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Abstract: In this study, the change in green space in different scenarios and the index characteristics
of landscape patterns were analyzed and were conducive to providing the decision basis for future
green space planning in Harbin, a city in Northeast China. The FLUS model was used to predict the
layout of green space, and the prediction results were analyzed and evaluated using the landscape
index method. Combined with the MOP model and LINGO12.0, the objective function of economic
benefit and ecological benefit was established to maximize the comprehensive benefit. As revealed
by the outcome, from 2010 to 2020, the fragmentation degree of cultivated land, forest, and grassland
decreased, and the overall landscape level tended to be diversified and uniform. In the status
quo scenario, the cultivated land and the forest land were increased, whereas the water area and
the wetland changed little, and its overall benefit was the lowest. The forest was increased by
137.46 km2 in the ecological protection scenario, the largest among the three scenarios, and the
overall water quality improved. In the economic development scenario, the cultivated land tended to
expand rapidly, the connectivity was increased, and the area of forest was decreased by 69.19 km2,
and its comprehensive benefit is lower than that under the scenario of ecological protection. The
sustainable development scenario achieved the most significant economic and ecological benefits,
with a total income of CNY 435,860.88 million. Therefore, the future green space pattern should
limit the expansion of cultivated land, maintain the spatial pattern of woodland and wetland, and
enhance the protection of water area. In this study, Harbin green space was studied from different
scenario perspectives, combined with landscape pattern index and multi-objective planning, which
is of great significance for Harbin green space planning decisions in the future and improving
comprehensive benefits.

Keywords: green space; landscape pattern; multi-scenario simulation; FLUS model

1. Introduction

Natural disasters happening more frequently and humans engaging in more activities
have caused a variety of environmental issues (e.g., global warming, local climate change,
air pollution, energy shortage), expedited the evolution of landscape structure, and hin-
dered the long-term sustainability of both nature and humanity [1]. Green space, a vital
part of the urban ecosystem [2], is capable of sequestering carbon and releasing oxygen [3],
reducing the greenhouse effect [4], and carrying out rainwater regulation and storage [5,6].
It also takes on a certain significance in alleviating heat islands and can increase property
values. Zhao et al. [7,8] studied the relationship between land use/land cover (LULC)
type and surface temperature (LST) in Shenyang City. It was discovered that different
types of LULC had dramatically different temperature distributions and that greenery and
water had a considerable impact on the urban heat island (UHI) effect. In addition, the
urban surface heat island intensity (SUHII) varies significantly in different months, and
the applicability of the local climate zone (LCZ) scheme to land surface temperature (LST)
differentiation also varies with month. Zhang et al. [9] found that the growth of green roof
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implementation (GRI) can be potentially motivated by property value enhancement and
employment improvement, and the lack of government policies, unsound technical level,
unsound economic benefit assessment, and weak personal will restrict the development
of GRI. According to the classification system of green space in previous studies [10–12],
green space includes cultivated land, forest, grassland, wetland, and water area, whereas
non-green space comprises artificial surfaces and bare land. The research objects cover
cultivated land, forest, grassland, wetland, and water area in Harbin.

Urban landscape structure and ecological service function are dependent on the green
space landscape pattern, affecting how much it functions [13–15]. Landscape pattern
analysis can determine the law, which takes on a significance for guiding the future in
the chaotic landscape unit [16]. The evolution characteristics of landscape patterns were
analyzed, the spatiotemporal change rule of landscape patterns was revealed, and the
structural characteristics of different landscapes were compared using the quantitative
analysis method, the landscape pattern index method, and the moving window method.
Dadashpoor et al. [17] analyzed land use and land cover change (LUCC), urbanization,
and landscape pattern using spatial indicators and the landscape expansion index (LEI).
They used ordinary least squares (OLS) and geographically weighted regression (GWR) to
analyze the relationships between the three changes. Su et al. [18] qualitatively examined
the effects of urbanization on an eco-regional scale while analyzing the changes in landscape
patterns and ecosystem service value in the Hangjia-Hu region. Lv et al. [19] examined the
spatial and temporal changes in landscape patterns in the Dongjiang River Basin from 1990
to 2016 using a transfer matrix, moving window approach, and landscape pattern index.

The simulation of a future landscape pattern change in terms of LULC has been the
subject of an increasing number of studies. Future scenarios can be built to model and
study LUCC, the sources of change can be examined [20], and a reference base can be
offered for regional planning to help decision-makers make wise decisions about land use
planning [21,22]. Landscape dynamic attitude can quantitatively describe the speed of
regional land use change, which is convenient for the comparison of regional differences
and the prediction of the future trend of land use change [23,24]. Studies of future LULC
should consider the growth of the regional economy besides environmental preservation. A
wide range of land use simulation models (e.g., cellular automata (CA) [25], the conversion
of land use and its effects modeling framework (CLUE) model [26,27], and the patch-
generating land use simulation (PLUS) model [28]) have been developed to more effectively
balance the conflict between ecological protection and economic needs to forecast future
land use change. Multi-scenario simulation is essential for future planning. Our LUCC
projections in this study are based on the future land use simulation (FLUS) model [29], a
method that interactively combines bottom-up CA models with top-down system dynamics
(SD) models. Since most of the other models cannot consider the effects of quantity and
space-time on land use, this model considers the mutual effects of a wide variety of land-
type conversion processes, eliminating the limitations of previous studies in obtaining
land-type conversion rules by linear regression method [30], and studies show that the
simulation accuracy of the FLUS model is higher [31]. Huang et al. [32] investigated the
Shenyang urban growth boundary development model in a wide range of development
scenarios using the CLUE-S model through an evaluation of the feasibility of the land for
development. Zhang et al. [33] studied land use change in the Aksu region in multiple
scenarios using the MOP-PLUS model. Fu et al. [34] evaluated the three types of space in
Panlong District based on information entropy and dominance, in conjunction with the
ecological protection red line, the permanent basic cultivated land protection red line, and
the FLUS model.

The maximization of land use benefits through multi-objective decision making has
become a prevalent area of research in land use planning [35]. Due to the rationale for
creating a scenario, multi-scenario simulation frequently fails to produce the ideal devel-
opment scenario. The Pareto optimal solution set, aiming to resolve the multi-objective
scenario without abandoning any goals and maximizing the advantages of other goals, was
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proposed by economist Vilfredo Pareto [36]. Stewart et al. [37] optimized the spatial distri-
bution of land resources and the ideal point approach using the evolutionary algorithm
to address the multi-objective decision-making problem. Zhou et al. [38] took future land
use parameters as fuzzy variables to optimize the county land use structure under multi-
objective conditions. Zhao et al. [39] linked the MOP and FLUS model and optimized the
production–life–ecological space’s spatial layout to maximize the spatially comprehensive
advantages of the production–life–ecological space. In addition, these researchers used the
landscape pattern index to examine and evaluate the optimization results.

The relevant studies [40–44] have mostly concentrated on multi-scenario simulations
for areas of South China and North China, such as Shenzhen City [45], Chongqing City [46],
Tibet [47], and the middle and lower reaches of the Yangtze River [48–50], with less research
on green space in Northeast China. Cai et al. [50] analyzed the changes in landscape pattern
and ESV in coastal areas of Fujian over the past 20 years using a patch generation land
use simulation model, landscape pattern index, and ecological service value estimation
method. Yang et al. [51] forecasted the land use change and landscape pattern of Zhangjiajie
in 2030 using GeoSOS-FLUS software and proposed an optimization strategy for the
future development of Zhangjiajie City. Nie et al. [52] built a land use simulation model
using the PLUS model with coupling constraints of an ecological security model (ESP)
and a multi-scenario (MS) model to develop land management policies for Anji County.
Park et al. [53] showed the different performance of landscape indicators under different
urbanization conditions, and which type of landscape was most likely to be sensitive to
future urbanization process. Troupin et al. [54] simulated two scenarios of unregulated
and regulated development in the Mediterranean region of Israel for the next 20 years and
compared the two scenarios under different development rates.

In recent years, scholars at home and abroad have focused on the evolutionary driv-
ing mechanism [55,56], dynamic evolution analysis [57], and the cooling effect of green
space [58,59]. The amounts of green patches from remote sensing data were primarily
used in the investigation of the dynamic evolution of the green spatial pattern [12,60].
The study techniques mainly concentrated on large data analysis [61], landscape index
analysis [62], spatial correlation analysis [63], and remote sensing technology [64]. The
majority of current studies are qualitative studies, most of which have undertaken extensive
studies and produced conclusive findings on the dynamic evolution traits and driving
mechanisms of green spatial landscape patterns and ecological function effects in the past
time and space. However, only a small number of studies have been carried out to forecast
the future green spatial pattern with diverse scenarios, and only a limited number of
studies have quantitatively examined the optimization of green spatial structure and its
comprehensive advantages.

Combining the aforementioned applied studies with associated scientific theories
reveals that most scholars are only capable of analyzing and forecasting changes in land
use areas. They do not, however, provide multi-scenario forecasts or benefit assessments
for patterns of urban green space, and their focus is also skewed toward southern cities
at the expense of Northeast China. However, the northeast is the key to high-quality
development in the new era [65]. Green space is the ecological base of a city, and the
study of the spatiotemporal dynamic evolution of urban green space patterns is helpful
for us to have a more intuitive understanding of the green space situated in the study area.
The scenario simulation prediction of green space can assist in analyzing the cause-and-
effect relationship of its changes, expanding the knowledge and experience of decision-
makers in guiding rational land use and planning, and promoting the positive evolution of
urban green space landscape patterns [11]. A reasonable green spatial pattern takes on a
critical significance in optimizing the urban ecological environment and improving urban
biodiversity, while the direction of urban development planning directly affects the urban
green spatial pattern [66]. In addition, based on the objective conditions and combined
with the current situation of the study area, this study constructed the objective function
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of economic benefit and ecological benefit and realized the optimization of the quantity
structure of green space.

Based on the above background, this study chooses the green space of Harbin as
the research object. Harbin, the capital of Heilongjiang Province, is an important city in
Northeast China. It is undergoing rapid economic development and facing increasingly
acute ecological and environmental problems. The emphasis on the environment is progres-
sively deepening, and the pattern of green space in this region is constantly changing [67].
According to the Harbin City people’s government website (http://www.harbin.gov.cn/
col/col394/index.html accessed on 1 January 2023), district national spatial planning and
related policies are temporarily not issued. Accordingly, the temporal and spatial evolution
characteristics of green space spatial patterns in the study area were explored using the
landscape dynamic attitude model, the FLUS model, the MOP model, and the landscape
pattern index. This investigation was conducted to clarify the intensity and trend of green
space expansion in Harbin City from 2010 to 2020, as well as the trend of the landscape
pattern of green space under different scenarios, and the land use structure under the
optimal sustainable development scenario. The ideas elucidated are as follows: First, the
landscape dynamic degrees of the respective components of Harbin’s green space were
investigated from 2010 and 2020 (i.e., cultivated land, forest, grassland, wetland, and water
area). Second, the evolution characteristics of green space coverage in status quo devel-
opment scenarios, ecological protection scenarios, and economic development scenarios
in 2030 were predicted using the FLUS model. Third, the evolution traits and degree
of green space fragmentation at the class level and landscape level were analyzed using
the method of the landscape pattern index in different scenarios. Lastly, the MOP model
and LINGO 12.0 were integrated to determine the green space coverage of the optimal
sustainable development scenarios. On that basis, more insights can be gained into the
land use of Harbin’s green spaces, which takes on a great significance in optimizing the
spatial distribution of the above-described areas, implementing sustainable urban growth
in Harbin, and providing the rationale for future green space planning in Harbin.

2. Materials and Methods
2.1. Research Area

Harbin (125◦42′~130◦10′ E, 44◦04′~46◦40′ N) is located in the southern part of Hei-
longjiang Province, with a total area of 53,076.43 km2 (Figure 1). Harbin is characterized by
four distinct seasons (e.g., a long winter and a brief summer) and is located in a temperate
continental monsoon climatic zone. The annual average temperature range reaches 4.60 ◦C,
with an annual average precipitation of 827.50 mm.

Harbin was taken as the case study area for the following two reasons: (1) Harbin
serves as Northeast China’s economic, political, and cultural hub. It is where the Ha-
Da-Qi Industrial Corridor begins and where the international aviation traffic corridor is
centered. It also has a long history and cultural heritage. The examination of the green
space landscape pattern and selection of the best development strategy will support Harbin
City’s sustainable growth. (2) The proportion of people in Harbin living in urban areas
is 70.61%, markedly exceeding the country’s average proportion of 63.89%. This rapid
urbanization is accompanied by resource depletion and environmental pollution. In Harbin,
the quality of the environment for wild animals and plants has declined, the amount of
organic matter in the soil has dropped, and the city is subjected to several tests for solid,
water, and air pollution. There have been considerable disasters (droughts, floods, and
other calamities) over the past few years. It is necessary to investigate the logical planning
direction for the future green space pattern to optimize the ecological environment and
boost the development of an ecological civilization in Harbin. The future green space
pattern in Harbin urgently needs to be replanned, and it must serve as an example for other
cities with a similar scenario due to the tension between the city’s high standing in politics,
economics, and culture and the severe state of the natural environment.

http://www.harbin.gov.cn/col/col394/index.html
http://www.harbin.gov.cn/col/col394/index.html
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Figure 1. Geographical location and DEM map of the study region in 2020.

2.2. Data Source

The land cover data for 2010 and 2020 were sourced from National Catalogue Service
for Geographic Information (http://www.globallandcover.com/ accessed on 1 January
2023); they were blacked out, merged, and cropped in ArcGIS. The study region’s land cover
types included cultivated land, forest, grassland, wetland, water area, artificial surface, and
bare land, all of which were classified by the Globelland30 system.

Table 1 lists the multiple driving factor data employed in this study, including natural
drivers, social drivers, and traffic drivers. DEM data originated from Geospatial Data
Cloud (www.gscloud.cn accessed on 1 January 2023); they were merged in ArcGIS and
then extracted by mask. While other natural parameters (e.g., the average annual tempera-
ture and precipitation data) were collected using the inverse distance weighting method,
slope and aspect data were derived using DEM data in ArcGIS. Social drivers comprised
population density and per capita GDP kilometer grid data, which were sourced from
World Pop (https://www.worldpop.org/ accessed on 1 January 2023) and Geographical
Information Monitoring Cloud Platform (http://www.dsac.cn/ accessed on 1 January
2023), respectively. Traffic drivers originated from National Catalogue Service for Geo-
graphic Information (https://www.webmap.cn/ accessed on 1 January 2023), including
distances from the river, national highways, highways, high-speed roads, county roads, and
railways, and the distributions of distance variables were determined through Euclidean
distance. The data from Harbin City Nature Reserve were selected and then rasterized in
the Resource and Environment Science and Data Center (https://www.resdc.cn/ accessed
on 1 January 2023), and they served as a limiting factor. In accordance with the experiment,
the resolution was determined as 100 m × 100 m by consulting a considerable amount of
relevant research [23,33,68] to ensure that the model can operate effectively. To ensure data
consistency, WGS_1984_UTM was selected as a unified coordinate system, in which the
same number of rows and columns were set for the driver factor data, and normalized
processing was carried out.

http://www.globallandcover.com/
www.gscloud.cn
https://www.worldpop.org/
http://www.dsac.cn/
https://www.webmap.cn/
https://www.resdc.cn/
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Table 1. The spatial driving factors of the land cover change in this research.

Category Data Data Resource

Land Cover Land Cover Data (2010, 2020)
National Catalogue Service for Geographic

Information (http://www.globallandcover.com/
accessed on 1 January 2023)

Natural DEM Geospatial Data Cloud (www.gscloud.cn
accessed on 1 January 2023)

Slope Calculated based on DEM data
Aspect Calculated based on DEM data

Annual Mean Temperature
High-resolution gridded datasets

(https://crudata.uea.ac.uk/cru/data/hrg/
accessed on 1 January 2023)

Annual Mean Precipitation
High-resolution gridded datasets

(https://crudata.uea.ac.uk/cru/data/hrg/
accessed on 1 January 2023)

Social Population Density World Pop (https://www.worldpop.org/
accessed on 1 January 2023)

GDP Geographical Information Monitoring Cloud Platform
(http://www.dsac.cn/ accessed on 1 January 2023)

Traffic Distance to River Calculated based on DEM data
Distance to National Highway

National Catalogue Service for Geographic
Information (https://www.webmap.cn/

accessed on 1 January 2023)

Distance to Highway
Distance to High-Speed Road

Distance to County Road
Distance to Railway

Limiting factor Natural Reserve Resource and Environment Science and Data Center
(https://www.resdc.cn/ accessed on 1 January 2023)

2.3. Research Procedures

This study was conducted in four sections, as illustrated by the flow chart in Figure 2.
In the first step, the landscape composition dynamic degree model was employed to
determine the dynamic degree indices and examine the dynamic spatiotemporal changes in
the research region between 2010 and 2020. In the second step, the distribution of land cover
types in several scenarios in 2030 was modeled and predicted using the GeoSOS-FLUS
software in accordance with characteristics (e.g., land use demand, transfer cost matrix,
and neighborhood factors). In the third step, the landscape pattern was compared using
Fragstats4.2 in three different scenarios, the temporal and geographical variations in the
landscape pattern were evaluated, and the landscape pattern index at the type level and
the landscape level were determined using the landscape pattern index method. Lastly,
the MOP model was adopted to determine the optimal quantitative structure of the LULC
types with the goal of balancing ecological benefits and economic benefits.

2.4. Landscape Composition Dynamic Degree Model

Landscape composition dynamic degrees (i.e., single landscape composition dynamic
degrees and comprehensive landscape composition dynamic degrees) were adopted to
express the rate of regional land use change, deepen the comparison of regional differences,
and forecast dynamic change trends of future LULC. Single landscape composition dynamic
degrees represent the direction and rate of change in a certain LULC type in a unit period;
the formula is expressed as follows:

K =
Ub −Ua

Ua
× 1

T
× 100% (1)

where K denotes the dynamic degree of a single landscape composition; Ua represents the
area of a certain land cover type at the beginning of the study period; Ub expresses the area

http://www.globallandcover.com/
www.gscloud.cn
https://crudata.uea.ac.uk/cru/data/hrg/
https://crudata.uea.ac.uk/cru/data/hrg/
https://www.worldpop.org/
http://www.dsac.cn/
https://www.webmap.cn/
https://www.resdc.cn/
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of a certain land cover type at the end of the study period; and T is the time range of the
study, in units of years.
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The transfer of all land cover types across the entire study region is indicated by the
comprehensive landscape composition dynamic degrees. The more severe the research
area’s changes in land cover types, the higher the value will be. The formula is written
as follows:

Lc =

n
∑

i=1
∆LUij

2×
n
∑

i=1
LUi

× 1
T
× 100% (2)

where Lc denotes the comprehensive dynamic degree of land cover type C; LUi is the area
of land cover type i in the initial period; ∆LUij is the area of land cover type i transformed
into type j; and T is the time range of the study, in units of years.

2.5. Land Cover Change Simulation Model
2.5.1. Model Selection and Introduction

The study area was simulated using the GeoSOS-FLUS software based on the land
cover data in 2010 and 2020, and the land cover change in the three scenarios in 2030
was predicted. The FLUS model of GeoSOS-FLUS software comprised three modules (i.e.,
top-down system dynamics (SD) model, bottom-up cellular automata (CA) model, and
an artificial neural network (ANN) model). Moreover, a roulette selection mechanism
was introduced [69]. Furthermore, a Markov chain model was covered in the software to
facilitate the estimation of future land use requirements.

2.5.2. FLUS Model Parameter Setting
Calculation of Suitability Probabilities

The possibility that each land cover type will be present in each cell is known as the
suitability probability. The research area’s land cover data from 2010 were imported into
the model as the fundamental data, and the random sampling strategy was chosen. The
number of sampling parameters was set to 20, and the number of hidden layers in the
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neural network was set to 12. Then, the normalized driver data were then imported into
the model using the same row and column numbers. The suitability atlas was eventually
obtained under the limiting constraint, and the root mean square error was 0.21. In this
study, the suitability probabilities were calculated using the following formula:

∑
k

p(p, k, t) = 1 (3)

p(p, k, t) = ∑
j

ωj,k × sigmoid
[
netj(p, t)

]
,

= ∑
j

ωj,k × 1
1+e−netj(p,t)

(4)

where p (p, k, t) denotes the suitability probability of the land cover type k in the period
t and the grid is p; ωj,k is the weight of the output layer and the hidden layer; sigmoid ()
represents the function of the hidden layer and the output layer; netj (p, t) is the signal
received by the jth hidden layer grid p at time t.

Neighborhood Factor Parameter

The neighborhood factor parameter, which is proportionate to how well LULC kinds
may expand on their own, represents the interaction between different land types. The
parameter’s range is 0 to 1, and the closer it is to 1, the easier it is to transform and the more
capacity for expansion the related land type has. Since it is challenging to quantify LULC
types’ expansion capacity directly, the LULC types were first processed in a dimensionless
manner. Subsequently, they were tested numerous times under a wide variety of scenarios,
and the experimental findings were compared to yield the final results. The specific formula
for dimensionless processing is as follows:

X∗ = X−min
max−min

(5)

where X* denotes the normalized value of the deviation; min represents the minimum
value of the data; max expresses the maximum value of the data.

Conversion Cost Matrix

The criteria for reciprocal conversion between LULC kinds are referred to as the
conversion cost matrix. When the cost matrix has a value of 1, conversion is possible; when
it has a value of 0, conversion is not possible. The conversion cost matrix for this study was
created considering the scenario’s requirements as well as the features of changing land
cover in the study area between 2010 and 2020.

Accuracy Verification

The simulated land cover data for 2020 were compared with the actual land cover
data for 2020 based on the real land cover data from 2010, and when combined with the
driving factors, the Kappa coefficients were validated and the overall accuracy (OA) was
computed [70]. The model is considered to have a high level of confidence as well as being
usable when the Kappa index is more than 0.75. The accuracy of the simulation is stated
as being higher the closer the overall accuracy (OA) is to 1. The FLUS model has a good
impact on the land cover simulation of Harbin in 2030 and has excellent practicality, as
shown by the research’s OA coefficient of 91.55% and Kappa coefficient of 0.86.

2.6. Scenario Descriptions

Four simulation scenarios were set in accordance with the trends of the study area’s
future development scenarios and relevant policies.

• The status quo development scenario, as with the 2010–2020 LULC transfer scenario,
does not take into account the effects of pertinent national policies and does not impose
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any conversion restrictions. The neighborhood factor parameters and transfer cost
matrix were kept the same in this scenario, which was primarily a continuation of the
land use change trend from 2010 to 2020.

• In the ecological protection scenario, priority was given to the preservation and
improvement of the ecological environment. The 14th Five-Year Plan of Harbin
states that improvements should be made in the ecological environment’s quality, the
green development system, the protection of forest resources, and the preservation
and restoration of rivers, lakes, and wetlands. This scenario was developed on the
LULC transfer matrix of the status quo development scenario, where urbanization
development was restrained and natural ecosystems (e.g., woods, wetlands, and water
areas) were significantly safeguarded. The constraint condition is to give priority to the
benefit of the ecological environment while reducing the transfer probability of forest
land to the artificial surface to 50%, reducing the transfer probability of cultivated land
to the artificial surface to 30%, and increasing the transfer probability of cultivated
land to woodland and grassland to 20%.

• In the economic development scenario, the development of the city’s economy should
be prioritized. The study region has a significant economic significance as Northeast
China’s northern economic hub and the beginning of the Ha-Da-Qi Industrial Corridor.
The requirement to energetically grow the real economy, establish a regional innovation
highland, and concentrate on high-quality development was stated in the 14th Five-
Year Plan and the Harbin City 2035 Plan. The natural environment would also be
somewhat impacted at the same time. The artificial surface would be increased in
accordance with the evolution of status quo scenarios, and other areas such as forests
and grasslands would be decreased. The constraint condition is to give priority to the
benefit of economic development, increasing the conversion probability of woodland
and grassland to artificial surface by 50% and the conversion probability of woodland
to cultivated land by 30%.

• The economic position and the growth of the ecological environment were considered
in the sustainable development scenario. Maintaining the ecological environment
cannot be disregarded during the growth of the economy, and the slowing down
of economic progress by excessive ecological protection should be avoided. The
economic benefit target and the ecological benefit target should reach the maximum
values simultaneously, such that the final overall benefit is the highest.

2.7. Landscape Pattern Index Method

The landscape pattern index may quantify the spatial properties of a landscape pattern,
represent its structural makeup, and show its temporal and spatial changing trend [71,72].
The traits of land cover landscape patterns are primarily evaluated from three separate
perspectives (i.e., patches, classes, and landscapes) [73]. In this study, the landscape pattern
of Harbin City was investigated at the class and landscape levels using the Fragstats4.2
software. At the class level, the number of patches (NP), edge density (ED), largest patch
index (LPI), and aggregation index (AI) were selected; at the landscape level, Shannon
diversity index (SHDI), Shannon evenness index (SHEI), contagion index (CONTAG), and
landscape division index (DIVISION) were selected. Table 2 lists the landscape pattern
indices and their ecological meaning.

2.8. MOP Model

The multi-objective programming (MOP) model comprised three parts, i.e., decision
variables, constraints, and objective functions. The fundamental idea behind the model is
to specify the objective function and constraint conditions so that the optimal value for the
decision variables may be determined. It maximizes the advantages to be attained while
optimizing the structure of land cover quantity.
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Table 2. Landscape index selection and ecological significance.

Index Computational Formula Ecological Significance

NP NP = N
It represents the total number of all patches, and the

greater the number, the greater the degree of landscape
fragmentation and landscape spatial heterogeneity.

ED ED = ∑n
i=1 ei

It is used to demonstrate the degree to which
boundaries fragment a landscape or type; the greater

the density of boundaries, the more clearly the
landscape is broken.

LPI LPI =
Max(aij)

A (100)

It shows what percentage of the largest patch of the
landscape makes up the overall region, aids in

identifying the dominant type of landscape, and can
show the direction and level of human activity.

AI AI = [
n
∑

i=1
(
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The degree of aggregation or spread of different patch
types in a landscape. A dominant patch type in the
landscape creates a good connectedness when the

values are high.

DIVISION DIVISION = Dij/Aij

The landscape segmentation index indicates the
separation degree of patches in the landscape, and the

larger the value, the more fragmented the patch
composition and the more complex the landscape.

2.8.1. Set Decision Variables

Seven different types of land cover areas served as the decision variables to con-
struct the model in accordance with the Globelland30 classification system and the green
space classification system mentioned in this study: x1 = cultivated land, x2 = forest,
x3 = grassland, x4 = wetland, x5 = water area, x6 = artificial surface, x7 = bare land.

2.8.2. Set up Objective Functions

Two optimization objectives—ecological benefit and economic benefit—were chosen
based on the features of the study area and the difficulties of data quantification. The
ecological benefit objective function (6) and economic benefit objective function (7) are
as follows:

Ep(x) = ∑n
i=1 pi · xi, (6)

Ed(x) = ∑n
i=1 di · xi, (7)

where Ep(x) and Ed(x) denote the ecological benefit and economic benefit, respectively; xi
represents the land type i variable (i = 1, 2, 3, 4, 5, 6, 7); pi and di express the ecological and
economic benefit coefficients per unit area of the land cover type i.

The equivalent factor method was adopted to determine the ecological benefit coeffi-
cient (CNY 1 million/km2) of each land cover type based on the Statistical Yearbook, the
“Compilation of National Agricultural Product Cost and Benefits Data”, and the equivalent
table of ecosystem service value per unit area examined by Xie et al. [74–76]. The ecological
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benefit of the artificial surface is almost zero this is where most people live and conduct
their daily activities. Thus, its ecological benefit coefficient was set at 0. The average land
economic value (CNY 1 million/km2) of each type of land cover in 2020 can be determined
by checking the statistical yearbook of the study area. This value can be used to calculate
the economic benefit coefficient of each type of land. The economic benefit coefficient of
bare land was set to zero because of the minimal amount of bare land and its extremely low
economic benefits. The final economic benefit objective function (8) and ecological benefit
objective function Formula (9) are as follows:

Ep(x) = 86.78x1 + 432.73x2 + 271.97x3 + 1142.82x4 + 1492.56x5 + 0x6 + 4.39x7 (8)

Ed(x) = 284.18x1 + 17.09x2 + 749.28x3 + 123.90x4 + 125.98x5 + 20261.03x6 + 0x7 (9)

The optimal distribution of land cover quantity structure requires the maximization of
these two objectives at the same time; the formula is as follows:

max
{

Ed(x), Ep(x)

}
= αEd(x) + βEp(x) (10)

where max
{

Ep(x), Ed(x)

}
denotes the comprehensive maximum value of ecological benefits

and economic benefits. According to the future development orientation of the study area
and expert opinions, the parameters α = 0.60 and β = 0.40 were set. Lastly, LINGO12.0 was
used to solve the above formulas combined with constraints.

2.8.3. Build Constraint Condition

Constraints are established with reference to the level of the land cover area in the
research area in 2020, as indicated in Table 3 below, to ensure that future land cover changes
comply with the law of natural development.

Table 3. Constraint conditions of the objective function of the multi-objective programming model.

Constraint Factors Constraint Condition/km2 Constraint Explanation

Cultivated land area x1 ≥ 22,299.88
To ensure food production and meet people’s dietary needs,
cultivated land area is required to be no less than 85% of the

2020 level

Forest area x2 ≥ 19,379.10
As a source of ecological services, forests can effectively

prevent soil erosion, and the area of forest land should not be
lower than the 2020 level

Grassland area x3 ≥ 4,271.00
Grassland can improve soil, prevent wind, fix sand, and

beautify the environment, and the area of grassland should
not be lower than the 2020 level

Wetland area x4 ≥ 920.74
Wetlands are the “lungs” of Harbin and can effectively

regulate groundwater. The area of wetlands should not be
lower than the 2020 level

Water area x5 ≥ 842.63

The water area not only is an indispensable part of the ecology
but also promotes and sustains the development of the local
tourism economy. The water area should account for at least

90% of the 2020 water area

Artificial surface area 2453.68 ≥ x6 ≥ 2230.62

To ensure the sustainable and stable economic development of
the study area, the artificial surface area should not be lower
than the 2020 level, and the maximum scale increase should

not exceed 10% of the 2020 level

Bare land area 17.31 ≥ x7 ≥ 17.24

Bare land accounts for a very small part. The forecast result of
the FLUS model indicates that the bare land area in 2030 is

17.24 km2; the bare land should not be lower than the level in
2020 and should not exceed the predicted value in 2030

Total land area x1 + x2 + x3 + x4 + x5 + x6 + x7 = 53,990.18 All types of land cover should be converted into each other,
and the total land cover should not be changed

Model constraint xi > 0, i = 1, 2, 3, 4, 5, 6, 7 The decision variables are all non-negative
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3. Results
3.1. Dynamic Degree of Green Space Landscape

In the period between 2010 and 2020 (Figure 3), wetlands and waters in the Harbin
metropolitan area increased significantly, and grasslands and woodlands increased slightly
within the city limits. According to the research, just a minor portion of the total green
space area was made up of wetlands and water (Figure 4). In addition, cultivated land,
which made up more than 50% of the total area, was the predominant form of green space
landscape, followed by forest and grassland, which made up more than 35% and 8%,
respectively. The landscape dynamics of cultivated land, forest, and grassland changed
relatively slowly during the past 10 years—all by less than 1%, as indicated in Figure 5.
The cultivated land area and the grassland area shrunk by 1169.51 km2 and 239.20 km2,
respectively. Wetland and water areas changed relatively quickly, with wetlands changing
by 2.14%, while the water area’s degree of dynamic change (3.32%) was the greatest of all the
different types of green space landscapes, and both developments were positive. This was
mostly due to the research area’s significance placed on the preservation and development
of wetlands and water resources, both of which were interdependent and supportive of
one another. Only 0.20% of the research area’s comprehensive landscape composition was
dynamic between 2010 and 2020, and change there was also significantly slow.
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3.2. Future Green Space Pattern in Multiple Scenarios

The distribution pattern of Harbin City under the three FLUS model-simulated sce-
narios is shown in Figure 6. The major land cover type in the three scenarios is cultivated
land, which also experiences a slow increase in wetland areas and a decline in water areas
(Figure 7). Compared with the green spatial pattern in 2020, the cultivated land and forest
land have obvious changes.
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In the status quo scenario, it is anticipated that cultivated land and forest land will
increase by 241.44 km2 and 44.01 km2, respectively, while grassland is expected to shrink
by 202.90 km2. This is mainly indicated in the triangle area surrounded by Yuquan Tiger
Mountain Forest Park, Xiquanyan Reservoir Tourism Area, and Jinlong Mountain Inter-
national Tourism Resort; the northwest corner of Shangzhi City; and the area between
Changshou Mountain and Shuangyazi Mountain in Yanshou County. The water area and
wetland will remain relatively stable. The city area’s ecological environment is effectively
safeguarded in the ecological protection scenario, and the growth in the forest is the highest
among the three scenarios, with an estimated increase of 137.46 km2, which is expected
to be 3 times the status quo increase. The total increase in cultivated land is anticipated
to be 146.09 km2, and this is the smallest increase of the three, less than 50% of that of the
economic development scenario. This increase is mainly manifested in the southeast of
Acheng District and the northwest of Shangzhi City. It can be seen that the policy and mea-
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sures of returning farmland to the forest have been effectively maintained in this scenario.
In the scenario of economic development, cultivated land is in a trend of rapid expansion
and is anticipated to rise by 353.52 km2 to ensure quick economic growth. The artificial
surface’s downward tendency has lessened. With an expected reduction of 70.97 km2,
the economic development scenario has the least area of artificial surface reduction in
comparison with the other two scenarios. Consequently, there is a significant impact on
the ecological environment. The area of grassland is anticipated to shrink by the greatest
amount, to 206.17 km2, and the area of forest is anticipated to decrease by 69.19 km2 in this
scenario. The intersection between Acheng District and Shangzhi City, the southeast corner
of Wuchang City, and the Songhua River basin of Yilan County were the key locations
where forest land underwent alterations.

3.3. Characterization of Changes in Green Space Landscape Pattern Index
3.3.1. Characterization of Changes at the Class Level

According to the class-level study (Figure 8), NP and ED indicate the degree of
landscape fragmentation in the study area, showing landscape heterogeneity and patch
edge segmentation, which are positively correlated with the degree of fragmentation [77].
From 2010 to 2020, NP and ED in wetland areas showed an increasing trend, while those
in cultivated land, forest land, and grassland showed a decreasing trend. Cultivable land
had the smallest decline, with NP falling by 171, followed by water area, falling by 574.
During the period, NP declined by 2882 in grassland, which represented the biggest decline.
Grassland ED likewise experienced the highest decline, falling by 0.80, despite the fact that
ED’s overall variation trend was modest. This indicates that wetland protection schemes
were evidenced to not have been fully implemented or enforced, with less fragmentation
of cropland, woodland, and grassland, as well as a steady simplification of edge patterns.
In the three scenarios in 2030, the NP values of cultivable land and grassland increased
in comparison with 2020, mainly due to human development activities, and the NP and
ED of wetland areas remained stable. Wetland had the least amount of fragmentation
compared to other types of green space coverage, with an estimated NP of 500 and an
expected ED of less than 0.60. In the ecological protection scenario, the patch numbers of
cultivated land and grassland were the smallest among the three scenarios, and the increase
in patches in both scenarios was not expected to exceed 20. The edge density of the water
area to remain steady. The cultivated land edge density rise trend is predicted to be the
least, and the changing trend is predicted to be less than 0.63% of that of the status quo
development scenario. The main reason was that in this scenario, the fragmentation of
cultivated land was effectively controlled, and relevant policies of ecological protection
were well implemented. In the economic scenario, the densities of forest land, grassland,
and water edge were lower than those in 2020. The NP of grassland in this scenario, even
though it only rose by 49, was 2.72 times greater than that in the ecological protection
scenario and twice as much as that in the status quo scenario, showing that this scenario’s
patch boundaries tended to be regularized and the grassland fragmentation was the worst.

LPI is a measure of how much of the landscape’s overall area corresponds to the
size of the largest patch. It is conducive to determining the dominant type of landscape
and indicates the direction and strength of human activities. The LPI of cultivated land
and forest was notably higher than that of other green space coverage landscape types,
suggesting that cultivated land and forest were the most prevalent and dominant land
cover types in the studied area. The patch index of cultivated land continued to be the
largest from 2010 to 2020, despite a decreasing trend in the LPI of cultivated land and an
increase in most of the remaining green space coverage landscape types. The rate of rise
for grassland and wetland was less than 0.02%, while the rate of increase for forest land
was the highest but was limited to 0.60%. In the three scenarios, it is anticipated that the
LPI for grassland, wetlands, and water will remain essentially unchanged in 2030 from
its value in 2020. The maximum patch index of cultivated land is expected to rise in the
economic scenario, whereas it is already nearly 70 times that in the ecological protection
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scenario. In addition, the maximum patch index of forest land decreased significantly,
which was 4 times that of the status quo development scenario. The primary reason for
the above-mentioned result is that agriculture is intensively developed in this scenario
for economic development. For the development of the economy and the expansion of
agricultural development, the forest ecosystem has been destroyed, and the principle of
returning farmland to the forest has been violated.
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AI represents the randomness of different patch types. The more dispersed the patches
are, the smaller the aggregation index will be. In addition, the aggregation index is increased
with patch size and reaches its maximum of 100. The forest, grassland, wetland, and water
area aggregation indices all displayed an upward trend from 2010 to 2020, showing that
the patches of these green space-covered landscape types are growing more and more
aggregated. The greatest increase, from 77.04% to 81.94%, was seen in the water area. The
cultivated land is becoming more and more dispersed, whereas it has the greatest AI in
comparison with other types; i.e., all of it is above 94.07%. The three scenarios are projected
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to result in a declining trend in the amount of cultivated land, forest, and grassland relative
to 2020, with the ecological protection scenario exhibiting the least amount of reduction, and
with a projected decline of less than 0.01% for cultivated land and forest land, indicating less
division and interference with these resources. Wetlands and water areas are expected to
increase slightly, and the relative growth may be rather high in the economic development
scenario. This is primarily because of economic needs (e.g., the growth of water area
tourism). Table 4 lists the landscape pattern indices at the class level.

Table 4. Class-level indices.

Metric Green Space Types 2010 2020
Status Quo

Development
Scenario

Ecological
Protection
Scenario

Economic
Development

Scenario

NP

Cultivated land 4009 3838 3997 3853 3866
Forest 17,534 15,098 16,353 15,153 15,059

Grassland 53,422 50,540 50,565 50,558 50,589
Wetland 243 511 511 511 511

Water 3660 3086 3071 3087 3071

ED

Cultivated land 11.69 11.50 11.80 11.50 11.62
Forest 13.77 13.19 13.38 13.20 13.14

Grassland 13.92 13.12 13.10 13.11 13.10
Wetland 0.40 0.56 0.56 0.56 0.56

Water 1.17 1.22 1.22 1.22 1.22

LPI/%

Cultivated land 28.55 27.01 27.14 27.02 27.30
Forest 9.73 10.31 10.30 10.32 10.26

Grassland 0.26 0.27 0.27 0.27 0.27
Wetland 0.32 0.329 0.32 0.32 0.32

Water 0.60 1.02 1.02 1.02 1.02

AI/%

Cultivated land 94.24 94.08 93.94 94.08 94.06
Forest 90.15 90.74 90.57 90.73 90.68

Grassland 58.31 58.53 58.49 58.51 58.48
Wetland 93.15 91.81 91.81 91.81 91.81

Water 77.04 81.94 81.96 81.94 81.96

3.3.2. Characterization of Changes at the Landscape Level

Analysis at the level of the entire landscape is shown in Figure 9. The richness and
uniformity of the landscape are expressed by SHDI and SHEI, respectively. The type of
scenery exhibited improved richness and uniformity with an increase in these values. Both
indices rose between 2010 and 2020, suggesting that the level of the general landscape
progressed toward diversification and homogenization during this time and that the
degree of interconnectedness between them rose. The SHDI and SHEI are expected to
decrease by the greatest amount in the economic development scenario, 8 times more
than in the ecological conservation scenario, and both decreases are smaller than 0.01. As
indicated by the above-described results, economic development was overemphasized and
artificial land was developed such that the landscape’s fragmentation was worsened and the
uniformity of distribution was affected. The dominating patch’s extension trend and degree
of agglomeration are referred to as CONTAG; the greater the CONTAG value, the more
unbroken the landscape will be, with good connectivity. The CONTAG value fell between
2010 and 2020, suggesting that there was less connectedness between cultivated land and
forest. In the status quo scenario, the CONTAG was expected to keep declining, whereas
the range was narrow, less than 0.13%. In both the ecological and economic scenarios, the
CONTAG is predicted to marginally rise—less than 0.03% in each case. Particularly, it is
anticipated that the CONTAG will increase more in the economic development scenario
and will be 7 times more than it would be in the ecological protection scenario. It was
largely attributed to the value placed on the development of agricultural cultivated land.
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DIVISION indicates the degree of separation of patches in the landscape; the larger the
value, the more fragmented the patch composition and complicated the landscape will be.
The DIVISION index in 2020 increased by 0.01% compared with that in 2010, indicating
that patches tend to be fragmented in the landscape during this period. Compared with
2020, the DIVISION in 2030 is expected to slightly decline. Among the three scenarios,
the DIVISION may have the largest decline in the economic development scenario. The
major reason for this result is that cultivated land is the dominant land cover type with the
largest area, thus facilitating economic improvement. During the above-described period,
cultivated land will be primarily developed to maintain economic benefits. Table 5 lists the
landscape pattern indices at the landscape level.
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3.4. Green Space under the Sustainable Development Scenario

The areas of x1~x7 under the sustainable development scenario are calculated as
22,299.88, 19,379.10, 4271.00, 920.74, 4648.54, 2453.68, and 17.24 km2 using the MOP calcu-
lation model and LINGO software. In comparison to 2020, it is anticipated that the area
of cultivated land in green space would decrease by 3935.27 km2, while the area of water
will increase by 223.06 km2, and the area of other types of green space will remain stable.
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Table 6 demonstrates that while the bare land declines by 0.07 km2, the artificial surface in
non-green space expands by 3712.28 km2. The ecological benefit of the ecological protection
scenario was the highest at CNY 142,776.51 million, the economic benefit of the economic
development scenario was the highest at CNY 219,676.57 million, and the comprehensive
benefit of the ecological protection scenario was the highest at CNY 361,891.06 million for
all three scenarios in terms of status quo development, ecological protection, and economic
development. The ecological benefit is anticipated to total CNY 194,731.82 million, the
economic benefit is anticipated to total CNY 241,129.06 million, and the overall benefits
are expected to total CNY 435,860.88 million in the sustainable development scenario. The
sustainable development scenario exceeds all other development scenarios in terms of both
ecological and economic benefits, as shown in Table 7.

Table 5. Landscape-level indices.

SHDI SHEI CONTAG/% DIVISION/%

2010 1.0371 0.6444 56.7861 0.8649

2020 1.0624 0.6601 56.4332 0.8706

Status quo development scenario 1.0616 0.6596 56.3034 0.8700

Ecological protection scenario 1.0622 0.6600 56.4361 0.8705

Economic development scenario 1.0608 0.6591 56.4549 0.8692

Table 6. Land cover type areas in the sustainable development scenario compared to those in 2020.

Land Cover Type
Area/km2

Land Cover Types
Green Space Non-Green Space

Cultivated Land Forest Grassland Wetland Water Area Artificial Land Bare Land

Sustainable
development scenario 22,299.88 19,379.10 4271.00 920.74 4648.54 2453.68 17.24

2020 26,235.15 19,379.10 4271.00 920.74 936.26 2230.62 17.31
Difference value 3935.27 0 0 0 3712.28 223.06 0.07

Table 7. Ecological benefit, economic benefit, and comprehensive benefit under different situations.

Scenario Type
Benefit Type/CNY 1 Million

Ecological Benefit Economic Benefit Comprehensive Benefit

Status quo development scenario 142,446.47 219,210.89 361,657.36
Ecological protection scenario 142,776.51 219,114.55 361,891.06

Economic development scenario 142,044.99 219,676.57 361,721.56
Sustainable development scenario 194,731.82 241,129.06 435,860.88

4. Discussion
4.1. Green Space Landscape Pattern Index

In terms of time dynamics, from 2010 to 2020, the fragmentation degrees of cultivated
land, forest land, and grassland decreased, and the edge shape was gradually simplified.
Cultivated land, the most dominant land cover type, became increasingly dispersed in
this period, whereas the concentration of cultivated land was the highest among all green
space types. In general, the green spatial pattern tended to be diversified and uniform,
and it was more significantly connected. However, the two dominant land cover types,
cultivated land and forest, had decreasing connectedness and somewhat increased patch
fragmentation in the landscape, respectively. From 2020 to 2030, most of the green spatial
patterns will be more fragmented, and the landscape heterogeneity will decline. The change
in wetland areas is excepted be slight, such that the status of 2020 was nearly unchanged.
The above-mentioned findings are consistent with those of He et al. [78] who investigated
changes in the Songhua River Basin in Harbin’s landscape patterns.
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In accordance with several scenarios, the status quo development scenario is projected
to result in less patch aggregation of cultivated land, grassland, and forest, regularization
of the margins of grassland and water regions, and a reduction in the fragmentation of
water areas. The ecological protection scenario stresses the protection of the ecological
environment, and the fragmentation of cultivated land, grassland, and forest land is
expected to be slightly increased, significantly lower than the number of patches in the
status quo scenario. In this scenario, it is anticipated that the maximum patch index will
rise and that the diversity and homogenization of the landscape will both decline less than
in the other two scenarios, consistent with the conclusions of previous research [25,79].
In the economic development scenario, the connectivity of cultivated land is expected to
increase for the development of the agricultural economy. Wetland and water aggregation
are expected to be slightly improved for the development of water tourism. Serious
fragmentation of forest patches is expected to result from economic development, similar
to the findings of Zhang et al. [80].

4.2. Green Space Optimal Scenario

In this study, the land cover model in 2030 was simulated and forecasted using the
FLUS model in combination with the Markov chain model in accordance with the land
cover type data in 2010 and 2020. Moreover, the optimal sustainable development scenario
was calculated by combining the MOP model and the LINGO function.

The forest land in the green space was continuously protected in the status quo devel-
opment scenario, and it will tend to expand and gain numerous ecological benefits. In the
ecological protection scenario, the preservation of the ecological environment is prioritized,
and economic development is constrained to prevent further harm and exploitation of
the environment. Accordingly, in this scenario, it is anticipated that the forest will grow
rapidly, the cultivated land will grow less, and the loss of grassland and water regions will
be inhibited, consistent with the findings of earlier studies [81]. Economic benefits are put
first in the economic development scenario, and artificial surfaces should be developed
and constructed for market trading. The shift in the amount of green space covered in this
scenario clearly reveals that agriculture expansion is effective in boosting the local econ-
omy. Shi et al.’s findings [82] are consistent with the findings of this study since the living
environments of both grassland and forest land were destroyed simultaneously, and the
ecological advantages were significantly impaired when substantial economic benefits were
being received. The ecological preservation scenario achieved the largest overall benefit of
the three, whereas its economic gain was relatively quite low, thus hindering the standard
improvement of living for people. As a result, the MOP model was employed to determine
the optimum course of action for the study. The study’s findings suggest that the decreasing
amount of farmed land, the increasing amount of water and artificial surfaces, and the
maintained condition of other green spaces are considered the optimal conditions for the
sustainable growth of the study area. It is noteworthy that in this scenario, ecological and
economic advantages will be maximized. In brief, the cultivated land and the forest take on
a major significance for green space, with the development of cultivated land being biased
towards the economic level and the effect of forest land being biased towards the level of
environmental protection in accordance with changes in the coverage of green space and
their benefits in the scenarios of natural development, ecological protection, and economic
development. As revealed by the scenario for sustainable growth, the water area is also
crucial and requires active maintenance. The key to directing the sustainable development
of the research area is that the country should facilitate the implementation of the policy of
returning cultivated land to forests, implement the maintenance of forests, place stress on
the development of water resources, and tap the inherent potential of cities while limiting
disorderly urban expansion. The scenario of balanced ecology–life–production space de-
velopment suggested by Zhao et al. [39], with simultaneously maximized ecological and
economic benefits, is consistent with the findings of this study.
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4.3. Research Significance at Home and Abroad

This study compared green space landscape patterns of different scenarios in the
study area in the future. The related benefits were analyzed, which can be conducive to
providing direction for policy formulation in the study area and development reference
for similar cities. This analysis makes up for the deficiencies in the study of Northeast
China. Moreover, the in-depth analysis of this study reveals that the connectivity and
fragmentation of green spatial patterns at the landscape level are largely determined by the
dominant land cover type. In the research area, cultivated land is the dominant land cover
type. The degree of overall landscape fragmentation of the cultivated land is smaller in the
economic development scenario than it is in the ecological preservation scenario, and the
ecological benefits at this time are extremely minimal. Accordingly, this study can provide
theoretical support for the study of urban landscape patterns with cultivated land as the
dominant land cover type. To be specific, this study compares multiple scenarios using a
combination of qualitative and quantitative approaches, as well as a variety of technical
techniques and municipal planning laws. The above-mentioned method is capable of
providing ideas for sustainable development planning at home and abroad.

4.4. Uncertainties and Implications

However, there are some uncertainties in this study. The first limitation of this study is
the precision of the land cover data. The 2020 data were primarily 16 m resolution Gaofen-1
multispectral photos, whereas the GlobeLand30 data were primarily 30 m multispectral
images. There were variations in their precision due to technology’s constant advancement.
The overall accuracy of the 2010 data reached 83.50%, with a Kappa coefficient of 0.78,
whereas the overall accuracy of the 2020 data reached 85.72%, with a Kappa coefficient
of 0.82. The two different levels of precision could cause a tiny disparity between the
study’s findings and the reality. The conclusions drawn from existing research will cause
biases since there is currently no comprehensive and universal framework for evaluating
the value of ecosystem services. Therefore, the establishment of ecological and economic
benefit indicators and the improvement of ecosystem service value evaluation methods are
hotspots for future research.

Furthermore, this study has certain shortcomings; we hope that these can be fixed in
subsequent research. In this study, the FLUS model was used to simulate the green space
coverage types in Harbin in three scenarios. It should be noted that the corresponding
driving factors and some scenario setting parameters need to be set in the simulation of the
FLUS model, and this study’s driver settings were not sufficiently complete. The selection
of driving variables lacked the effect of policy elements (e.g., ecological protection red
lines and urban development limits) on the future land cover due to the inadequacies
in the drafting of pertinent policies. In addition, the selection and parameter setting of
other driving factors are subjective, such that the coverage distribution of green space is
inaccurate [29,83]. Therefore, how to get rid of subjectivity, choose driving factors and
parameter settings more objectively, follow up with policy support, and integrate findings
into policy scenarios to obtain more accurate future land cover situations should be further
explored in depth.

In this study, the status quo development scenario, the ecological protection scenario,
and the economic development scenario were simulated using the FLUS model, whereas
these are not all possible scenarios in the future. In addition, it is noteworthy that develop-
ment priorities and consideration factors vary with periods. To make more thorough policy
recommendations, future studies should begin with a variety of viewpoints and develop-
ment scenarios, including an analysis from the following perspectives: First, low-carbon
development scenarios can be set. Climate change is an important global environmental
issue [84]. Faced with the global climate issue, China has proposed a significant strategy
to achieve a carbon peak by 2030 and carbon neutrality by 2060 [85,86]. Therefore, con-
trolling carbon emissions and creating a low-carbon environment is the future direction of
development. In addition, the cultivated land protection scenario can be considered. The
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security of the nation’s cultivated lands serves as both the cornerstone and the lifeblood of
its sustainable growth [87]. To guarantee the area of cultivated land, this scenario strictly
implements the additional policy of cultivated land [88].

According to this study, the main difference in green space landscape patterns in the
three scenarios is reflected in cultivated land and forest land. The sustainability scenario
study’s findings indicate that limiting the growth of arable land and converting it into
water and non-green land as much as possible, which reduces the invasion of forest land, is
the primary option to achieve the highest combined benefits. However, this green space
pattern may have an impact on people’s dietary needs. We might also start with the
following factors to create sustainable growth in Harbin: First of all, advanced farming
techniques can be introduced and scientific planting methods can be used to increase the
agricultural yield per unit area [89,90]. Secondly, explore the new development mode of
forests, wetlands, grasslands, etc.; shape the endogenous development power; enhance
their economic value through innovative technological means; and relieve the economic
pressure of cultivated land and water area [91]. Finally, high and new technologies can be
introduced to promote the upgrading of industrial structure, optimize the energy structure,
and increase the economic efficiency of non-green space to reduce the economic demand
for cultivated land. [92].

5. Conclusions

The dynamic attitude of green space composition in Harbin from 2010 to 2020 was
calculated in this study. Subsequently, the green space in 2030 was modeled using GeoSOS-
FLUS software in accordance with the views of status quo development scenarios, ecolog-
ical preservation scenarios, and economic development scenarios. Next, the changes in
landscape pattern index in 2010, 2020, and three different scenarios were compared and
analyzed. Lastly, based on multi-objective conditions, the land cover needs in the ideal
sustainable development scenario were determined using the MOP model. This study has
filled the gap in the research of the cities in Northeast China and provides a reference for
the future development of Northeast China and similar cities. The results are summarized
as follows:

From 2010 to 2020, the dynamics of the landscape’s cultivated land, forests, and
grasslands experienced a slow change, whereas wetlands and water areas showed quick
and beneficial changes. Moreover, the total landscape composition’s dynamic degree,
which merely reaches 0.20%, has changed quite slowly.

The primary landscape type in the three 2030 scenarios is cultivated land. The status
quo scenario anticipates a rise in cultivated land and forest, a decline in grassland, and little
to no change in water bodies and wetlands. The increase in forest land is expected to be the
largest in the ecological protection scenario, while the rise in cultivated land is expected
to be the smallest. The cultivated land is expected to expand rapidly in the economic
development scenario, whereas the forest area will be shrinking and the grassland will
undergo the most significant drop, which is primarily manifested in the southeast of Acheng
District, the northwest of Shangzhi City, and the Songhua River basin of Yilan County.

At the class level, between 2010 and 2020, the patch edges of cultivated land, forest, and
grassland turned out to be regular, the patch fragmentation of wetland was intensified, and
the distribution of wetland and cultivated land patches tended to be scattered. In the status
quo development scenario, the fragmentation of cultivated land, forest, and grassland is
anticipated to increase and disperse progressively in the status quo development scenario,
while the largest patch of forest land is anticipated to shrink and the edges of the grassland
and water areas are expected to become simpler. In the ecological scenario, the scattered
and fragmented state of cultivated land, forest, and grassland has improved compared
with that of the status quo scenario, the maximum patch index of forest land is expected to
increase, and the overall conditions of water areas are expected to improve. Overall patch
fragmentation and edge regularization are expected to be most severe in the economic
development scenario.
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At the landscape level, from 2010 through 2020, both SHDI and SHEI have increased,
and the overall landscape level tends to be diversified and homogenized. The connectivity
between cultivated land and forest decreased. The SHDI and SHEI are predicted to decrease
significantly in each of the three future scenarios, with the economic development scenario
showing the most significant decline. CONTAG is expected to decrease slightly in the
status quo scenario and is expected to increase slightly in the ecological scenario and the
economic scenario, and the relative increase is relatively large in the economic scenario. The
2030 divisions all show small declines, with the largest decline in the economic scenario.

Among the wide variety of development scenarios, the sustainable development
scenario has the most significant ecological and economic benefits, and the total benefit is
anticipated to be CNY 435,860.88 million. According to this scenario, the study area should
have 22,299.88, 19,379.10, 4271.00, 920.74, 4648.54, 2453.68, and 17.24 km2 of cultivable land,
forest, grassland, wetland, water, artificial surface, and bare land in 2030, respectively.
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