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Abstract: In the last few years, many types of research have been conducted on the most harmful
pandemic, COVID-19. Machine learning approaches have been applied to investigate chest X-rays of
COVID-19 patients in many respects. This study focuses on the deep learning algorithm from the
standpoint of feature space and similarity analysis. Firstly, we utilized Local Interpretable Model-
agnostic Explanations (LIME) to justify the necessity of the region of interest (ROI) process and
further prepared ROI via U-Net segmentation that masked out non-lung areas of images to prevent
the classifier from being distracted by irrelevant features. The experimental results were promising,
with detection performance reaching an overall accuracy of 95.5%, a sensitivity of 98.4%, a precision
of 94.7%, and an F1 score of 96.5% on the COVID-19 category. Secondly, we applied similarity
analysis to identify outliers and further provided an objective confidence reference specific to the
similarity distance to centers or boundaries of clusters while inferring. Finally, the experimental
results suggested putting more effort into enhancing the low-accuracy subspace locally, which is
identified by the similarity distance to the centers. The experimental results were promising, and
based on those perspectives, our approach could be more flexible to deploy dedicated classifiers
specific to different subspaces instead of one rigid end-to-end black box model for all feature space.

Keywords: COVID-19; LIME (Local Interpretable Model-agnostic Explanations); feature space;
machine learning; outlier; PCA; similarity distance; U-Net segmentation

1. Introduction

Since December 2019, coronavirus pneumonia has spread from Wuhan, Mainland
China. We call this COVID-19, and the International Committee on Taxonomy of Viruses
(ICTV) defines this virus as SARS-CoV-2 (Acute Respiratory Syndrome Coronavirus 2). As
of 21 December 2022, the number of infections worldwide is approximately 650 million, and
the death toll is approximately 6.7 million [1]. All aspects of global politics, the economy,
and society have been deeply affected. This research expects that machine learning can
make auxiliary contributions to related detection or pathological development research,
especially when professional medical personnel and testing resources are insufficient.

In this study, we used LIME to illustrate that classifiers are easily distracted by areas
out of the lungs if without ROI preprocessing. Hence, we further trained the U-Net segmen-
tation model to perform better ROI preprocessing. Compared with digital image processing,
U-Net could significantly improve the effectiveness and efficiency of segmentation jobs.

We aim to develop a high-accuracy detection model for positive cases of COVID-
19 patients. The novelties in this study are: (1) We trained an effectively deep-learning
segmentation model in the pre-processing phase to mask out areas of the lung area that
may distract the model’s learning. (2) We focused on similarity analysis to identify outliers
and low accuracy subspace and further enhance the detection performance of the deep
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learning detection model locally. None of the researchers in the next section studied the
relationship between cluster distribution and detection accuracy in feature space in terms
of similarity distance.

2. Related Work

Since the outbreak of coronavirus pneumonia, the epidemic prevention measures
adopted by various countries have not only restricted or controlled social activities but also
adopted measures such as locking down the city or controlling daily access. At present,
the related detection techniques [2] are divided into three types: reverse transcriptase
polymerase chain reaction (PCR) nucleic acid detection, antigen detection, and serum
IgM/IgG antibody detection. It can be seen that in the management of epidemic prevention
and diversion, nucleic acid testing and rapid antigen screening are the main methods.

In terms of radiological detection, computed tomography (CT) and X-ray tests have
also been studied in the detection and research of patients with coronavirus pneumonia.
The paper [3] studied the correlation between CT and PCR detection to understand whether
radiological detection has sufficient accuracy to replace or complement each other. X-ray is
a cheaper and easier method than CT, and it is used more frequently and easily by various
hospitals and patients.

The paper [4] summarized and compared machine learning algorithms used in med-
ical imaging, covering traditional machine learning and deep learning. As to the most
critical feature extraction work, traditional machine learning depends largely on the feature
engineering skills of skilled operators.

In the development history of computer vision, deep learning has been greatly im-
proved by the computing power of computers in the past decade, which has allowed it
to show excellent learning results and be used in various fields. Among them, it has also
become an important auxiliary tool of medical diagnosis [5]. The deep convolutional neural
network is significantly better than other types of machine learning methods in terms of
image feature extraction. The feasibility of using pre-trained weights for deep learning
in medical images as transfer learning has also been verified in this study [6], and its
application in pneumonia-related applications has also been verified [7]. As more and more
open public datasets are available, the research speed in this part is even faster globally.

During the past and the coronavirus epidemic, the feasibility of deep convolutional
neural network (CNN) medical contribution has been continuously studied. Gozes et al. [8]
studied an off-the-shelf 3D CT analysis system to detect nodules and small opacities with a
2D complementary deep learning network to detect diffuse opacities, and further defined
a score as a reference of illness progression over time. Chowdhury et al. [9] presented
the comparison of different deep CNNs with transfer learning for COVID-19 detection.
Hemdan et al. [10] used X-ray images to compare and select suitable COVIDX-Net models
from seven different well-known models. However, due to the very limited dataset, it
was studied only for training and validation, and the generalization is still challenging.
Sachin et al. [11] used the DarkNet-based network, which was designed for only looking at
one (YOLO) object detection as the backbone of the proposed DarkCovidNet classification.
Wang et al. [12] proposed COVID-Net, which is a state-of-the-art customized CNN model on
chest X-ray images and uses the automatic learning function to search for the optimization
of the model structure. Additionally, during the epidemic, it also contributed a lot to the
establishment of the public access dataset, COVIDx. Tang et al. [13] proposed the ensemble-
based EDL-COVID network with several different snapshots over training epochs on a
single COVID-Net model structure to boost performance. They used a more aggressive
learning rate to diversify the detection behaviors of different snapshots.

Ensemble learning can aggregate different classifiers and can be used to integrate
complex deep-learning models [14,15]. The main principle and contribution of its tech-
nology are to integrate grouped diverse models, grouped models with the same data set
but in different views, or grouped models trained by different data subsets to achieve
multi-pattern output aggregation.
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Lin et al. [16] used the mask to preprocess ROI via traditional digital image processing.
The decision-making process of most machine learning methods remains a black box.

It is critical to understand or justify whether the detection behavior is reasonable, inter-
pretable, and trustable. Generally, SHapley Additive exPlanations (SHAP) [17], Gradient-
Weighted Class Activation Mapping (Grad-CAM) [18], and Local Interpretable Model-
agnostic Explanations (LIME) [19,20] are well-known tools for interpretability analysis
in different applications. SHAP analysis is an extension based on Shapley values and a
game-theoretic method to calculate the average of all marginal contributions in all the
coalitional combinations. However, for image analysis and deep learning architecture, it
would take too many computation resources. Grad-CAM can obtain a good heatmap but
it is not a model-specific method and is not flexible to frequent model adjustments. In
contrast, LIME could obtain advantages of computation and flexibility if we do not need a
fine-gram heatmap.

LIME is a local surrogate model which is trained to approximate the detections of
another complex underlying model. While training, LIME will first give variations of input
data by perturbations and collect corresponding detections, then train an interpretable
model with those data and weights of their proximity.

3. Materials and Methods

The systematic architecture and operation process of this study are shown in Figure 1.
For the training process, we started with step A collecting datasets from the open source,
then followed with step B to initially justify the necessity of the ROI process. U-Net [21] was
introduced to produce an ROI mask for each image. In step C, we trained a CNN model to
produce feature vectors of images and partitioned feature space into low- and high-accuracy
subspaces according to cluster statistics. Step D trained classifiers for the testing set falling
in low-accuracy subspace and enhanced performance by stacking ensemble [22] in step E.

Figure 1. Training steps of this research.

Regarding inferring in Figure 2, we performed initial screening for outliers with
feature distance to boundary centers [23], then preprocessed images with a trained U-Net
model, and finally classified them with dedicated classifiers according to the location of
their feature vectors.

Figure 2. Inferring steps of this research.
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3.1. Dataset Description

We collected the dataset from the open access benchmark COVIDx8 dataset con-
structed in May 2022, which contains 17,368 PA Chest X-rays, of which 2449 belong to
COVID-19, shown in Figure 3. The detailed metadata was not collected and analyzed in
this open source. This dataset is modified and kept updated from five publicly available
repositories [24–28]. The repository built by Cohen et al. [24] collected COVID-19 images
and other viral and bacterial types of pneumonia images. COVID-Net Team built [25,26]
repositories with about 300 COVID-19 images. Qatar University, the University of Dhaka,
and researchers from Pakistan and Malaysia cooperated to build this repository [27]. RNSA
launched a Kaggle competition with this dataset [28]. Please refer to the link for more
COVIDx8-version dataset creating details (https://github.com/lindawangg/COVID-Net/
blob/master/docs/COVIDx.md, accessed on 29 October 2022).

Figure 3. Sample distribution of this research. We roughly split 10% of the original data into the
testing set.

The dataset has a significant sample imbalance among categories, particularly COVID-
19 with a smaller quantity. During training, we adjusted class weights for loss function to
balance the categories’ contribution levels. We roughly split 10% into the testing set.

3.2. Methods

Our experiments were conducted in the Intelligent Computing laboratory of National
Quemoy University. We used Python-based TensorFlow framework for neural network
layers, OpenCV for image processing, and sci-kit-learn for machine learning algorithms.
Our computation machine is equipped with two GeForce GTX 1080 Ti GPUs.

3.2.1. Model Training Phase

• Step A: Dataset preparation;

The dataset was collected as previously mentioned from open sources.

• Step B: Image preprocessing;

For justifying the masking contribution of ROI, in the beginning, we trained Mo-
bileNetV1 [29] with original images without the ROI process and further applied LIME to
visualize paid attention to images. In the process of LIME to each concerned image, we
used the watershed algorithm to produce 50 pieces of small segmentations per image, then
LIME randomly generated 150 perturbations by super-pixels on and off. By feeding those
150 perturbations into trained MobileNetV1, we could obtain the predicted probability for

https://github.com/lindawangg/COVID-Net/blob/master/docs/COVIDx.md
https://github.com/lindawangg/COVID-Net/blob/master/docs/COVIDx.md
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each class. A linear model is used to fit those 150 images as a model-agnostic model. Four
top features were selected to show super-pixel images for our visual check.

U-Net is a semantic segmentation approach consisting of down-sampling and up-
sampling phases by stacking convolutional layers. The novelty of this architecture is to
concatenate higher resolution feature maps from down-sampling stages with up-sampled
features by skipping connections to obtain richer information that is likely missing in the
main path. Compared with digital image processing, U-Net could significantly improve
the effectiveness and efficiency of segmentation jobs.

For the ROI masking process, we used 300 images selected from the same retrieved
COVIDx8 dataset with our annotations to train the U-Net model to produce a segmentation
mask and further used it to generate ROI masks for all the rest images.

Even though we have thousands of image data, the resources for annotation work are
still limited. While U-Net is capable of performing excellent segmentations, detailed and
accurate annotations still require the help of professional staff. Therefore, in this study, we
targeted preliminarily and smoothly masked out areas outside lung edges.

• Step C: Partition feature space into subspaces and group samples;

We trained MobileNetV1 with 224 × 224 ROI images, ImageNet pre-trained weights of
feature extraction blocks, additional head layers for three-category classification,
0.0001 learning rate, and categorical cross entropy as loss function, then used the new-
trained model to produce the feature vectors of all training data from a low-dimensionality
layer with 20 perceptrons just after the last convolutional layer. From the distribution of
clusters in feature space, we defined centers of category clusters and boundaries. Cluster
centers were identified by K-means and boundary centers were set in the middle positions
between cluster centers. Meanwhile, we also introduced Principal Component Analysis
(PCA) [30] to visualize the distribution of clusters in two-component dimensions. Based
on centers and L2 Euclidean distance to cluster centers for each sample, we can obtain
much more valuable information as likelihood or new chest outlier reference in addition to
simple category classification answers.

We further partitioned feature space into two sub-spaces as in-circle and outside-circle
areas, according to Euclidean distance to boundary centers. Through the feature extraction
of trained MobileNetV1, samples falling in in-circle boundary areas would basically have
much lower accuracy. Because the training set would be well clustered and likely over-
fitted, it is better to take the detection accuracy of the testing sample as an objective accuracy
reference.

• Step D: Training classifiers to obtain feature output for lower accuracy subspace;

For enhancing the detection accuracy of in-circle subspace, we tried to use stacking en-
semble and data augmentation. Therefore, we selected and trained images sized 224 × 224
with well-known MobileNetV1, ResNet50V2 [31,32], and DenseNet201 [33], respectively, to
enrich diversity, which is required by the ensemble approach.

MobileNet is a lightweight model designed for edge devices by Google in 2017. By
splitting the general 2D convolution mode into an independent 3 × 3 depth-wise convolu-
tion for each channel, combined with 1 × 1 point-wise convolution, a similar performance
can be achieved, but the amount of calculation is greatly reduced.
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ResNet uses the residual block architecture to enable neural networks to surpass
human capabilities in visual recognition for the first time, and also won the championship
of ImageNet2015 and COCO competition and the best paper of CVPR2016. The original
design purpose is to use the residual calculation to pass the input to the output, reducing
the problem of gradient disappearance or explosion in deep structure training. ResNet50
uses 50 convolutional layers for feature extraction. V2 is the version of operation sequence
adjustment on residual units based on V1.

DenseNet uses a skip connection mechanism similar to ResNet. The difference is that
DenseNet uses all the previous layers to concatenate to recombine features, and these dense
jumper connections are why we call it “Dense”. DenseNet201 has 201 trainable layers.

In data augmentation, we used the skills of width shift, height shift, and horizontal
flip. At the end of this step, we can obtain three sets of feature vectors in the middle layer
we are interested in for the next step.

• Step E: Ensemble classifier.

Here, we concatenated the above three classifiers’ feature vectors, probability, or logits
output and further fed it as the meta-classifier’s training input. Multi-layer perceptron
(MLP) was used as the last meta-classifier.

In our study, we mainly evaluated three metrics. Accuracy = (TP + TN)/(TP + TN +
FP + FN). Precision = TP/(TP + FP). Recall = TP/(TP + FN). Where TP, TN, FP, and FN
stand for True Positive, True Negative, False Positive, and False Negative, respectively.

3.2.2. Inferring Phase

• Step A: Outlier pre-screening;

Similarity distance is a potential tool to identify outliers that completely do not belong
to any category in case any wrong input operation is there. The CNN classification model
is incapable of screening out for ridiculous outliers. We implemented this pre-screening
before feeding images into classifiers. Twelve outlier images were selected from Google
to observe the effectiveness and performance of this gating. The Imagenet-pre-trained
MobileNetV1 is leveraged here.

• Step B: Image Preprocess;

As in the training phase, we need to perform ROI masking for testing data.

• Step C: Feature vector extraction and classification by a dedicated classifier.

We extracted feature vectors of images and classified them with different classifiers
customized per subspace of feature vector location based on the first trained MobileNetV1.
Moreover, we could calculate Euclidean distances to three cluster centers as additional
information on classification likelihood or new chest outlier reference.

4. Results
4.1. Model Training

From Figure 4, LIME analysis shows that the classification model sometimes made
a critical judgment based on an area out of the lungs that are not in compliance with our
intention, even though the classifier reached high accuracy. This situation will cause serious
generalization issues. We obtained the conclusion about the necessary ROI to preprocess
from LIME analysis and proceeded with U-Net. The effect is in Figure 5, which shows an
excellent masking result smoothly along with the lungs’ edge.
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Figure 4. Images for the original Chest X-ray, watershed segmentation, and the results after the LIME
analysis.

In step C, although we handled those data with high dimensionality, meanwhile,
we also used PCA to drop those vectors into two components for visual observation. In
Figure 6b, we can observe clusters of the training set well separated into three categories,
defined cluster centers in orange and boundary centers in yellow. In Figure 6c, orange circles
represent new chest outlier boundaries. In Figure 6d, yellow circles are the boundaries
between high- and low-accuracy subspaces.

4.2. Inferring

For effective observation of outlier pre-screening in step A, we selected twelve images
that are quite different from the chest X-ray. From our experiment, the ImageNet pre-
trained weight of MobileNetV1 for convolutional layers can work very well with the 1000
feature vectors we directly leveraged. Figure 6a shows PCA down-sampling for the features
extracted from the pre-trained model. Compared with Figure 6b, we can clearly observe
poor clustering performance on our three chest categories. Namely, it is necessary to train
the model for our use case in the next step. Here, we set L2 distance 45 as the threshold
that could screen out less than 1 percent for both training and testing sets, but that reached
a good screening out rate to the outlier set. In Figure 7, we list the minimum distance to
cluster centers and images of outliers. Among these, the lateral-view chest X-ray of number
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one is the only one below the threshold. It is somehow reasonable due to its lung features
that have similar features to our dataset.

Figure 5. Images for the result of ROI preprocess by U-Net.

In classification step C, Figure 8a–c respectively shows the confusion matrix of the
testing set under conditions of all in-circle and outside-circle space. The in-circle matrix
shows the worst result for all metrics. While inferring application, samples in this in-circle
area can be highlighted as low-confidence detection in addition to the simple result of the
predicted class. With it, the user can plan future checks per confidence level.
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Figure 6. PCA visualization of the training set clusters in two-component: (a) Down-sampling
distribution based on extracted 1000 vectors with MobilNetV1 pre-trained by Imagenet. (b) Status
based on trained MobileNetV1 feature extraction block. It also shows cluster centers in orange and
boundary centers in yellow. (c) Orange circles are the outlier boundaries specific to different categories.
(d) Yellow circles are boundary sketches to separate both high and low-accuracy subspaces.
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Figure 7. Outlier set and minimum L2 distance to three cluster centers. The number one image,
lateral view X-ray, has the shortest similarity distance.

Figure 8. All relevant confusion matrices: (a–c) are for status before partition enhancement, (d–f) are
the improvement of (b) with data augmentation on three models, (g) is the result of the ensemble,
and (h) is the final result for all datasets. Dataset here means testing dataset.

Figure 8d–f shows three individual CNN, MobileNetV1, DenseNet201, and ResNet50V2
with data augmentation, and synergy of stacking ensemble in Figure 8g. Figure 8h is the
combination of Figure 8b,g as the final performance for all testing samples.

For the accuracy of the in-circle area, improvement is from 73.3% to 85.3%, whereas
the accuracy of the whole area is from 93.9% to 95.5%. Table 1 shows the contribution of
the stacking ensemble in step C.
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Table 1. Performance comparison of individual CNN to the ensemble.

In-Circle Testing
Dataset Image Size Overall Accuracy Avg. Sensitivity of

All
Avg. Precision of

All Avg. F-Score of All Sensitivity of
COVID-19

Individual CNN Stage

MobileNet 224 × 224 81.3% 83.0% 86.1% 84.4% 82.1%

DenseNet 224 × 224 82.2% 84.3% 87.3% 85.4% 89.6%

ResNet 224 × 224 83.1% 86.1% 83.3% 84.4% 86.8%

Ensemble stage

Stacking with MLP NA 85.3% 85.9% 89.1% 87.3% 89.6%

5. Discussion

DarkCovidNet [11] could achieve 87.02% accuracy for the three-class classification.
This main algorithm is DarkNet, which is designed for YOLO. COVID-Net [12] is a tailor-
made residual deep learning architecture with optimization of generative synthesis strategy
for COVID-19 detection that achieved an accuracy of 93.3%. EDL-COVID [13] is a snapshot
ensemble deep learning model based on COVID-Net that reached an accuracy of 95%. We
listed our results with those state-of-the-art methods in Table 2.

Table 2. Detection performance comparison among three state-of-the-art methods, our based-line
MobileNet50V1, and the proposed model.

Method Accuracy Sensitivity Precision

DarkCovidNet 88.6% 89.0% 94.6%
COVID-Net 93.3% 91.0% 98.9%
EDL-COVID 95.0% 96.0% 94.1%

MobileNet50V1 93.9% 97.9% 93.2%
Proposed-model 95.9% 98.4% 94.7%

From previous related work [7–13], many types of research on this COVID-19 chest
X-ray topic did not focus on the ROI preprocessing and possibly introduced the risk of uti-
lizing features out of the lung area while implementing classification with CNN. Normally,
from our study, we observed that 2% accuracy will be lost if introducing ROI preprocessing,
which means models trained without an ROI dataset would make a judgment based on the
irrelevant area on images and likely lead to generalization issues in future applications. In
our study, LIME analysis shows the same comments as the research with Grad-CAM analy-
sis [16]. It justified our deep learning ROI approach, U-Net segmentation, as a necessary
method in this application. In the future, LIME is also an alternative to Grad-CAM if we
aim to target lesion areas inside ROI in the macro view.

We deeply take advantage of feature space distribution to analyze outliers with a big
difference, visualize clusters and cluster overlap, and partition the whole feature space
into different levels of detection confidence based on the testing set. For outlier detection,
we simply leveraged the pre-trained model to obtain a high screening out rate on our
outlier set and with low impact, less than 1%, to original chest X-ray images. Furthermore,
in another feature space of the re-trained model, it could be leveraged to identify new
chest illness classes other than trained classes on chest X-rays based on the proper distance
threshold to cluster centers. From our approach, similarity distance to boundary centers
could effectively distinguish different detection levels based on a testing set as a meaningful
confidence reference. In the future, we can refine the current two-level partition into finer
levels for better confidence resolution.

Moreover, to each subspace, we can treat them with different intentions or biases
without impacting other trained models as partial finetune. In this study, we aimed to
enhance the accuracy of low-accuracy subspace with data augmentation and ensemble,
which resulted in an improvement from 73.3% to 85.3% locally. In the future, a better way
for the enhancement of low accuracy subspace is suggested to deeply analyze the difference
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between feature vectors of the training set and testing set falling into this area and further
improve the combination or image quality of the training set to enhance specific subspace.

This study has limitations from the collected dataset. Firstly, image quality and lesions
of chest X-rays were not well-checked or annotated by professional medical staff. This
will lead to a difficult review or discussion if we want to improve the model, especially
for critical samples around cluster boundaries. Secondly, regarding the limited sample
size, even though we utilized sample weight to balance and shift the model focus on the
most concerned category while training, the model still possibly could not learn important
discriminative features from a limited sample size if they are not there. Thirdly, COVID-
19 has many variants that would possibly damage a patient’s lungs in different ways in
different stages. Fourthly, the COVIDx dataset is kept updated without a detailed metadata
log, so it is difficult to combine more useful meta information for better learning. However,
even with mentioned limits, we still think this feature-space-based similarity analysis could
provide much more reference information than simple classification results and provide
flexibility to fine-tune partial functions with our strategic bias.

6. Conclusions

In this study, we utilized cluster distribution in feature space to identify outliers and
further split feature space into high- and low-accuracy subspaces based on the testing
dataset. In this way, for predicting future samples, more than simply predicted category
results, we can obtain more objective detection confidence reference according to similarity
distance to centers. Furthermore, we can flexibly deploy different classifiers to different
subspaces according to different strategies or biases without interfering with other sub-
spaces, instead of one rigid end-to-end model approach for all. In this case, we tried to
enhance classification performance for low-accuracy subspace.

We also used LIME to justify the necessity of the ROI preprocessing that is based
on the deep learning U-Net generator. Approaches without an ROI process may include
generalization risk due to the chance of using features out of the lung area.

Author Contributions: Conceptualization, H.-C.L.; Methodology, H.-C.L.; Software, T.-C.L. and
C.-Y.L.; Investigation, K.-Y.C. and H.-C.L.; Resources, Z.-P.H.; Data curation, C.-Y.L.; Writing—review
& editing, H.-C.L., T.-C.L. and C.-Y.L.; Supervision, H.-C.L.; Project administration, H.-C.L.; Funding
acquisition, K.-Y.C. and H.-C.L. All authors have read and agreed to the published version of the
manuscript.

Funding: This research is partially supported by Chang Bing Show Chwan Memorial Hospital and
National Quemoy University.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: We thank Chang Bing Show Chwan Memorial Hospital and National Quemoy
University for providing computational and storage resources.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Taiwan Centers for Disease Control. COVID-19 Introduction. Available online: https://www.cdc.gov.tw/En (accessed on 16

October 2022).
2. Udugama, B.N.; Kadhiresan, P.; Kozlowski, H.N.; Malekjahani, A.; Osborne, M.; Li, V.Y.; Chen, H.; Mubareka, S.; Gubbay, J.B.;

Chan, W.C. Diagnosing COVID-19: The Disease and Tools for Detection. ACS Nano 2020, 14, 3822–3835. [CrossRef] [PubMed]
3. Fang, Y.; Zhang, H.; Xie, J.; Lin, M.; Ying, L.; Pang, P.; Ji, W. Sensitivity of Chest CT for COVID-19: Comparison to RT-PCR.

Radiology 2020, 296, E115–E117. [CrossRef] [PubMed]

https://www.cdc.gov.tw/En
http://doi.org/10.1021/acsnano.0c02624
http://www.ncbi.nlm.nih.gov/pubmed/32223179
http://doi.org/10.1148/radiol.2020200432
http://www.ncbi.nlm.nih.gov/pubmed/32073353


Int. J. Environ. Res. Public Health 2023, 20, 4330 13 of 14

4. Erickson, B.J.; Korfiatis, P.; Akkus, Z.; Kline, T.L. Machine Learning for Medical Imaging. Radiographics 2017, 37, 505–515.
[CrossRef] [PubMed]

5. Litjens, G.J.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.; Ciompi, F.; Ghafoorian, M.; Laak, J.V.; Ginneken, B.V.; Sánchez, C.I. A survey on
deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [CrossRef] [PubMed]

6. Tajbakhsh, N.; Shin, J.Y.; Gurudu, S.R.; Hurst, R.T.; Kendall, C.B.; Gotway, M.B.; Liang, J. Convolutional Neural Networks for
Medical Image Analysis: Full Training or Fine Tuning? IEEE Trans. Med. Imaging 2016, 35, 1299–1312. [CrossRef] [PubMed]

7. Chouhan, V.; Singh, S.K.; Khamparia, A.; Gupta, D.; Tiwari, P.; Moreira, C.; Damaševičius, R.; Albuquerque, V.H. A Novel Transfer
Learning Based Approach for Pneumonia Detection in Chest X-ray Images. Appl. Sci. 2020, 10, 559. [CrossRef]

8. Gozes, O.; Frid-Adar, M.; Greenspan, H.; Browning, P.D.; Zhang, H.; Ji, W.; Bernheim, A.; Siegel, E. Rapid AI Development Cycle
for the Coronavirus (COVID-19) Pandemic: Initial Results for Automated Detection & Patient Monitoring using Deep Learning
CT Image Analysis. arXiv 2020, arXiv:abs/2003.05037.

9. Chowdhury, M.E.; Rahman, T.; Khandakar, A.; Mazhar, R.; Kadir, M.A.; Mahbub, Z.B.; Islam, K.R.; Khan, M.S.; Iqbal, A.;
Al-Emadi, N.A.; et al. Can AI Help in Screening Viral and COVID-19 Pneumonia? IEEE Access 2020, 8, 132665–132676. [CrossRef]

10. Hemdan, E.E.; Shouman, M.A.; Karar, M. COVIDX-Net: A Framework of Deep Learning Classifiers to Diagnose COVID-19 in
X-Ray Images. arXiv 2020, arXiv:abs/2003.11055.

11. Sachin; Bhat, A. Automated Detection of COVID-19 from X-ray Images using Deep Convolutional Neural Networks. In
Proceedings of the 2021 3rd International Conference on Advances in Computing, Communication Control and Networking
(ICAC3N), Greater Noida, India, 17–18 December 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 2076–2081.

12. Wang, L.; Lin, Z.Q.; Wong, A. COVID-Net: A tailored deep convolutional neural network design for detection of COVID-19 cases
from chest X-ray images. Sci. Rep. 2020, 10, 1–12. [CrossRef] [PubMed]

13. Tang, S.; Wang, C.; Nie, J.; Kumar, N.; Zhang, Y.; Xiong, Z.; Barnawi, A. EDL-COVID: Ensemble Deep Learning for COVID-19
Case Detection From Chest X-Ray Images. IEEE Trans. Ind. Inform. 2021, 17, 6539–6549. [CrossRef]

14. Rincy, T.N.; Gupta, R. Ensemble Learning Techniques and its Efficiency in Machine Learning: A Survey. In Proceedings of the 2nd
International Conference on Data, Engineering and Applications (IDEA), Bhopal, India, 28–29 February 2020; IEEE: Piscataway,
NJ, USA, 2020; pp. 1–6.

15. Ganaie, M.A.; Hu, M.; Tanveer, M.; Suganthan, P.N. Ensemble deep learning: A review. arXiv 2021, arXiv:abs/2104.02395.
[CrossRef]

16. Lin, T.; Lee, H. COVID-19 Chest Radiography Images Analysis Based on Integration of Image Preprocess, Guided Grad-CAM,
Machine Learning, and Risk Management. In Proceedings of the 4th International Conference on Medical and Health Informatics,
Kamakura City, Japan, 14–16 August 2020; Association for Computing Machinery: New York, NY, USA, 2020.

17. Lundberg, S.M.; Lee, S. A Unified Approach to Interpreting Model Predictions. Adv. Neural Inf. Process. Syst. 2017, 30, 4765–4774.
18. Zhou, B.; Khosla, A.; Lapedriza, À.; Oliva, A.; Torralba, A. Learning Deep Features for Discriminative Localization. In Proceedings

of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016;
pp. 2921–2929.

19. Ribeiro, M.; Singh, S.; Guestrin, C. “Why Should I Trust You?”: Explaining the Predictions of Any Classifier. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August
2016; Association for Computing Machinery: New York, NY, USA, 2016.

20. Garreau, D.; Mardaoui, D. What does LIME really see in images? In Proceedings of the 38th International Conference on Machine
Learning, Virtual Event, 18–24 July 2021.

21. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv 2015,
arXiv:abs/1505.04597.

22. Wolpert, D.H. Stacked generalization. Neural Netw. 1992, 5, 241–259. [CrossRef]
23. Aggarwal, C.C. Outlier Analysis; Springer: New York, NY, USA, 2013.
24. Cohen, J.P.; Morrison, P.; Dao, L. COVID-19 image data collection. arXiv 2020, arXiv:2003.11597.
25. Chung, A. Figure 1 COVID-19 Chest X-ray Data Initiative. 2022. Available online: https://github.com/agchung/Figure1-COVID-

chestxray-dataset (accessed on 29 October 2022).
26. Chung, A. Actualmed COVID-19 Chest X-ray Data Initiative. 2022. Available online: https://github.com/agchung/Actualmed-

COVID-chestxray-dataset (accessed on 29 October 2022).
27. Qatar University. COVID-19 Radiography Database. 2022. Available online: https://www.kaggle.com/tawsifurrahman/covid1

9-radiography-database (accessed on 29 October 2022).
28. Radiological Society of North America. RSNA Pneumonia Detection Challenge. 2022. Available online: https://www.kaggle.

com/c/rsna-pneumonia-detection-challenge/data (accessed on 29 October 2022).
29. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient

Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:abs/1704.04861.
30. Diamantaras, K.I.; Kung, S.Y. Principal Component Neural Networks: Theory and Applications; John Wiley: New York, NY, USA, 1996.
31. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

http://doi.org/10.1148/rg.2017160130
http://www.ncbi.nlm.nih.gov/pubmed/28212054
http://doi.org/10.1016/j.media.2017.07.005
http://www.ncbi.nlm.nih.gov/pubmed/28778026
http://doi.org/10.1109/TMI.2016.2535302
http://www.ncbi.nlm.nih.gov/pubmed/26978662
http://doi.org/10.3390/app10020559
http://doi.org/10.1109/ACCESS.2020.3010287
http://doi.org/10.1038/s41598-020-76550-z
http://www.ncbi.nlm.nih.gov/pubmed/33177550
http://doi.org/10.1109/TII.2021.3057683
http://doi.org/10.1016/j.engappai.2022.105151
http://doi.org/10.1016/S0893-6080(05)80023-1
https://github.com/agchung/Figure1-COVID-chestxray-dataset
https://github.com/agchung/Figure1-COVID-chestxray-dataset
https://github.com/agchung/Actualmed-COVID-chestxray-dataset
https://github.com/agchung/Actualmed-COVID-chestxray-dataset
https://www.kaggle.com/tawsifurrahman/covid19-radiography-database
https://www.kaggle.com/tawsifurrahman/covid19-radiography-database
https://www.kaggle.com/c/rsna-pneumonia-detection-challenge/data
https://www.kaggle.com/c/rsna-pneumonia-detection-challenge/data


Int. J. Environ. Res. Public Health 2023, 20, 4330 14 of 14

32. He, K.; Zhang, X.; Ren, S.; Sun, J. Identity Mappings in Deep Residual Networks. arXiv 2016, arXiv:abs/1603.05027.
33. Huang, G.; Liu, Z.; Weinberger, K.Q. Densely Connected Convolutional Networks. In 2017 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction 
	Related Work 
	Materials and Methods 
	Dataset Description 
	Methods 
	Model Training Phase 
	Inferring Phase 


	Results 
	Model Training 
	Inferring 

	Discussion 
	Conclusions 
	References

