
Citation: Zong, L.; Zhang, M.; Chen,

Z.; Niu, X.; Chen, G.; Zhang, J.; Zhou,

M.; Liu, H. Ecological Risk

Assessment of Geological Disasters

Based on Probability-Loss

Framework: A Case Study of Fujian,

China. Int. J. Environ. Res. Public

Health 2023, 20, 4428. https://

doi.org/10.3390/ijerph20054428

Academic Editors: Qiqi Zhu,

Renmao Yuan and Yaohui Liu

Received: 30 January 2023

Revised: 24 February 2023

Accepted: 27 February 2023

Published: 1 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

International  Journal  of

Environmental Research

and Public Health

Article

Ecological Risk Assessment of Geological Disasters Based on
Probability-Loss Framework: A Case Study of Fujian, China
Leli Zong 1 , Ming Zhang 1, Zi Chen 1,2 , Xiaonan Niu 1,*, Guoguang Chen 1, Jie Zhang 1, Mo Zhou 1

and Hongying Liu 1

1 Nanjing Center, China Geological Survey, Nanjing 210016, China
2 Key Laboratory of Watershed Eco-Geological Processes, Ministry of Natural Resources, Nanjing 210016, China
* Correspondence: niuxiaonan@mail.cgs.gov.cn

Abstract: Geological disaster could pose a great threat to human development and ecosystem health.
An ecological risk assessment of geological disasters is critical for ecosystem management and
prevention of risks. Herein, based on the “probability-loss” theory, a framework integrating the
hazard, vulnerability, and potential damage for assessing the ecological risk of geological disasters
was proposed and applied to Fujian Province. In the process, a random forest (RF) model was
implemented for hazard assessment by integrating multiple factors, and landscape indices were
adopted to analyze vulnerability. Meanwhile, ecosystem services and spatial population data were
used to characterize the potential damage. Furthermore, the factors and mechanisms that impact the
hazard and influence risk were analyzed. The results demonstrate that (1) the regions exhibiting high
and very high levels of geological hazard cover an area of 10.72% and 4.59%, respectively, and are
predominantly concentrated in the northeast and inland regions, often distributed along river valleys.
Normalized difference vegetation index (NDVI), precipitation, elevation, and slope are the most
important factors for the hazard. (2) The high ecological risk of the study area shows local clustering
and global dispersion. Additionally, human activities have a significant influence on ecological risk.
(3) The assessment results based on the RF model have high reliability with a better performance
compared with the information quantity model, especially when identifying high-level hazard areas.
Our study will improve research on the ecological risk posed by geological disasters and provide
effective information for ecological planning and disaster mitigation.

Keywords: ecological risk assessment; geological disasters; Fujian; hazard; random forest

1. Introduction

Geological disasters (landslides, debris flows, etc.) often cause huge losses to life and
property and seriously threaten the survival of human beings due to their suddenness and
unpredictability. Geological disasters occur frequently in China and the resulting damage
is particularly severe. In 2020, China experienced 7840 geological disasters resulting in
direct economic losses of 5 billion yuan, according to statistical data [1]. In addition to
threatening lives and property, geological disasters can damage the structure, function,
safety, and health of the regional ecosystem, thereby affecting the natural foundation of the
social economy, ecological civilization, and human development [2].

Ecological risk assessment (ERA) is an estimation of the likelihood that adverse eco-
logical effects may occur when within a hazardous environmental state [3,4]. Quantifying
the ecological risk could provide scientific information for government departments, for-
mulating policies about risk prevention, ecosystem management, and sustainable develop-
ment. In regional ecological risk assessments, the causes of ecological disturbances gener-
ally include human activities such as pollutant discharge and land use change, but may
also include natural disasters, such as geological disasters, drought, and floods [5–8].
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Among these, natural disasters, especially geological disasters, are one of the main sources
of ecological risk and have become a frequent research topic for scholars [9,10].

For the ecological risk of geological disasters, the risk receptor is usually the ecosys-
tem, though the impact of disasters on human society is also considered [11]. Currently,
the ERA models related to geological disasters mainly include the relative risk model
(RRM), the probability-loss model, and the landscape indices of ecological risk [12–15].
Among these, the probability-loss model is commonly adopted because of its effectiveness
and efficiency [16]. This method constructs two or three dimensions by considering the
probability of geological disasters, the sensitive response to geological disasters, and the
potential loss of receptors [10,11,17]. The methods for describing these aspects are diverse.
The probability of geological disasters is normally evaluated by data-driven quantitative
models, such as the logistic model [18–20], information quantity model [21], and machine
learning model [22]. In particular, the application of a machine learning model for geologi-
cal hazards is rapidly increasing due to its ability for accurate assessments and predictions,
compared with other models [23]. However, only a few scholars have assessed the hazard
of geological disasters by integrating the machine learning models to construct ecological
risk assessment models [17]. Additionally, in terms of damage, scholars focus on the loss of
ecosystem services, which can be quantified based on multiple models or indices, and do
not give enough attention to populations that are directly exposed to the disaster environ-
ments [24]. Furthermore, most studies have either focused on the loss of human life and
property, or the destruction of ecosystems caused by geological disasters. Few studies have
considered the two together.

Fujian, which is located in the southeast coastal area of China, is a typical mountainous
province. Due to strong geological tectonic activities, complex topography, and change-
able climatic conditions, the occurrence of geological disasters such as debris flows and
landslides in Fujian is high. Several studies have evaluated the hazard or susceptibility of
geological disasters in Fujian [21,25]. However, these studies have focused on the sensitivity
of the disaster-breeding environment, and few studies concentrate on the comprehensive
assessment of ecosystem risks for geological disasters. In this paper, we established a
improved framework based on hazard, vulnerability, and damage, by integrating remote
sensing and GIS techniques, to evaluate the ecological risk posed by geological disasters
in Fujian. Hence, the objectives of this study are to (1) introduce the advanced random
forest machine learning classifier on a geological disaster hazard assessment; (2) adopt
landscape indices to analyze vulnerability; and (3) quantify the potential loss by integrating
ecosystem services and the population. It is expected that the assessment can enrich the
theories and indicator systems as they pertain to ecological risk and provide support for
government departments’ disaster prevention as well as control. Moreover, the framework
proposed by the study could provide a reference for other regions that face the threats
imposed by geological disaster.

2. Materials and Methods
2.1. Study Area

With its position at 116° E–120° E and 22° N–28° N, Fujian Province is located on
the southeast coast of China, having an area of approximately 126,000 square kilometers
(Figure 1). There are widely distributed hills and mountains, with areas covering more
than 80% of the land. The relief of the study area is low in the southeast, and high in the
center and northwest. The area is the transitional area between southern and northern
subtropical China. The annual average temperature is around 16–20 °C, while the annual
average rainfall is 1400–2000 mm [26]. The precipitation has a pronounced seasonality and
is concentrated in summer monsoons (late June to early September). Great hydrothermal
conditions have given rise to the proliferation of vegetation in the area, with a forest cover
of around 65%. The river systems within the study area include the main course and
tributaries of the Min River, Dai River, and Jiulong River.
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Figure 1. (a) Location of the study area in China; (b) a digital elevation model (DEM); (c) distribution
of geological disasters in the study area.

The geomorphological characteristics of mountains and hills make the ecological
environment of Fujian congenitally fragile. The geological composition of the area is
intricate and the rock is weathered badly.The predominant soil types consist of granite
weathering materials, such as red loam, brick red loam, and yellow loam, which exhibit
limited water retention capability and poor corrosion resistance. Geological disasters
are frequent and concentrated from May to August each year in the area. The spatial
distribution of various types of geological disasters in Fujian Province is shown in Figure 1c.
To date, the types of geological disasters are mainly landslides, collapses, and unstable
slopes, of which the number of landslides accounts for approximately 70% of the total
geological disasters, while collapses and slope instability account for approximately 27%.
These geological disasters imposed a great danger on human life and property. As in Fujian,
the economic activities in the study area display a marked spatial heterogeneity. The coastal
areas are economically developed and densely populated compared to the inland areas.

2.2. Data Sources

The data used in this study include a number of datasets on land use, geological
disasters, normalized difference vegetation index (NDVI), digital elevation model (DEM),
precipitation, river, lithological, population, net primary productivity (NPP), evapotranspi-
ration, rainfall erosivity, and soil erodibility data. The DEM was obtained from the dataset
ASTER GDEM V2, which has a resolution of 30 m (http://srtm.csi.cgiar.org/ accessed
on 15 September 2022). Slope and aspect data were extracted via DEM using ArcGIS
software. The lithology comes from the digitized 1:250,000 geologic map of 2020 in Fujian
Province. The geological disasters were provided by the Nanjing Center of China Geologi-
cal Survey for visual interpretation. Lithological data were reclassified into five groups,
as follows, based on the digitalized 1:2.5 million geological maps [27]: (1) Dolomite, thick
stratified rhyolite, etc.; (2) Quartz sandstone, silastic conglomerate, etc.; (3) Pyroclastic
rocks, metamorphic rocks, etc.; (4) Mudslate, coal seam, etc.; (5) Clay, loose accumulation
of sediments, etc. Precipitation data were downloaded from the National Earth System
Science Data Center (https://gre.geodata.cn/ accessed on 11 August 2022). This dataset
was generated in China by the Delta spatial downscaling scheme based on the global
0.5° climate dataset published by the Climatic Research Unit (CRU) and the global high-
resolution climate dataset published by WorldClim [28]. NDVI is a widely used remote

http://srtm.csi.cgiar.org/
https://gre.geodata.cn/
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sensing index for quantifying and monitoring the vegetation coverage, which is calcu-
lated using near-infrared and red reflectance bands. The formula for NDVI is (NIR −
Red)/(NIR + Red), where “NIR” refers to the near-infrared band, and “Red” refers to
the red band of the imagery. In this study, NDVI was calculated based on Sentinel-2A
Level-2A images in 2020. These images were obtained via the Copernicus Open Access
Hub (https://scihub.copernicus.eu/ accessed on 21 September 2022) and underwent cloud
masking procedures. The 10 m land cover maps of Fujian in 2020 were downloaded from the
ESA website (https://esa-worldcover.org/en/data-access accessed on 21 September 2022)
[29]. We reclassified the land use types into 7 categories: forest, shrubland, grassland,
cropland, water, build-up, and bareland. The spatial distribution of the population in 2020
was acquired from WorldPop (https://hub.worldpop.org/ accessed on 15 September 2022)
with a resolution of 3 arc (approximately 100 m). NPP and evapotranspiration data were
acquired from MOD17A3HGF V6 and MOD13 products, respectively. The spatial resolu-
tion for both datasets is 500 m. The rainfall erosivity and soil erodibility data were obtained
from the National Earth System Science Data Center, National Science & Technology Infras-
tructure of China (http://www.geodata.cn accessed on 17 September 2022) [30]. All spatial
data were resampled with 30 m resolution using the cubic convolution method, and the
projection was unified as Transverse Mercator.

2.3. Methods
2.3.1. Research Framework

The ecological risk of geological disaster can be defined as the product of the probabil-
ity of the disaster and loss caused to the ecosystem and humans once the disaster occurs [31].
Herein, the two-dimensional model was extended and a framework that integrated hazard,
vulnerability, and potential damage assessments was proposed. This study introduced the
advanced machine learning model on hazard assessment. Additionally, ecosystem loss and
population loss were both included in the potential loss assessment, considering the great
damage of geological disasters to human property and life.

The ecological risk assessment framework for geological disasters proposed in this
paper is shown in Figure 2b. The ecological risk was quantified based on hazard, vul-
nerability, and damage assessment. Among them, the hazard of geological disasters was
evaluated based on a random forest model combined with multiple index factors, and
the vulnerability was calculated by landscape indices. The potential damage, starting
from multiple risk receptors, was represented by both ecosystem services and population.
The quantitative assessment results of the ecological risk were calculated by the equa-
tion “Risk = Hazard× Vulnerability× Damage′′. Based on this, the spatial distribution
characteristics of hazard, vulnerability, and potential damage were analyzed.

Figure 2. The flowchart of (a) ecological risk assessment framework and (b) hazard assessment of
geological disasters.

https://scihub.copernicus.eu/
https://esa-worldcover.org/en/data-access
https://hub.worldpop.org/
http://www.geodata.cn
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2.3.2. Quantifying the Hazard Based on Random Forest Model

The overall method flowchart accompanying the hazard evaluation of geological
disasters is given in Figure 2b. First, geological disaster points and the risk assessment
index system were prepared, and their spatial database was generated. Second, the values
of each conditioning factor were extracted by overlapping the training dataset of the
geohazard, as the input features of the RF model. Third, the hazard map was obtained
using a well trained RF model. Moreover, the accuracy of the model was evaluated by
using the receiver operating characteristic (ROC) curve and frequency ratio analysis.

In this paper, 5970 historical geological disasters within the study area were selected
as positive samples. In the meanwhile, the non-geological disaster areas were generated by
removing the 500 m radius buffer areas around all the geohazard points as well as the river
land [32]. Moreover, 5970 non-geological disaster points were randomly selected inside this
area as the negative samples. Finally, the positive and negative samples were combined to
form the training dataset.

The selection of suitable conditioning factors is essential for hazard assessment. Nine
factors were chosen for hazard assessment in this study according to the site survey and
former studies. These factors include elevation, slope, precipitation, NDVI, aspect, land
use type, lithology, distance from the fault, and distance from the river [11,33]. The spatial
distribution of the hazard assessment indicators is shown in Figure 3.

Figure 3. Conditioning factors of hazard evaluation.
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Random Forest Model

The random forest (RF) algorithm is a machine learning technique that was first
introduced by Leo Breiman and Adele Cutler [34]. The core concept of this method
involves the construction of multiple classification and regression trees (CART) that are
independently grown. The method begins by obtaining different training sets through
random sampling via the bootstrap method. In the growth process of each tree, the optimal
feature selection and node division are performed based on the Gini coefficient, a widely
used measure of node impurity in the CART analysis. The final classification is determined
through a voting process, with the category receiving the most votes is selected as the result.
As an ensemble learning algorithm, the random forest (RF) has been widely recognized for
its exceptional generalization ability, high prediction accuracy, and robust stability [35].

The hyperparameter optimization plays a critical role in the performance of machine
learning models, which is particularly true for the random forest (RF) algorithm. As re-
ported in previous studies, the main parameters that have been demonstrated to affect the
performance of RF are the number of decision trees and the size of the features selected for
each tree [36]. To optimize these hyperparameters, a grid search method based on the out-
of-bag (OOB) error value was employed in this study. The implementation of the RF model
was conducted using the scikit-learn library, a widely used python-based data analysis
toolkit. In order to evaluate the importance of each feature, the mean impurity decrease
derived by the RF model was used. The optimization of the parameters was performed by
a grid search, and the final accuracy was verified through five-fold cross-validation (CV).
In this study, the number of trees was set to 100 and the number of features was set to 5.

Model Validation and Accuracy Analysis

The accuracy assessment and validation of the models are important for hazard
analysis. In this study, two different techniques, the ROC curve and frequency ratio
analysis [37], were used to measure the accuracy of the model. Among them, the ROC
curve is widely used to test the accuracy of the geological hazard evaluation, which
represents the relationship between simulated data and actual data. The area under the
curve (AUC) could reflect the precision of the model directly, with values ranging from
0.5 to 1. The larger the value is, the closer the fitted value is to the actual value, and the
higher the prediction accuracy of the model [38]. In the case of the frequency ratio method,
the hazard map generated by the model was divided into five levels based on the natural
break point method, corresponding to risk levels from very low to very high. Next, a
relative frequency ratio analysis was performed on the hazard map by overlaying the
geological disaster points.

Moreover, to further evaluate the effectiveness and reliability of the RF model, as ap-
plied to the geological hazard assessment, it is necessary to compare the RF model with
other geological hazard assessment methods. The study compared the performance of
the RF and the information quantity model to assess the hazard of geological disasters.
The prediction result was obtained by comparing geohazard grid cells in the validation
dataset (2551 cells that were not used in the training dataset) with the two hazard maps.

2.3.3. Vulnerability Assessment via Landscape Pattern Indices

Ecosystem vulnerability could reflect how likely an ecosystem is to change in response
to external disturbances, structure, composition, and other ecological characteristics. Land-
scapes change slowly within an ecosystem but can change rapidly when disturbed by
external factors. Landscape patterns reflect the manner and extent of human influence on
natural ecosystems. These ecological impacts are regional and cumulative in nature and
can be reflected by the structure and composition of ecosystems. The landscape pattern
index (LPI) quantifies the interactions between landscape heterogeneity and ecological
processes and is suitable for vulnerability mapping at larger spatial scales [39].

In this study, the patch density (PD), landscape division index (DIVISION), and land-
scape disturbance index (LDI) were selected with reference to the basic principles and
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technical approaches of landscape index selection [40,41]. PD, LDI, and DIVISION were
used to construct a composite index to measure the vulnerability of regional ecosystems
under the geohazard disturbance. The three landscape indices were calculated and stan-
dardized, and their mean values were obtained. The formulas related to the vulnerability
indices are shown below.

VI =
(LDI + PD + DIVISION)

3
(1)

where VI is the composite vulnerability index; the higher the value of this index is, the less
stable the regional ecosystem and its resistance to external disturbance. PD stands for the
fragmentation of the landscape ecosystem, the higher the fragmentation, the less resilient
the ecosystem is to disturbance. LDI can reflect the degree of disturbance to different
landscape ecosystems. The LDI can be calculated from the landscape fragmentation index
(Ci), the (Si), and the landscape dominance index (D).

LDI = aCi + bSi + cD (2)

Ci =
Ni
Ai

(3)

Si =
A

2Ai

√
ni
A

(4)

D = ln(m) +
n

∑
i=1

(
Ai
A
)× ln(

Ai
A
) (5)

where a, b, and c are assigned as 0.5, 0.3, and 0.2,respectively, according to previous studies.
Ni is the number of patches of the ith landscape. Ai is the area of the ith landscape (km2);
A is the total area of all landscapes; m is the number of the landscape types.

When calculating ecological risk in the landscape, the size of the landscape analysis
unit should be 2 to 5 times the average patch size [42]. We divided the study area into
0.5 km × 0.5 km grids , with a total of 546,268 grid cells, as vulnerability assessment units.

2.3.4. Calculation of Potential Damage

The ultimate receptors of ecological risk are not only humans themselves but also the
component structures of ecosystems. The study used ecosystem and the exposed population
as ecological risk receptors. As the benefits that humans derive from ecosystems, ecosystem
services mainly include provision, regulate and support services such as soil conservation,
water conservation, and biodiversity conservation. A specific ecosystem pattern could
maintain the ecological services. Once this pattern is disrupted, the ecosystem services
could decline, and finally increase the ecological risk.

Considering the ecological environment status of the study area, three ecosystem
services, including water conservation, soil conservation, and the net primary productivity
(NPP) of vegetation, were selected to represent the potential ecological losses. In this
study, the three layers were standardized by range and then spatially superimposed as
the potential loss of the ecosystem after being stressed by geological disasters. In addi-
tion, population distribution data were used to represent the population exposure after
the occurrence of geological disasters. After the range standardization of the potential
ecosystem loss and population exposure, we obtained the final potential loss through the
spatial overlay tool in ArcGIS software.
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Water Conservation

The calculation of water conservation was based on the water balance method [43].

Qwr =
n

∑
i=1

(Pi − Ri − ETi)× 10−3 (6)

where Qwr represents the amount of water conservation (m3/a); Pi represents precipitation
(mm/a); Ri stands for surface runoff (mm/a); ETi represents evapotranspiration (mm/a);
and i represents the type of ecosystem service.

Soil Conservation

The calculation of soil conservation is based on the Revised Universal Soil Loss
Equation (RUSLE), which calculates the difference between potential soil erosion and actual
soil erosion, thereby determining the amount of soil conservation achieved [44,45].

SEp = R× K× LS (7)

SEr = R× K× LS× C× P (8)

SOR = SEp − SEr (9)

where SOR is the amount of soil conservation (t·hm−2·a−1), SEp represents the poten-
tial erosion, SEr represents the actual erosion, R represents the rainfall erosivity factor
(MJ·mm·hm−2·h−1·a−1) , K is the soil erodibility factor (t·hm2·h·hm−2·MJ−1·mm−1), LS
is the topographic factor and can be calculated from a DEM [46] (Appendix A), C is the
vegetation factor [44,47] (Appendix A), P is the management factor, and the value was
assigned based on different land use types by referring to previous studies [48–50].

3. Results
3.1. Analysis on Hazard of Geological Disasters
3.1.1. Validation of Results for Hazard Assessment

The area under the ROC curve (AUC) value of the hazard result based on the RF
and information quantity model was 0.79 and 0.73, respectively (Figure 4). The results
indicated that the prediction result of RF model had high credibility and could be used for
the evaluation result of a geological disaster. The AUC value of the RF model is higher
than that of the information model.

The second approach was employed to assess the accuracy of the model, and the
efficiency of its predictive power was the frequency ratio method. This method is based
on the theoretical premise that the frequency of a phenomenon will gradually increase as
hazard levels progress from very low to very high. The results of this analysis are presented
in Figure 5, which demonstrates that the frequency ratio values of both the random forest
(RF) model and the information quantity model increase as hazard levels progress from
very low to very high. Furthermore, the characteristics of the five hazard levels for the
two results obtained from the RF and information quantity models are shown in Table 1.
The frequency values of existing geological disasters that fell into the very high level are 9.12
and 5.78 for the RF and information quantity models, respectively. There are few differences
in other levels of the frequency value between the two models. A further analysis was
carried out to explain the better performance of the RF, especially in the hazard assessment
of high-level areas. For the RF model, 72% of the historical verification geological disaster
points fall in high and very high hazard regions, while for the information quantity model,
it is 69%. Thus, compared with the information quantity model, the RF model has better
fitting results and is more suitable for a hazard assessment in the study area.
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Figure 4. Comparison of ROC values between the random forest model and information quan-
tity model.

Figure 5. Frequency ratio plot of four hazard levels of RF and information quantity models.

Table 1. Distribution of hazard levels overlaying geological disasters of RF and information quan-
tity models.

Random Forest Model Information Quantity Model

Hazard Level Area
(km2)

Number of
Geological
Disasters

/Proportion

Frequency
(/km2)

Area
(km2)

Number of
Geological
Disasters

/Proportion

Frequency
(/km2)

Very low 28,621.38 96/3.76% 0.34 10,330.91 39/1.53% 0.38
Low 31,239.9 212/8.31% 0.68 32,976.65 257/10.07% 0.78

Medium 28,747.29 395/15.48% 1.37 35,017.88 482/18.90% 1.38
High 21,083.87 695/27.24% 3.30 25,278.4 814/31.91% 3.22

Very high 12,639.22 1153/45.20% 9.12 16,602.56 959/37.60% 5.78

3.1.2. Spatial Distribution of Hazard

In this study, 70% (5970 geological disaster points) of the 8528 geological disaster
points were randomly selected for the training of the RF model, and the remaining points
were used for the verification of the hazard assessment results. Based on the RF model,
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the hazard assessment results for geological disasters were obtained. The AUC value of the
hazard result was 0.73, indicating that the prediction result had a high credibility and could
be used as to evaluate geological disasters. The result was divided into five levels using
the breakpoint method. Figure 6 shows the spatial distribution characteristics of hazard
of geological disasters in Fujian Province. The high and very high levels of geological
hazards in Fujian Province account for 10.72% and 4.59% of the total land area, respectively.
In terms of spatial patterns, the areas with high and very high levels are mainly distributed
in the northeastern and central parts of the study area. The distribution pattern of the
linear cluster along the river valley is presented in the northeastern part of the study area.
The hazard levels of the southeast coastal area and northwest inland area are low.

Figure 6. Spatial distribution of hazard of geological disasters.

3.2. Spatial Distribution of Vulnerability and Potential Damage
3.2.1. Spatial Distribution Characteristics of Vulnerability

According to the vulnerability assessment model presented in Section 2.3.3, the vul-
nerability value of each unit was calculated. Based on the natural breakpoint method,
the vulnerability score was divided into five levels: very low, low, medium, high, and very
high. The spatial distribution of vulnerability is illustrated in Figure 7. Regions of high
vulnerability are primarily concentrated in the economically developed southeast coastal
region of the study area. These areas are characterized by high land use intensity, landscape
fragmentation, and a threatened ecosystem stability, resulting in a highly fragile ecosystem.
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Figure 7. Spatial distribution characteristics of vulnerability.

3.2.2. Spatial Distribution Characteristics of Potential Damage

In this study, the potential damage was calculated by overlaying the ecological dam-
age layer and the population exposure layer. All the layers were categorized into five
levels (very low, low, medium, high, and very high) with the natural break point method.
The spatial distribution characteristics are shown in Figure 8. The potential ecological
damage in the study area was mainly high and medium. The area with the highest value of
ecological loss is mainly distributed in Wuyishan city in the northwest of the study area and
Longyan city in the southwest. These areas have good hydrothermal conditions and lush
vegetation, resulting in strong net primary production. Meanwhile, the forest cover is high,
and the amount of water conservation is large; therefore, it has strong ecosystem services.
However, the southeast coastal area has strong human activities, low vegetation coverage,
and weak ecosystem service ability, so the value of ecological loss is low. The distribution
of the population exposure is the opposite. Areas with high and very high exposure were
concentrated in the southeast coastal areas.

In terms of total potential losses, the regions with higher grades are mainly located
in the surrounding areas of Fuzhou and Xiamen. These areas have low vegetation cover
and weak ecosystem services. However, due to their strong human activities and high
population density, the potential loss of people and property under the stress of geological
disasters is great. In addition, due to the high ecological loss in the northwest and southwest
of the study area, the overall loss is also at a high level.
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Figure 8. Spatial distribution of (a) potential ecological damage; (b) population count; (c) potential
damage of geological disasters in the study area.

3.3. Ecological Risk of Geological Disasters
3.3.1. Spatial Pattern of Ecological Risk

Based on the hazard, vulnerability, and potential loss of geological hazards, the ecolog-
ical risk of geological disasters in Fujian at the grid scale was obtained by an equal weight
multiplication. The ecological risk of geological disasters was divided into very high, high,
medium, low, and very low levels according to the natural breakpoint method (Figure 9).

The proportion of areas with high and very high ecological risk levels in Fujian is
relatively low, accounting for 5.21% and 1.5% of the total land area, respectively. Overall,
it shows a distribution pattern of local aggregation and global dispersion. Specifically,
the west, southwest, east, and southeast of the study area were all distributed with high risk
levels. The clustered high and very high risk areas are mainly located around the West River,
Min River, and Ting River valleys. These are areas of intense human activity and fragile
ecology. Meanwhile, the potential damage due to geological disasters is relatively large in
densely populated areas. Medium risk level areas are mainly located in the periphery of
the high risk zone and along the river.

3.3.2. Mechanisms of Influence on Ecological Risk

The analysis on the genesis of the ecological risk posed by geological disasters is
crucial for risk prevention and control. In this paper, four areas with high ecological risk in
Fujian were chosen as typical cases to analyze the mechanisms of influence on ecological
risk, combining with the results of ecological risk assessment and physical conditions.
The high-risk areas (Figure 9) were as follows: (a) the area near Fuzhou Plain in the eastern
part of the study area; (b) the southeastern part of Daiyun Mountain; (c) the southwest
edge of Jiufeng Mountain in the northeast part of the study area; (d) the valley area of the
Ting River watershed.
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Figure 9. Spatial pattern of ecological risk. The circles are the typical regions with high ecological risk.

The area near the Fuzhou Plain (a) has high hazard and high vulnerability. This area
is in a river valley with low vegetation coverage, and its rock strata are mainly soft rocks
containing viscous and silty grains, which, objectively, is a disaster-prone environment.
What is more, dense anthropogenic activities make the ecosystem extremely vulnerable
with fragmented patches. Moreover the potential damage in this area is large due to the
dense population. Hence, the overall ecological risk level is high.

The southeastern part of Daiyun Mountain (b) mainly includes Anxi and Yongchun
Counties, which have high levels of hazard and vulnerability. This mountainous area has a
high elevation with a steep slope. Moreover, the average annual precipitation in this area is
approximately 1600 mm, which is conducive to the development of geological disasters.
In addition, Anxi and Youngchun Counties have numerous tea gardens, as important
regions for tea production. According to the third land survey results, the garden area of
Anxi County accounted for 27% of the county’s land area. Most tea plantations are located
on the slopes of hilly and mountainous areas. Frequent cultivation and planting activities
will aggravate soil and water loss in the area and cause instability of the rock and soil mass.
When encountering geological disasters, the anti-interference ability of this area is poor,
and the ecological environment is fragile. Therefore, the ecological risk level in this region
is high.

The southwest edge of Jiufeng Mountain (c) is a typical hilly area. This region has a
high hazard of geological disasters with rugged and complex terrain and high rainfall inten-
sity. Meanwhile, there are patches of orchards and scattered paddy fields in the area, which
makes the ecological environment vulnerable, to a certain extent. The valley area of the
Ting River watershed (d) is frequently impacted by human activities, including engineering
and farming, which leads to the high vulnerability in the region. Moreover, potential losses
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are high in the valleys because of the high ecosystem services and concentrated population,
with good hydrothermal conditions.

Generally, the causes and mechanisms of the high ecological risk in the study area have
significant spatial variability. Apart from the objective environment that breeds disasters,
human activities, including farming and engineering, also play important roles in the high
ecological risk.

4. Discussion
4.1. Analysis of the Hazard Impact Factors

It is imperative to investigate the significance and mechanism of conditioning factors
in understanding their impact on the geological hazard, as it provides valuable information
for the prediction and prevention of geological disasters. In this study, the Mean Decrease
Gini of the RF model was utilized to evaluate the importance of the nine conditioning
factors [51]. As depicted in Figure 10, NDVI was found to be the most influential factor,
followed by precipitation, elevation, slope, distance from the river, distance from the fault,
aspect, land use type, and lithology.

Figure 10. Mean decrease Gini of variables assigned by the random forest.

Furthermore, the top four factors, namely, NDVI, precipitation, elevation, and slope,
were selected to analyze the impacts of the factors on the hazards. The layers of these four
factors were reclassified into different intervals, and then the geological disaster points
were overlaid to calculate the corresponding frequency ratio for each interval. Figure 10
shows the frequency ratios of these typical conditioning factors at different intervals, which
reflects the partial effects on geological disaster hazards. It can be observed from the figure
that the frequency ratio value first increased and then decreased as the NDVI continued to
rise. The areas with NDVI values less than 0.2 are mostly built-up areas with relatively few
geological disaster points. In areas with NDVI values exceeding 0.2, the frequency of geo-
logical disasters increases proportionally with the decreasing vegetation coverage. Rainfall
is the second most important conditioning factor. As shown in Figure 11b, the frequency of
geological disasters is higher when the precipitation is between 1000 mm and 1400 mm.
This range of precipitation can cause soil erosion, which can increase the likelihood of
landslides and other geological hazards. When the precipitation is higher than 1400 mm,
the frequency is lower. The cause for this phenomenon may stem from the fact that regions
with high precipitation levels typically exhibit a higher degree of vegetation development,
which in turn serves to stabilize the soil and mitigate the occurrence of geological disasters.
As the third important conditioning factor, in general, elevation is closely related to the
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impact of geological disasters on human activities. Geological hazards are more likely
to occur in low mountainous areas with altitudes of less than 1000 m (see Figure 11c).
In areas with low elevations, human activities such as house and road construction lead to
unstable slopes, which are accompanied by loose soil, and tend to aggravate the occurrence
of geological hazards. For the slope factor, the frequency ratio value first increased and
then decreased as the slope continued. Geological disasters occur more frequently in
regions with small slopes than in areas with large slopes. On the one hand, areas with low
slope values tend to have strong human activities. On the other hand, the soils located in
regions characterized by steep slopes exhibit a higher susceptibility to the gravity-induced
displacement, which makes the formation of weak weathering layers more challenging.
As a result, the occurrence of geological hazards, such as landslides, is less frequent in
these areas.

Figure 11. Frequency ratios of typical conditioning factors: (a) NDVI; (b) precipitation; (c) evaluation;
(d) slope at different intervals.

4.2. Development Strategy for Hazard Prevention and the Improvement of the ERA

From the analysis above, the factors that influence disasters in different high-risk areas
vary. Thus, the proposed risk control measures should be more targeted and adapted to
local conditions. In future policy making, economic development and ecological protection
should be considered simultaneously. In areas characterized by high levels of hazard,
vulnerability, and potential damage, the frequency of geological disaster monitoring should
be improved, and prohibited development zones should be established in some areas.
For areas of high vulnerability, corresponding development protection measures, such as
the reinforcement of unstable slopes, should be established. In addition, for areas with
high potential ecological losses, conservation should be the primary strategy, and land
development and use should be avoided as much as possible.

The current study has certain limitations that should be acknowledged and addressed
in future research endeavors. Specifically, the assessment of potential damage was limited
to three types of ecological services due to a lack of detailed spatial data. Furthermore,
the risk assessment methodology employed in this study could be improved by incorporat-
ing uncertainty and sensitivity analyses to better understand the spatial variability of the
results. In future research, it would be beneficial to consider a wider range of ecosystem
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services to improve the calculation of potential losses, and to conduct a more compre-
hensive uncertainty and sensitivity analysis to better understand the effectiveness of the
assessment results.

5. Conclusions

In this study, the “hazard-vulnerability-potential damage” framework was used to
evaluate the ecological risk of geological disasters in Fujian, and the influencing factors
were further analyzed. The framework could have a broader applicability in other regions
that are under the threat of geological hazards. Moreover, our results could provide a
guidance and reference for the prevention and control of ecological risks. The primary
conclusions are as follows:

(1) The hazard of geological disasters are mainly medium risks. The area with high and
very high levels of geological hazard account for 10.72% and 4.59% of the study area,
respectively. These areas are mainly distributed in the northeast and inland regions
and present a striped distribution pattern along the river valley. The results of the
conditioning factor importance evaluation and impact analysis of typical conditioning
factors showed that NDVI, precipitation, elevation, and slope are the most important
factors that may encourage the geological disaster hazard.

(2) The high ecological risk of the study area shows trends of local clustering and global
dispersion. The areas with high ecological risk are mainly concentrated along the
Fuzhou Plain, southeastern part of Daiyun Mountain, southwest edge of Jiufeng
Mountain, and valley area of the Ting River watershed. The causes and mechanisms
of the high ecological risk in the study area have significant great spatial variability,
and human activities have a significant influence on the ecological risk.

(3) The geological disaster hazard assessment result based on the random forest model
has a high reliability. The AUC value of the ROC curve is 0.79, and 72% of the historical
verification geological disaster points fall within high hazard regions. Compared with
the information quantity model, the RF model performed better in terms of the hazard
assessment of geological disasters, especially regarding the identification of high-level
hazard areas.
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Appendix A

The calculation of the topographic factor (LS) and vegetation cover factor (C) in
the Revised Universal Soil Loss Equation (RUSLE) model is presented below. For the
topographic factor, the equation is shown as follows:

LS =

(
λ

72.6

)m
× (65.41sin2β + 4.56sin2β + 0.065) (A1)

m =


0.2 β < 0.57

0.3 0.57 ≤ β < 1.72
0.4 1.72 ≤ β < 2.86

0.5 β ≥ 2.86

(A2)

where LS is the slope factor of the slope length, λ is the slope length (m), and β is the slope
gradient (arc degree) extracted from the digital elevation model (DEM) data.

The Vegetation cover factor (C) was calculated by different methods based on different
land use types. For water, construction land and bare land, values of 0, 0.1,0.7 were
assigned [47]. Moreover, for forest land, shrub land and grass land, the value was calculated
as shown in Equation (A3) [44].

C =


1 f c = 0

0.6508 0 < f c ≤ 78.3%
0 f c > 78.3%

(A3)

where f c is the vegetation cover factor.
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