, the distinguishability of which is
30 m × 30 m. Social and economic data were obtained from the Chinese Statistical Yearbook,
Hunan Provincial Statistical Yearbook, Hunan Provincial Prefecture-level Statistical Yearbook, and
Compilation of Cost and Income Data of National Agricultural Products; other relevant data
were calculated by basic statistics.

After integrating the scale effects of the study area and the minimum modifiable unit
on the measured results and several tests, we divided the landscape pattern of Dongting
Lake into grids of 5 km × 5 km by using Create fishnet, resulting in 2019 evaluation grids.
Based on these grids, the ecosystem service value of the study area was calculated, and the
ecological risk value was calculated in Fragstats 4.2 software. The value was assigned to
the center point of the evaluation cell to analyze the spatial distribution characteristics.

2.3. Ecosystem Service Value Calculations

Based on the value equivalent factor per unit area [41], we adjusted the equivalent
factor table of China’s ecosystem service value by combining the revised table [42] with
the actual situation and related achievements [43,44] of the study area. Ecosystem services
were divided into four primary categories: supply service, regulation service, support
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service, and cultural service. Each of these categories was further divided into 11 subcate-
gories: food production, raw material production, water supply, gas regulation, climate
regulation, environmental purification, hydrological regulation, soil conservation, nutrient
cycle maintenance, biodiversity, and esthetic landscape.

2.3.1. Equivalent Coefficient Correction

Due to the different characteristics of environment, climate, and economy in different
study areas, the value of ecosystem services varies greatly and is constantly changing.
Therefore, to improve the accuracy of the calculation results, in this study, we further
analyzed and determined the dynamic factors of grain coefficient, social coefficient, and
regional difference coefficient, and carried out the spatio-temporal dynamic correction of
the ecosystem service value in the Dongting Lake area. The formulae used for correction
are as follows:

Pt = Ct′/Ct (1)

Dt = lt′/lt (2)

l = l1M1 + l2M2 (3)

Qt = NNPt′/NNPt (4)

NNP = 3000
[
1− e−0.000969(R−20)

]
(5)

Pt represents the corrected grain coefficient in year t, Ct′ represents the average grain
output of the Dongting Lake area (kg/hm2), and Ct represents the national average grain
output (kg/hm2). Dt represents the corrected coefficient of social development in the year
t, lt′ represents the social development coefficient of the Dongting Lake area, and lt rep-
resents the social development coefficient of the whole country. l represents the social
development coefficient related to the actual willingness to pay, l1 is the coefficient of urban
social development, M1 represents the proportion of the urban population, l2 is the rural
social development coefficient, and M2 represents the proportion of the rural population.
Qt represents the corrected coefficient of regional difference in the year t, NNPt′ represents
the net primary production potential of natural vegetation(t·hm−2·a−1), and NNPt repre-
sents the average net primary productivity of all types of vegetation (t·hm−2·a−1). In the
formula to calculate NNP, R represents the actual evapotranspiration (mm) in the study area
within a year.

2.3.2. Evaluation of Ecosystem Service Value

Based on the ecosystem service value proposed above, 1/7 of the economic value of 1
hm2 farmland grain production was taken as the value of ecosystem services for a standard
equivalent factor [45]. Paddy fields are the main cultivated land in the study area, and
rice output accounts for more than 90% of the output among the three major cultivated
grains. Therefore, the economic value of rice was used to replace the economic value of
farmland grain production. In 2020, the rice output per unit area in Dongting Lake was
6608 kg/hm2, and the average price of rice was 2.59 yuan/kg. Therefore, the equivalent
factor of an ecosystem service value in the study area was set to 2445.21 yuan/kg. The
calculation formula used for the ecosystem service value in the Dongting Lake district is
as follows:

ESV = ∑(Ak ×VCk × Pt × Dt ×Qt) (6)

ESVf = ∑
(

Ak ×VC f k × Pt × Dt ×Qt

)
(7)

VCk = ∑ VC f k (8)

where ESV is the total ecosystem service value of the study area (yuan), Ak is the area
of land use type k (hm2), and VCk is the ecosystem service value coefficient per unit of
class k land (yuan/hm2). Pt, Dt, and Qt represent the corrected grain coefficient, social
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development coefficient, and regional difference coefficient, respectively, in the year t. ESVf
is the value of service function of item f in the ecosystem (yuan), VCfk is the service function
value coefficient of item f for land use type k (yuan/hm2).

2.4. Assessment of Landscape Ecological Risk

Starting from the landscape pattern, we used the grid method to divide the risk
units and constructed the landscape ecological risk index for spatial interpolation so as
to quantitatively describe and evaluate the ecological risk level of the community. The
formulae used for this calculation are as follows:

ERIk =
n

∑
i=1

Aki
Ak
× Ri (9)

Ri = Ei × Fi (10)

Ei = aSi × bNi × cTi (11)

where ERIk is the landscape ecological risk index of quadrat k, Aki is the landscape
area of item i within the quadrat, Ak is the interior landscape area of the item quadrat,
Si is the fragmentation index of the landscape item i, Ni is the separation index, Ti is
the dominance index, Ei is the disturbance index, Fi is the vulnerability index, and Ri
is the loss index (Table 1). In addition, a, b, and c are the index weights for calculating
the landscape interference degree index Ei, which were assigned values of 0.5, 0.3, and
0.2, respectively. Landscape vulnerability refers to the ability of landscape types to resist
external disturbances. Combined with the actual situation of the study area, unutilized land,
water area, cultivated land, grassland, woodland, and construction land were assigned
values of 6, 5, 4, 3, 2, and 1, respectively. After normalization, the vulnerability index Fi of
each landscape type was 0.2857, 0.2381, 0.1905, 0.1429, 0.0952, and 0.0476, respectively.

Table 1. Method for constructing the landscape pattern index.

Index Formula Ecological Meaning

Landscape fragment, Si Si =
ni
Ai

Si represents the fragmentation degree of landscape segmentation;
the greater the value, the lower the stability of the corresponding

landscape ecosystem. ni represents the number of patches of
landscape type i and Ai represents the total area of landscape type I;
the greater the value of Si, the greater the degree of fragmentation.

Landscape separation Ni =
A

2Ai

√
ni
A

Ni represents the degree of separation of patch distribution in the
same landscape type; the greater the value, the more complex the
corresponding landscape spatial distribution and the higher the
degree of fragmentation. ni represents the number of patches of

landscape type i, A represents the total area of the landscape, and
Ai represents the total area of landscape type i.

Landscape dominance, Ti Ti = (Mi ×Wi × Ri)/3
Mi is the number of grids appearing in patch i/the total number of
grids, Wi is the number of patches i/the total number of patches,

and Ri is the area of patch i/total quadrat area.

Landscape interference, Ei Delphi and Normalization Ei represents the influence of human interference on the region; the
smaller the value, the more beneficial to the survival of organisms.

Landscape fragility, Fi Ei = aSi × bNi × cTi
Fi represents the sensitivity of different landscape types to external
disturbances; the higher the value, the higher the ecological risk.

Landscape loss degree, Ri Ri = Ei × Fi

Ri represents the difference of ecological loss suffered by different
types of landscapes upon interference, namely the degree of loss of

natural attributes.
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2.5. Spatial Autocorrelation Model

Spatial autocorrelation refers to the degree of correlation between an attribute of an
element in each geographic spatial area and the same attribute in adjacent spatial areas,
including overall spatial autocorrelation and partial spatial auto correlation [46]. In this
study, we used the overall spatial autocorrelation coefficient Moran’s I to reflect the overall
spatial correlation. The bivariate local spatial autocorrelation model was used to explore
the spatial relationship between the ecosystem service value and ecological risk index in
the Dongting Lake area. The specific formula is as follows:

GI =
∑n

i=1 ∑n
j=1 Wij(xi − x)

(
xj − x

)
∑n

i=1 ∑n
j=1 Wij(xi − x)2 (12)

LI = Zi ∑ WijZj (13)

where GI is the overall spatial auto correlation, xi and xj are the ERI of unit i and unit j in
the grid, respectively, n is the total number of grids in the study area, Wij is the matrix of
space weight, and x is the average value of ERI. LI is the partial spatial autocorrelation,
Zi and Zj are the normalized values of spatial units i and j, respectively, and Wij is the
space weight.

3. Results
3.1. Spatial and Temporal Distribution of the Ecosystem Service Value in the Dongting Lake Area
3.1.1. Analysis of Temporal Changes in Ecosystem Service Value

Using 5 years as the time scale and based on an analysis carried out by ArcGIS software,
this study combined land use data and the ecosystem service value scale to estimate the
regional ecosystem service value of Dongting Lake from 1995 to 2020 (Table 2). In the
past 25 years, the ecosystem service value of the Dongting Lake area showed a pattern
of negative growth, decreasing by 31.588 billion yuan, with a growth rate of −11.68%.
From the perspective of different land use types, the ecosystem service value of cultivated
land, forest land, grassland, and water area decreased continuously with change rates of
−8.06%, −8.63%, −18.46%, and −16.14%, respectively. The service value of unutilized
land fluctuated, although this change was not particularly obvious. The land use in the
Dongting Lake area is mainly cultivated land and forest land, each accounting for more
than 40% of the total land, followed by water area. In recent years, due to the acceleration
of urbanization, the area of forest land, grassland, water area, and cultivated land has
been continuously declining, along with their corresponding ecosystem service values.
Therefore, the total value of ecosystem services in the Dongting Lake area has decreased
over time. The ecosystem service value of each land use type in the study area was in the
order of forest land > water area > cultivated land > grassland > unused land.

Table 2. Structure and corresponding changes of ecosystem service value (ESV) in the Dongting Lake
area from 1995 to 2020.

Landscape Type/
Value Division

ESV/100 Million Change of
ESV/100
Million

Rate of
Change

(%)1995 2000 2005 2010 2015 2020

Cultivated land 237.68 233.35 229.10 223.65 221.15 218.54 −19.15 −8.06
Forest land 1351.43 1326.80 1303.88 1273.61 1255.04 1234.76 −116.67 −8.63
Grassland 0.40 0.36 0.26 0.32 0.36 0.33 −0.07 −18.46
Water area 1114.95 1093.92 1075.75 1045.36 1044.47 934.97 −179.99 −16.14

Unutilized land 0.04 0.04 0.05 0.05 0.04 0.04 0.00 −1.70
Construction land 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Total value 2704.51 2654.47 2609.04 2542.98 2521.05 2388.63 −315.88 −11.68
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In the Dongting Lake ecosystem from 1995 to 2020, among all service types, the largest
contribution rate was adjustment service, followed by support service, supply service,
and cultural service (Table 3), and the value of each type of service showed a continuous
decrease overall. From the perspective of the secondary classification of ecosystem service
functions, the value of each function, from high to low, was in the following order: hy-
drological regulation, climate regulation, gas regulation, soil conservation, biodiversity,
environmental purification, food production, esthetic landscape, raw material production,
maintenance of nutrient cycle, and water supply. More than 40% of the Dongting Lake area
is forest land, and the ecosystem service function of forest land is mainly the regulation
service. With the decrease of forest land area, the values of hydrological regulation, climate
regulation, gas regulation, and environmental purification services in the study area have
been continuously decreasing. Food production and water supply are mainly affected by
the change of cultivated land area. The Dongting Lake area is rich in water resources and
the main cultivated crop is rice. The continuous reduction of paddy area and water demand
has led to a reduction in the value of the food production service by 862 million yuan. The
water supply gap from 1995 to 2015 has been decreasing continuously; however, in 2020,
the water supply gap increased due to the increase of cultivated land area. Therefore, the
raw material production, soil conservation, nutrient cycle maintenance, biodiversity, and
esthetic landscape ecosystem service values decreased.

Table 3. Estimation of ecosystem service function values (ESV) in the Dongting Lake area from 1995
to 2020.

Ecosystem Service Functions ESV/100 Million Change of
ESV/100
Million

Growth
Rate (%)Primary

Class Type
Secondary
Class Type 1995 2000 2005 2010 2015 2020

Supply
service

Food production 98.58 96.78 95.05 92.76 91.74 89.97 −8.62 −8.74

Raw material
production 51.26 50.32 49.44 48.28 47.64 46.74 −4.52 −8.82

Water supply −24.04 −23.65 −23.09 −22.84 −21.94 −28.17 −4.13 17.18

Adjustment
service

Gas regulation 195.01 191.45 188.08 183.65 181.26 178.01 −17.00 −8.72

Climate regulation 434.44 426.50 419.09 409.26 403.66 395.57 −38.86 −8.95

Environmental
purification 172.16 168.99 166.09 161.99 160.30 153.65 −18.51 −10.75

Hydrological
regulation 1312.98 1288.46 1266.66 1232.79 1226.91 1132.20 −180.78 −13.77

Support
service

Soil conservation 181.04 177.73 174.64 170.54 168.22 164.88 −16.16 −8.92

Nutrient cycle 22.82 22.40 22.00 21.48 21.21 20.86 −1.96 −8.59

Biodiversity 176.07 172.84 169.85 165.80 163.71 159.23 −16.84 −9.56

Cultural
service

Esthetic landscape 84.20 82.65 81.23 79.26 78.34 75.70 −8.50 −10.10

Total value 2704.51 2654.47 2609.03 2542.97 2521.05 2388.63 −315.88 −11.68

3.1.2. Spatial Change of Ecosystem Service Value

This study used the grid method to calculate and evaluate the ecosystem service value
per unit area of the community, and then obtained the distribution of ecosystem service
value in Dongting Lake by center point assignment and spatial interpolation. Finally,
it was divided into five levels (Figure 2) according to the geometric interval classifica-
tion and combined with the actual situation of the study area: low (0, 1], moderately
low (1, 2], medium (2, 3], moderately high (3, 4], and high (4, ∞). The ecosystem service
value of the Dongting Lake area was mainly identified as high, moderately high, and



Int. J. Environ. Res. Public Health 2023, 20, 4649 8 of 15

medium from 1995 to 2000. Since 2005, the decline of woodland, grassland, and cultivated
land areas in the Dongting Lake area has been accelerating while the construction land
area has been increasing. Therefore, in 2005, the proportion of high or moderately high
ecosystem service value areas in the Dongting Lake area has been decreasing, and the
major ecosystem service value was moderately high or medium. During 2010–2020, as the
urbanization process accelerated, the value of ecosystem services in the study area had
been continuously reducing, mainly at a medium or moderately low level. The central area
of Dongting Lake has a dense water network and abundant resources, especially in the
west of Yueyang County, Xiangyin County, Yuanjiang City, and Hanshou County. In the
past 25 years, the ecosystem service value in this area has remained high and moderately
high, with relatively the least amount of change in the total value.
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3.2. Spatial-Temporal Distribution Characteristics of Landscape Ecological Risk
3.2.1. Temporal Variation Characteristics of Landscape Ecological Risk

We used ArcGIS 10.8 to construct a landscape risk index so as to obtain the ecological
risk index values of Dongting Lake in 1995, 2000, 2005, 2010, 2015, and 2020. The mean
values of the whole area were 0.0408, 0.0376, 0.0367, 0.0355, 0.0340, and 0.0290 for these
years, respectively, showing a slow decreasing trend. From the perspective of single land
use types, construction land had the smallest landscape risk value, followed by woodland,
grassland, and cultivated land, whereas water area had the largest landscape risk value.
As shown in Figure 3, during 1995–2020, the transformation of ecological risk levels in the
study area went from high and moderately high risk to medium, moderately low, and low
risk. Among these areas, the areas with high ecological risk decreased the most, by 31.54%
in 25 years, and the areas with low ecological risk increased the most, by 19.37%. Areas
with other risk levels did not change substantially during this time.
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3.2.2. Spatial Change Characteristics of Landscape Ecological Risk

In ArcGIS 10.8 software, we used the Kriging method of spatial interpolation to
analyze the ecological risk index of grid units in the research area by spatial interpolation.
The landscape risk was divided into five levels: low ecological risk (0, 0.026), moderately
low ecological risk (0.026, 0.034), medium ecological risk (0.034, 0.042), high ecological
risk (0.042, 0.050), and moderately high ecological risk (0.050, ∞). As shown in Figure 4,
the ecological risk levels in the Dongting Lake area from 1995 to 2020 presented a state
of general integration with minimal differences. Over the 25 years, the overall ecological
risk in the Dongting Lake area was higher in the middle and lower in the east and west,
and the change rate of ecological risk was in the order of high risk > low risk > moderately
low risk > medium risk > moderately high risk. Areas with high ecological risk decreased
year by year, while the areas with moderately high ecological risk increased first and
then decreased, although the magnitude of change was small. The areas with high and
moderately high ecological risk were mainly distributed in the east of Changde City, the
northeast of Yiyang City, and the west of Yueyang City, where water area and cultivated
land are the main land types. The water areas are vulnerable to risks; therefore, it is
necessary to strengthen ecological protection and monitoring on water areas to reduce
the impact of human activities. Areas with low and moderately low ecological risk are
increasing year by year, mainly distributed in the west of Changde City, the southwest of
Yiyang City, and the east of Yueyang City. These areas accounted for an increase of 19.37%
and 6.54% from 25.52% and 15.72% in 1995, to 44.90% and 22.26% in 2020, respectively.
Land use types in low and moderately low ecological risk areas were mainly woodland
and grassland, which have been largely converted into construction land. With the steady
increase and orderly development of urban construction land and the implementation of
relevant ecological environmental protection policies, the ecological risk index has been
decreasing. The spatial change of middle ecological risk areas was not evident.

3.3. Correlation Analysis between Ecosystem Services and Ecological Risks
3.3.1. Overall Spatial Autocorrelation

Based on ArcGIS 10.8, we calculated the Moran’s I value of the ecological risk index of
the 2019 grids in the Dongting Lake area in 1995, 2000, 2005, 2010, 2015, and 2020. From
1995 to 2020, the Moran’s I values of these six phases in the study area were 0.771, 0.761,
0.735, 0.728, 0.746, and 0.739, respectively (Figure 5). The values of Moran’s I were all
greater than 0 with a p value of 0.001. Monte Carlo simulation demonstrated that the
spatial distribution of the ecological risk index in the Dongting Lake area shows a positive
correlation. From 2000 to 2015, the values of Moran’s I showed an overall downward trend,
indicating that the degree of autocorrelation was relatively weakened. In addition, the
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spatial agglomeration of sample plots, which are of similar land use ecological risk levels,
showed an overall decreasing trend.
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3.3.2. Local Spatial Autocorrelation

Based on the GeoDa bivariate spatial autocorrelation model, we analyzed the spatial
correlation between the ecosystem service value and landscape ecological risk index in the
Dongting Lake area. As shown in Figure 6, the index could be divided into high value/high
risk, high value/low risk, low value/high risk, low value/low risk, and insignificant. The
results showed that areas with significant correlations were mainly those in the middle,
including the west of Changde City, the southwest of Yiyang City, and the east of Yueyang
City. The water area of Dongting Lake showed a high value/high risk distribution, while
the surroundings were classified as low value/high risk areas.
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High value/high risk areas were mainly distributed in Western Yueyang County,
Xiangyin County, Yuanjiang City, and Hanshou County. Water areas can provide high
ecosystem service value. Turning lakes into fields accelerated the process of paludification,
which resulted in a series of events: the continuous reduction of water area, the decline
of ecosystem service value, the decline of ecological environment quality, frequent flood
disasters, biodiversity decline, and great damage to aquatic resources. After the catastrophic
flood in 1998, Hunan Province began to implement the “4350” project, and returned the
farmland to lake, which alleviated the declining rate of the Dongting Lake area, reduced the
declining rate of the ecosystem service value of the low value/high risk state, and reduced
the incidence of flood disasters. The declining rate of the low value/high risk ecosystem
service reduced over time, along with the incidence of flood disasters.

Low value/low risk areas were scattered, small, and mainly represented by con-
struction land, greatly affected by human activities. The impact of human activities on
the regional ecological environment resulted in a stable and continuously low value of
ecosystem services, leading to a low ecological risk.

High value/low risk areas were mainly distributed in the west of Anhua County and
the east of Yueyang County. This region is rich in forest land resources and thus had the
highest ecosystem service value compared with that of other land use types. Moreover,
these areas are less affected by climate and showed little change in the ecosystem service
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value. These areas were generally transformed to grassland within a short time and thus
are not prone to ecological risks.

Low value/high risk areas were mainly distributed in the surroundings of high
value/high risk areas. These areas are greatly affected by the agglomeration effect of
land with high ecosystem service value, mainly constituting cultivated land with lower
ecosystem service value compared with those of water area and forest land. In recent
years, due to the accelerated process of urbanization, construction land has crowded into
cultivated land, resulting in the continuous reduction of cultivated land area, which is
mainly transformed into construction land or waste land with a high ecological risk.

Finally, insignificant areas are those in which the agglomeration relationship between
the ecosystem service value per unit and landscape ecological risk intensity coefficient was
not clear. This type of area accounted for approximately 65% of the total study area, mainly
represented by woodland and cultivated land, and the distribution of ecosystem service
value and ecological risk index was relatively balanced.

4. Conclusions and Discussion
4.1. Conclusions

Based on the land use data of the Dongting Lake area from 1995 to 2020, this study
evaluated the ecosystem service value and ecological risk index, analyzed the spatio-
temporal evolution characteristics in the area, and further explored the relationship between
the two factors using a spatial regression model.

Overall, the temporal and spatial evolution of ecosystem service value in the Dongting
Lake area showed significant changes. From the perspective of time evolution, the total
ecosystem service value of the Dongting Lake area showed a decreasing trend from 1995
to 2020. The ecosystem service value of cultivated land, forest land, grassland, and water
area has been decreasing continuously, and the ecosystem service value of unutilized
land fluctuated. From the perspective of spatial evolution, the ecosystem service value of
the Dongting Lake area was mainly categorized as high, moderately high, and medium
from 1995 to 2000, whereas that of 2004 was categorized as moderately high and medium.
As the urbanization process accelerated from 2010 to 2020, the ecosystem service value
of the Dongting Lake area decreased continuously, mainly represented by medium and
moderately low values.

The ecological risk index of the Dongting Lake area showed a slowly decreasing trend.
In terms of time, from 1995 to 2020, construction land exhibited the smallest landscape risk
value from the perspective of single land use type, while the water area and cultivated
land had the largest risk values. The transformation of ecological risk levels presented a
change pattern from high and moderately high risk to medium, moderately low, and low
risk. The area of high ecological risk declined the most, while the area of low ecological risk
showed the greatest increase. This area presented a state of overall integration with little
difference in space, specifically, the risk was high in the northwest and low in the southeast.
The ecological risk levels changed in the following order: high risk > low risk > moderately
low risk > medium risk > moderately high risk.

The correlation between ecosystem services and ecological risks in the Dongting Lake
area mainly include overall autocorrelation and partial spatial autocorrelation patterns.
The overall autocorrelation of the ecological risk index showed that in the last 25 years, the
Moran’s I value has been continuously decreasing, especially after the implementation of
“4350” project in Hunan Province. The project seeks to return farmland to the lake, build
polder land and resettle people in residential towns, and constantly restore the water area of
Dongting Lake area.It makes the spatial agglomeration of sample plots with similar levels
of ecological risk of land use show an overall decreasing trend. Through bivariate spatial
autocorrelation, this study analyzed the spatial correlation between the ecosystem service
value and landscape ecological risk index in the Dongting Lake area. The areas showing
significant correlations were mainly distributed in the middle of the region, namely the
west of Changde City, southwest of Yiyang City, and east of Yueyang City. The water area
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of Dongting Lake showed an obvious high value/high risk distribution, whereas most of
the surrounding areas showed a low value/high risk distribution.

4.2. Discussion

From 1995 to 2020, the ecological risk index of the Dongting Lake area has been de-
creasing continuously, whereas the value of ecosystem services showed a declining trend.
Urbanization, human activities, climate change, public policies and other impacts were
responsible for the change of the ecological environment to a certain extent, and these
effects further aggravated the existing challenges in this area. The high and moderately
high ecosystem service value areas and the low and moderately low risk areas of Dongting
Lake are relatively less affected by human activities and disturbances, but it will be difficult
to restore these areas once they have been damaged. Therefore, the industrial layout should
be reasonably planned according to ecological suitability. Moreover, focus should be placed
on the development of agriculture, forestry, animal husbandry, and fishing, based on the
primary industries, to protect the ecological environment while improving economic bene-
fits. In the middle ecosystem service value areas and the middle risk areas of Dongting Lake
area, the status quo should be maintained as far as possible to reduce the future ecological
risk. Industrial transformation and upgrading should be accelerated according to local
conditions to reduce and ban the pollution and resource intensive industries. The farmland
should be returned to forest or grassland to promote sustainable development. Affected by
natural conditions and human activities, the low and moderately low ecosystem service
value areas and the high and moderately high risk areas in Dongting Lake exhibit the
characteristics of low value, high ecological risk, and susceptibility to changes in the eco-
logical environment. Therefore, it is necessary to strengthen the protection of the original
landscape, establish an early warning mechanism for ecological risks, formulate standards
for ecological restoration and reconstruction, and strengthen ecological security barriers.
In addition, relevant government departments should continue to adhere to the strategy
of regional ecological environmental protection and sustainable social and economic de-
velopment, adjust the relationship between resources and the ecological environment,
strengthen the protection of ecological conservation areas, implement the delineation and
implementation of regional ecological conservation red lines, and strengthen the control
over land and space use.
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