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Abstract: Multiple Sclerosis (MS) is characterized by chronic deterioration of the nervous system, 

mainly the brain and the spinal cord. An individual with MS develops the condition when the im-

mune system begins attacking nerve fibers and the myelin sheathing that covers them, affecting the 

communication between the brain and the rest of the body and eventually causing permanent dam-

age to the nerve. Patients with MS (pwMS) might experience different symptoms depending on 

which nerve was damaged and how much damage it has sustained. Currently, there is no cure for 

MS; however, there are clinical guidelines that help control the disease and its accompanying symp-

toms. Additionally, no specific laboratory biomarker can precisely identify the presence of MS, leav-

ing specialists with a differential diagnosis that relies on ruling out other possible diseases with 

similar symptoms. Since the emergence of Machine Learning (ML) in the healthcare industry, it has 

become an effective tool for uncovering hidden patterns that aid in diagnosing several ailments. 

Several studies have been conducted to diagnose MS using ML and Deep Learning (DL) models 

trained using MRI images, achieving promising results. However, complex and expensive diagnos-

tic tools are needed to collect and examine imaging data. Thus, the intention of this study is to im-

plement a cost-effective, clinical data-driven model that is capable of diagnosing pwMS. The dataset 

was obtained from King Fahad Specialty Hospital (KFSH) in Dammam, Saudi Arabia. Several ML 

algorithms were compared, namely Support Vector Machine (SVM), Decision Tree (DT), Logistic 

Regression (LR), Random Forest (RF), Extreme Gradient Boosting (XGBoost), Adaptive Boosting 

(AdaBoost), and Extra Trees (ET). The results indicated that the ET model outpaced the rest with an 

accuracy of 94.74%, recall of 97.26%, and precision of 94.67%.  

keywords: pre-emptive diagnosis; multiple sclerosis; machine learning; explainable artificial  

intelligence; Shapley additive explanation; local interpretable model-agnostic explanations 

 

1. Introduction 

Chronic diseases are generally identified as illnesses that tend to last over a long pe-

riod, requiring continuing medical attention and causing limitations and disabilities [1]. 

According to the World Health Organization (WHO), 41 million people die of chronic 

diseases yearly [1]. Chronic diseases are not just inherited but are also caused by expo-

sures throughout life [2]. Many chronic diseases have been related to lifestyle habits, such 

as smoking, consuming unhealthy foods, and not being physically active [3]. Even though 

an early diagnosis is crucial in managing chronic diseases, they often exhibit no symptoms 
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in their early stages, necessitating the emergence of the latest technologies contributing to 

the pre-emptive diagnosis of these diseases. 

Several chronic diseases, including Multiple Sclerosis (MS), are prevalent in Saudi 

Arabia. MS affects approximately 2.8 million individuals worldwide. Since 2013, the prev-

alence of MS has increased [4]. According to Al Jumah et al. [5], the prevalence of MS in 

Saudi Arabia was greater in the central region and lower in the southern region. Moreo-

ver, 40.40 per 100,000 of all populations and 61.95 per 100,000 Saudi citizens were diag-

nosed with MS. Females were also shown to be more likely than males to develop MS at 

a ratio of 2:1, and young, educated individuals are more likely to be affected in various 

Saudi Arabian regions [5].  

MS is a lifelong chronic inflammatory demyelination illness that can damage the spi-

nal cord (central nervous system) and the brain, causing the immune system to attack the 

myelin that protects nerve fibers. MS causes miscommunication between the brain and 

the rest of the body, leading to major disability [6]. Many potential symptoms that vary 

from one patient with MS (pwMS) to another are experienced, such as cognitive deficien-

cies, weakness, sensory impairment, visual loss, dizziness, and spasticity [7]. Since MS 

affects everyone differently, there is presently no reliable approach to anticipate how the 

condition will progress in a particular pwMS. In addition, some pwMS may appear 

healthy for years after the diagnosis, while others may advance more swiftly. Further-

more, it is currently not known whether MS can be cured. However, it has been found 

that disease-modifying medications help to manage symptoms and stop the course of the 

disease [8]. Therefore, screening for MS before symptoms develop and following early 

treatment plans are crucial to improving the patient’s quality of life [9].  

As disease-modifying medications help in the symptomatic treatment and disease 

progression, an accurate and reliable MS diagnosis is essential for enabling pre-emptive 

therapies for the disease [10]. In addition to ruling out any other conditions that might 

resemble MS clinically or radiologically, MS is diagnosed by having central nervous sys-

tem lesions that are distinct from one another in both time and space [11]. For the disease’s 

diagnosis, there is no specific laboratory test that can precisely identify the disease. Con-

sidering this, the most recent McDonald diagnostic criteria for MS, released in 2017, en-

compass clinical assessment, imaging, and laboratory data [12]. Nowadays, Magnetic Res-

onance Imaging (MRI) is the most effective technique for diagnosing MS, as well as track-

ing the disease’s progression and testing treatment effectiveness. However, utilizing MRI 

to diagnose MS is expensive, time-consuming, and prone to human errors [13].  

Machine Learning (ML) is a branch of computer science that focuses on the theory of 

pattern recognition and computational learning. The implementation of algorithms takes 

place through the process of learning from data and making predictions using unseen 

data. The growing capabilities of ML facilitated the process of identifying patterns not 

visible to humans using the massive medical data available. Therefore, several studies 

were conducted to diagnose MS using ML and DL algorithms. However, most studies 

focused on diagnosing MS using imaging datasets, and only some used clinical data, 

which added extra workload associated with data collection and the challenge of using 

complexly constructed models. Therefore, by using the latest technologies, this study aims 

to overcome the limitations of previous work by utilizing simple clinical data to detect 

pwMS pre-emptively. 

This study’s dataset was obtained from King Fahad Specialist Hospital (KFSH) in 

Dammam, Saudi Arabia. It contains clinical data records of 569 patients (365 pwMS and 

205 without MS). Various ML algorithms were utilized, including Support Vector Ma-

chine (SVM), Decision Tree (DT), Logistic Regression (LR), Random Forest (RF), Extreme 

Gradient Boosting (XGBoost), Adaptive Boosting (AdaBoost), and Extra Tree (ET). The 

results showed that ET attained the highest accuracy of 94.74% with 11 features only. To 

better understand how an AI model reaches decisions, researchers have developed Ex-

plainable Artificial Intelligence (XAI). In this approach, ML models are modified to gen-

erate explainable models, enabling the end users to confidently manage, comprehend, and 
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trust emerging AI systems [14]. Shapley Additive Explanation (SHAP) and Local Inter-

pretable Model-Agnostic Explanations (LIME) were used in this study to explain the out-

performing model’s findings. 

This paper is divided into the following sections. Section 2 comprises a thorough lit-

erature review. Section 3 details the materials and methods used, including the dataset 

description, statistical analysis, a description of the employed ML algorithms, the perfor-

mance measures used to assess the developed models, and finally, the optimization strat-

egy chosen. The findings and the feature selection method utilized are also explained in 

Section 4, and the results of the models employing XAI approaches are described in Sec-

tion 5. Finally, the conclusions and future work are discussed in Section 6. 

Study Objectives 

Aiding medical personnel in pre-emptively screening and treating MS can help slow 

the disease’s progression. This study aimed to develop a valuable tool for predicting MS 

that can be deployed in local hospitals. The following is a synopsis of the study’s contri-

butions: 

 Developed the first clinically applicable and cost-effective ML model to screen MS 

pre-emptively in Saudi Arabia. 

 Utilized the SelectKBest technique based on the chi-squared test to reduce the num-

ber of features needed to produce accurate results. 

 Compared and evaluated the diagnostic performance of simple and ensemble classi-

fiers. 

 Applied Explainable Artificial Intelligence (XAI) techniques to assist medical profes-

sionals in comprehending how features affect the top-performing ML model in this 

study. 

2. Literature Review 

Based on clinical information and Retinal Nerve Fiber Layer (RNFL) thickness deter-

mined by Optical Coherence Tomography (OCT), a study [15] was conducted to diagnose 

MS better and forecast the long-term course of impairment in pwMS. The dataset was 

obtained from Miguel Servet University Hospital, which includes 212 records (104 healthy 

individuals and 108 pwMS). The ML algorithms used were Multiple Linear Regression 

(MLR), SVM, DT, Naive Bayes (NB), Long Short-Term Memory (LSTM), K-Nearest Neigh-

bors (KNN), and an Ensemble Classifier (EC). The results demonstrated that the EC at-

tained an accuracy of 87.7%, a sensitivity of 87%, a precision of 88.7%, a specificity of 

88.5%, and an Area Under the Curve (AUC) of 0.8775. As for forecasting the long-term 

impairment course in pwMS, LSTM achieved the highest accuracy of 81.7%, sensitivity of 

81.1%, precision of 78.9%, specificity of 82.2%, and AUC of 0.8165. 

Using the same techniques, a recent study [16] used RNFL thickness measured by 

OCT to diagnose MS. Only 102 records were obtained in this study from the hospital men-

tioned above (30 healthy individuals and 72 pwMS) using three different Spectralis OCT 

protocols to perform structural assessments of RNFL thickness. The macular RNFL was 

measured using the fast macular thickness protocol, whereas the peripapillary RNFL was 

measured using both fast RNF and fast RNFL-N thickness protocols. The fast macular 

thickness protocol with KNN was the best acquisition procedure for MS diagnosis, achiev-

ing an accuracy of 95.8%, sensitivity of 94.4%, precision of 97.1%, specificity of 97.2%, and 

an AUC of 0.958. Furthermore, DT performed best for MS prognosis with an accuracy of 

91.3%, a sensitivity of 90%, a precision of 92.3%, a specificity of 92.5%, and an AUC of 

0.913 for the fast macular thickness protocol, and SVM for fast RNFL-N thickness protocol 

with an accuracy of 91.3%, a sensitivity of 87.5%, a precision of 94.6%, a specificity of 95%, 

and an AUC of 0.913. 

Similarly, the study [17] used the dataset mentioned above from Miguel Servet Uni-

versity Hospital, consisting of 260 records (180 healthy individuals and 80 pwMS). The 
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authors in this study aimed to use different ML techniques to compare axonal loss in gan-

glion cells observed by means of the Swept-Source OCT (SS-OCT). Three ML classifiers 

were used and evaluated, including DT, Multilayer Perceptron, and SVM. The DT classi-

fier obtained the best results, with an accuracy of 97.24% and an AUC of 0.995, using RNFL 

data in the macular area. Consequently, the authors concluded that SS-OCT provides ex-

cellent differentiation between healthy controls and MS patients based on measurements 

of RNFL thickness. 

Likewise, the authors in [18] obtained 96 records (48 pwMS and 48 healthy individ-

uals) from the same hospital to use SS-OCT to diagnose MS earlier. The proposed Feed-

Forward Neural Network (FFNN) classifier achieved promising results with an accuracy 

of 97.9%, a sensitivity of 98%, and a specificity of 98%. 

By analyzing exhaled breath, the authors of [19] aimed to diagnose MS using an elec-

tronic nose (eNose). A diagnostic test tool called eNose (Aeonose) can identify volatile 

organic component patterns in exhaled breath. The authors tested Aeonose’s ability to 

distinguish between the breath patterns of pwMS and healthy people. The dataset in-

cluded 253 case controls (124 pwMS and 129 healthy individuals) who each breathed into 

the Aeonose for five minutes. The data from exhaled air were used to construct a predic-

tive model using an Artificial Neural Network (ANN). With a subgroup of pwMS who 

had not been prescribed any medication for their MS, the authors developed a second 

predictive model to examine the impact of drug use. With a sensitivity of 75% and a spec-

ificity of 60%, the ANN model built using the entire dataset was able to discriminate 

pwMS from healthy individuals. The sensitivity and specificity of the model developed 

using the subgroup of pwMS not taking medication and the healthy control participants 

were 93% and 74%, respectively. 

The authors in [20] trained a Convolutional Neural Network (CNN) using brain MRI 

to distinguish between MS and its imitators. The CNN model achieved an accuracy of 

98.8% using a total of 268 T1 and T2 weighted brain MRI scans. 

More recently, the authors in [21] used CNN to predict the progression of the disease 

using brain MRI. The data of 373 pwMS were collected from the Italian Neuroimaging 

Network Initiative (INNI) repository. CNN was used to predict clinical worsening, cog-

nitive deterioration, or both. The results showed that the clinical and cognitive worsening 

achieved an accuracy of 83.3% and 67.7%, respectively. On the other hand, when the sys-

tem was trained using both clinical and cognitive data, it achieved 85.7% accuracy. 

Furthermore, the study [22] aimed to detect MS using MRI. The dataset contains 130 

brain MRI scans (30 pwMS and 100 healthy individuals). The authors used transfer learn-

ing to train the model by using SoftMax as an activation function to classify disease de-

velopment. By using CNN, the model achieved an accuracy of 98.24%, specificity of 

95.45%, and sensitivity of 100%. 

Furthermore, the authors in [23] presented an approach that combines CNN and the 

two-dimensional discrete Haar wavelet transform to identify pwMS using MRI scans. The 

University of Cyprus’ Laboratory of eHealth provided the dataset for this study, consist-

ing of 58 records (38 pwMS and 20 healthy individuals). The experiments on the image 

data attained an accuracy of 99.05%, precision of 98.43%, and sensitivity of 99.14%. 

A review of the literature on the early prediction of MS revealed that most previous 

studies focused on diagnosing MS using imaging datasets, whereas few used clinical data. 

Additionally, it has been found that relatively small datasets were explored in previous 

studies. Therefore, this study aims to build an ML model using simple clinical features 

that could predict MS accurately with the least amount of workload and computation. In 

addition, the work provides medical specialists with a rationale for trusting the prediction 

using XAI techniques. Consequently, local hospitals with low incomes gain from deploy-

ing the pre-emptive diagnosis model.   
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3. Materials and Methods 

This study developed a pre-emptive model for diagnosing MS using Python pro-

gramming language. A fixed seed value of 0 was set throughout all operations. Before 

modeling, the dataset was subjected to various pre-processing techniques, as shown in 

Figure 1. The SelectKBest technique with the chi-squared test and k = 11 was used to ex-

tract the best features. Additionally, the dataset was split into stratified proportions, 

where 80% of the data were reserved for training and were further validated using strati-

fied 10-fold cross-validation, whereas the rest were used for testing the proposed models. 

The min–max scaler was then fitted to the training set and transformed into the testing 

set. Furthermore, seven ML algorithms were trained with the selected 11 features: SVM, 

DT, LR, RF, XGBoost, AdaBoost, and ET. GridSearchCV was then used with stratified 10-

fold cross-validation to optimize the hyperparameters of the models using the training 

set. The models were assessed using a variety of performance metrics, including accuracy, 

precision, recall, F1-score, and AUC). Subsequently, the best model was interpreted using 

SHAP and LIME techniques. The process used to build the prediction models is summa-

rized in Figure 1. 

 

Figure 1. The proposed framework for the pre-emptive diagnosis of MS. 

3.1. Data Description 

The dataset used in this study was obtained from KFSH in Dammam, Saudi Arabia. 

The dataset includes records of 570 patients (365 pwMS and 205 healthy), with 44 demo-

graphical features and laboratory biomarkers. Table 1 demonstrates the features’ names 

and types. After applying the SelectKbest approach, 11 features remained, namely age, 

ALT (dimension), LDH, creatinine, blood urea nitrogen, total bilirubin, gamma glutamyl 

transferase, alkaline phosphatase, AST, platelet, and BP—systolic. 
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Table 1. Features’ description. 

Feature Type 

Sex Categorical 

Age Integer 

Anion Gap Integer 

ALT (Dimension) Integer 

LDH Integer 

White Blood Cells Float 

Red Blood Cells Float 

Hemoglobin Float 

Hematocrit Float 

Sodium Integer 

Potassium Float 

Chloride Integer 

Carbon Dioxide Integer 

Creatinine Float 

Total Protein Float 

Albumin Float 

Blood Urea Nitrogen Integer 

Total Bilirubin Float 

Direct Bilirubin Float 

Gamma Glutamyl transferase Integer 

MCV Float 

MCH Float 

MCHC Float 

Alkaline Phosphatase Integer 

RDW Float 

MPV Float 

AST Integer 

Lymphocyte—Instrument % Float 

Monocyte—Instrument % Float 

Lymphocyte—Instrument Abso Float 

Monocyte—Instrument Abso Float 

Neutrophil Granulocyte—Instrument % Float 

Neutrophil Granulocyte—Instrument Abso Float 

Platelet Integer 

Eosinophil—Instrument % Float 

Eosinophil—Instrument Abso Float 

Basophil—Instrument % Float 

Basophil—Instrument Abso Float 

BP—Systolic Integer 

Pulse Ox Integer 

Temperature Float 

Pulse Integer 

Respiratory Rate Integer 

BP—Diastolic Integer 

Class Boolean 
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3.2. Statistical Analysis 

In this section, statistical analysis was carried out to understand the data and the 

underlying patterns. Statistical analysis aids in determining the pre-processing methods 

that should be used to prepare the data for modeling. The data used in this study consisted 

of numerical features and only one categorical feature. The numerical attributes of the 

data were analyzed using well-known statistical metrics. The numerical properties of the 

data and their accompanying statistical breakdown are shown in Table 2. As the table 

demonstrated, the big difference between the 75th quartile and the maximum values in-

dicates the presence of outliers and skewness in some features. Moreover, Figure 2 dis-

plays the value count of the gender attribute after removing the duplicates in the pre-

processing stage. 

Table 2. Statistical analysis of numerical features. 

Feature Mean 
Standard 

Deviation 
Min 

25th 

Quartile 

50th 

Quartile 

75th 

Quartile 
Max 

Missing Value 

Counts 

Age 43.28 16.71 13.00 30.00 38.00 55.00 89.00 0 

Anion Gap 9.61 2.63 1.00 8.00 10.00 11.00 27.00 20 

ALT (Dimension) 33.59 64.25 5.00 16.00 22.00 32.00 1278.00 12 

LDH 182.51 131.29 95.00 142.75 164.00 187.00 2523.00 13 

White Blood Cells 6.39 2.62 1.30 4.65 6.00 7.60 28.20 2 

Red Blood Cells 4.68 0.69 1.91 4.26 4.69 5.13 6.72 2 

Hemoglobin 12.80 2.14 5.80 11.50 12.90 14.40 18.50 2 

Hematocrit 38.65 5.99 18.30 35.10 38.90 42.90 54.30 2 

Sodium 140.00 2.69 125.00 138.00 140.00 141.00 157.00 20 

Potassium 4.30 0.43 3.10 4.00 4.30 4.50 6.10 20 

Chloride 103.86 2.51 92.00 102.00 104.00 105.00 121.00 20 

Carbon Dioxide 26.43 3.14 13.00 25.00 27.00 28.00 44.00 20 

Creatinine 0.89 0.97 0.15 0.62 0.72 0.89 12.23 19 

Total Protein 7.31 0.64 3.10 7.00 7.30 7.70 8.90 13 

Albumin 3.80 0.52 1.70 3.60 3.90 4.10 5.10 13 

Blood Urea Nitrogen 13.81 9.37 3.00 9.00 12.00 15.00 83.00 20 

Total Bilirubin 0.62 0.98 0.10 0.30 0.40 0.70 16.70 13 

Direct Bilirubin 0.21 0.56 0.05 0.09 0.12 0.20 11.10 13 

Gamma Glutamyl Transferase 49.85 104.49 4.00 19.00 27.00 43.00 1296.00 13 

MCV 83.41 8.81 48.9 79.35 84.50 89.20 133.00 2 

MCH 27.48 3.29 15.30 25.80 28.00 29.80 40.90 2 

MCHC 33.00 1.39 27.70 32.10 33.10 34.00 36.20 2 

Alkaline Phosphatase 85.00 100.13 21.00 58.00 70.00 90.00 1881.00 13 

RDW 14.39 2.25 10.40 13.10 13.80 15.00 30.90 2 

MPV 8.77 1.02 6.00 8.10 8.70 9.40 12.70 4 

AST 34.97 157.53 5.00 15.00 18.00 24.00 2560.00 12 

Lymphocyte—Instrument % 33.91 11.95 2.00 26.60 34.30 42.30 69.20 43 

Monocyte—Instrument % 8.78 2.54 1.20 7.00 8.40 10.17 19.20 43 

Lymphocyte—Instrument Abso 2.06 0.82 0.20 1.50 2.00 2.60 5.40 43 

Monocyte—Instrument Abso 0.54 0.20 0.10 0.40 0.50 0.60 1.60 43 

Neutrophil Granulocyte—Instrument % 53.87 13.37 17.70 45.30 53.30 60.70 91.90 43 

Neutrophil Granulocyte—Instrument 

Abso 
3.69 2.00 0.70 2.40 3.30 4.60 12.30 43 

Platelet 254.80 81.72 27.00 204.00 249.00 302.25 679.00 9 

Eosinophil—Instrument % 2.67 2.00 0.00 1.30 2.20 3.60 13.70 43 

Eosinophil—Instrument Abso 0.16 0.15 0.00 0.10 0.10 0.20 1.00 43 

Basophil—Instrument % 0.60 0.42 0.00 0.30 0.50 0.80 2.80 43 

Basophil—Instrument Abso 0.03 0.04 0.00 0.00 0.00 0.10 0.20 43 

BP—Systolic 126.30 18.01 58.00 115.00 124.00 137.00 191.00 110 

Pulse Ox 98.70 2.56 53.00 98.00 99.00 100.00 100.00 123 
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Temperature 36.76 0.29 35.40 36.60 36.80 36.90 39.30 120 

Pulse 83.40 13.00 50.00 75.00 83.00 89.00 132.00 111 

Respiratory Rate 19.59 1.29 15.00 18.00 20.00 20.00 28.00 110 

BP—Diastolic 76.00 10.92 32.00 69.00 76.00 84.00 107.00 110 

 

Figure 2. The value counts of gender. 

3.3. Data Pre-Processing 

One of the crucial processes in converting raw data into valuable data for training is 

data pre-processing. The Python Sklearn and Pandas packages were used in the current 

study to perform several pre-processing techniques. Initially, the dataset included 177 fea-

tures and 570 records, most of which contained null values; thus, features with ≥ 300 

null values were dropped, and any duplicated row was eliminated using the Pandas du-

plicate() method. Consequently, only 44 features and 569 instances remained. Further-

more, categorical data were transformed into a numerical format before training and eval-

uating models using the Sklearn LabelEncoder() method [24].  

Missing values significantly influence the inferences drawn from the dataset. There-

fore, it can result in several complications, including a decrease in statistical power, inac-

curate parameter estimates, and difficulties with data processing. Different imputation 

strategies were used for missing values based on the types of attributes. In this study, the 

numerical null values were imputed by checking the STD to observe how the data are 

distributed. Whenever the STD is high, the data are more skewed; therefore, the null val-

ues are filled using the median, as shown in Equation (1), where n refers to the total num-

ber of observations. 

Median =
(n + 1)

2
 (1)

In contrast, if the STD was low, the forward-filling and the mean imputation tech-

niques were utilized. The forward-filling method states that the nearest value before the 

targeted point will be utilized if the value is null. Besides the forward-filling requirement, 

the resampling procedure allows a maximum of one usage of each value. The subsequent 

missing values will be marked as missing if the closest preceding value has already been 

utilized once for resampling. Hence, the mean was used to impute the remaining null 

values, as shown in Equation (2), where n represents the total number of values in a col-

umn and X represents a single data point [25].  

Mean =  
∑ X

n
 (2)
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Next, a univariate feature selection method called Select K-Best (SelectKBest) was 

used. Utilizing a variety of univariate statistical tests, it chooses the K-best features from 

the feature set. This study selected the top 11 features using the chi-square test. Only pos-

itive features can be used in the test; hence, each non-negative and target feature receives 

a score from the algorithm. Pairs of expected and observed frequencies can be used to 

determine the score using Equation (3).  

�� = �
(��� − ���)

�

���

�

���

 (3)

where ��� is the frequency that was observed for the feature F’s i-th value, and ���  is 

the frequency anticipated for feature F’s i-th value [26]. 

Following pre-processing, the dataset was split into two stratified sets: 80% for train-

ing and validation and 20% for testing. The values were then scaled between 0 and 1 using 

the min–max scaler, which has been fitted to the training set and transformed to the testing 

set using Equation (4). 

MinMaxScaler (���) =  
�� − ����

���� − ����
(���_���� − ���_����) + ���_���� (4)

where ��  represents the ��� value, ���� and ���� denote a feature’s maximum and 

minimum values, and ���_���� and ���_���� are the values 0 and 1, respectively.  

3.4. Description of Utilized Machine Learning Algorithms 

3.4.1. Support Vector Machine (SVM) 

In 1990, Cortes and Vapnik proposed Support Vector Machine (SVM). Since then, its 

popularity has increased among the ML community [27]. SVM is a supervised learning 

algorithm that provides solutions to classification and regression problems, mainly used 

in binary classification problems [28]. In classification, a hyperplane is located in feature 

space by SVM to separate different classes [29]. The training points are mapped onto the 

feature space and separated by a maximum margin between classes. In the same space, 

the testing data points are then mapped and categorized according to which side of the 

margin they fall. 

3.4.2. Decision Tree (DT) 

DTs are supervised ML classifiers that may be thought of as rule-based classifiers. 

Using a training set, DT develops a set of binary rules that can properly identify the ma-

jority of training set samples [30]. Thus, given a sample, DT evaluates whether multiple 

rules are met and produces a result. DT is straightforward and beneficial for interpreta-

tion. However, in terms of generalization, they are often not competitive with more so-

phisticated supervised learning algorithms and can quickly overfit if no limitations on the 

highest number of rules are applied [30]. 

3.4.3. Logistic Regression (LR) 

In 1958, David Cox developed LR, an ML approach based on supervised learning 

and statistical analysis. It is known as a log transformation of linear regression. However, 

unlike linear regression, it is only used for classification [31]. LR is robust and fast in pre-

dicting discrete categorical target classes [32]. Furthermore, its simplicity allows it to rap-

idly reach a high level of performance. Depending on the dataset, the fundamental pur-

pose of LR is to establish linear and noncomplex decision boundaries across classes. 
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3.4.4. Random Forest (RF) 

In 2001, Leo Breiman proposed RF while introducing the concept of bagging, also 

known as “bootstrap aggregation” [33]. The RF classifier comprises several DTs represent-

ing various subjects from the dataset. Instead of depending exclusively on one DT, RF 

uses the majority vote predictions from each tree to anticipate the outcome, increasing the 

predictive accuracy [34]. 

3.4.5. Extra Trees (ET) 

ET is an ensemble ML classifier that Mingers first familiarized in 1989 [35]. The idea 

behind ET is to use several small decision trees, each of which is a weak learner on its 

own. ETs are comparable to other tree-based ensemble techniques, such as RF; however, 

unlike RFs, all the trees in an ET are trained using the same training set. Additionally, 

while RF simply splits a node based on variable value, ETs split a node based on both 

variable indexing and variable splitting values. Because of this, ETs are both generalizable 

and more computationally efficient than RFs [36]. 

3.4.6. Extreme Gradient Boosting (XGBoost) 

XGBoost is a model that was initially introduced by Carlos Guestrin and Tianqi Chen 

in 2011 and has since been continuously optimized to be used with modern data science 

tools and challenges [37]. XGBoost is a boosting tree-based learning framework with a 

high degree of expansion and versatility. It combines several models to create a robust 

model [37]. The most well-known benefits of XGBoost include its high scalability and par-

allelizability, speed of execution, and ability to frequently outperform competing algo-

rithms. Additionally, it controls over-fitting using a more regularized model formaliza-

tion, which enhances performance [38]. 

3.4.7. Adaptive Boosting (AdaBoost) 

The first genuinely effective boosting algorithm, known as Adaptive Boosting (Ada-

Boost), was introduced by Freund and Schapire for binary classification. It is a meta-algo-

rithm that can enhance the performance of numerous other learning algorithms by pairing 

up with them [39]. AdaBoost is adaptive in the sense that cases that were incorrectly iden-

tified by earlier classifiers are considered while creating new classifiers. In other terms, 

the fundamental principle behind AdaBoost is to call a weak classifier repeatedly while 

modifying the weights given to the samples for each call [40]. 

3.5. Performance Measure 

In this study, the models’ performance was assessed using a variety of performance 

metrics, including accuracy, precision, recall, F1-score, and AUC. In order to further assess 

the models, confusion matrices were used, which include True Negative (TN), True Posi-

tive (TP), False Negative (FN), and False Positive (FP), where: 

 TN indicates patients who were correctly identified as non-MS patients. 

 TP indicates patients who were correctly identified as pwMS. 

 FN indicates patients who were incorrectly identified as non-MS patients. 

 FP indicates patients who were incorrectly identified as pwMS. 

Accuracy is the ratio of correctly identified MS and non-MS patients over the total 

number of patients in the dataset. It is mathematically represented in Equation (5). 

Accuracy =  
Correctly identified MS and non − MS patients

Total number of patients in the dataset
 (5)

Precision is the ratio of correctly identified positive instances across all predicted pos-

itive instances. It is mathematically represented in Equation (6). 
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Precision =  
Correctly identified MS patients 

Total number of predicted postive instances
 (6)

Recall is the ratio of correctly identified positive instances to all the positive instances 

in the actual class. It is mathematically represented in Equation (7). 

Recall =  
Correctly identified MS patients 

All the positive instances in the actual classt
 (7)

Correspondingly, the F1-score is the weighted average of recall and precision. It is 

mathematically represented in Equation (8). 

�1 − Score =  
2 × (Precision × Recall)

Precision + Recall
 (8)

The AUC measures a classifier’s ability to distinguish between classes, as stated in 

Equation (9), where �� and �� are the numbers of negative and positive observations, 

respectively, and �� in ��=��� denotes the degree of the ith positive observation. 

   ��� =
�� − ��(�� + 1)/2

����
 (9)

3.6. Optimization Strategy 

The hyperparameters of ML models are essential factors impacting the model perfor-

mance. Setting an appropriate value for these hyperparameters can considerably enhance 

the model performance. The GridSearchCV technique was utilized to build models that 

are capable of providing accurate solutions to these problems. GridSearchCV was used in 

this study to find the best hyperparameters in a search space that included a range of 

values. It generates all possible combinations of hyperparameter values to determine the 

best combination using the training set. Stratified 10-fold cross-validation was used to 

validate the model performance. The optimal hyperparameters generated by the 

GridSearchCV for each algorithm are outlined in Table 3. Moreover, the hyperparameters 

used in the grid are outlined in the Supplementary File.  

Table 3. The optimal hyperparameters for each classifier. 

Classifier Hyperparameter Optimal Hyperparameter 

SVM 

C 1 

gamma 1 

kernel rbf 

DT 

criterion gini 

max_depth 2 

min_samples_leaf 3 

max_leaf_nodes 19 

LR 

penalty l2 

class_weight dict 

C 1 

RF 

max_depth 6 

n_estimators 150 

criterion entropy 

max_leaf_nodes None 

min_samples_leaf 3 

XGBoost 

n_estimators 80 

learning_rate 0.1 

booster gbtree 

gamma 0.3 
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AdaBoost 

n_estimators 100 

learning_rate 0.2 

algorithm SAMME.R 

ET 

n_estimators 450 

max_depth 12 

max_leaf_nodes None 

min_samples_leaf 1 

4. Empirical Results 

In accordance with the described performance indicators, Table 4 assesses the devel-

oped models using the ideal hyperparameters and features subset produced by the 

GridSearchCV and SelectKBest techniques, respectively. Overall, the results reveal that 

neither overfitting nor underfitting affected the model due to the low difference between 

training and testing accuracy. Furthermore, the ET classifier outperformed other algo-

rithms with an accuracy of 94.74%, a precision of 94.67%, a recall of 97.26%, and an F1-

score of 95.95%. Following that, XGBoost achieved an accuracy of 93.86%, a precision of 

94.59%, a recall of 95.89%, and an F1-score of 95.24%. Algorithms including SVM, LR, and 

RF achieved identical accuracies after implementing GridsearchCV. RF, however, per-

formed differently in terms of precision and recall. On the other hand, DT and AdaBoost 

achieved the lowest performance measures after optimization with an accuracy of 92.11%, 

a precision of 93.24%, a recall of 94.52%, and an F1-score of 93.88%. Figure 3 displays the 

confusion matrices for optimized selected models. 

Table 4. The results of the proposed models using the ideal hyperparameters. 

Classifier Training Accuracy Testing Accuracy Precision Recall F1-Score 

SVM 89.01% 92.98% 94.52% 94.52% 94.52% 

DT 88.13% 92.11% 93.24% 94.52% 93.88% 

LR 87.69% 92.98% 94.52% 94.52% 94.52% 

RF 92.53% 92.98% 93.33% 95.89% 94.59% 

XGBoost 99.56% 93.86% 94.59% 95.89% 95.24% 

AdaBoost 93.24% 92.11% 93.24% 94.52% 93.88% 

ET 95.82% 94.74% 94.67% 97.26% 95.95% 

 

  

(a) (b) 
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Figure 3. Confusion matrices: (a) SVM, (b) DT, (c) LR, (d) RF, (e) XGBoost, (f) AdaBoost, (g) ET. 

Figure 3 reveals that the ET model, which achieved the fewest FNs (two), is the best 

algorithm for predicting unwanted occurrences of the targeted disease, followed by the 

RF and XGBoost models, which failed to classify three cases of MS. Meanwhile, ET, 

XGBoost, LR, and SVM achieved the lowest rates of FP. Misdiagnosis of MS may occur 

due to pressure to deliver a timely diagnosis, as several alternative diagnoses may mimic 

MS, such as functional neurologic disorders, migraines, and arterial disease [41]. The mis-

diagnosis of MS could lead to serious repercussions, including losing the chance for early 

treatment and possibly accelerating the course of the condition. Moreover, the risk of pro-

longed, unnecessary healthcare hazards and death is often attributed to misdiagnosed MS 

patients [42]. To determine the best-performing model, the lowest FN and FP values must 

be achieved. Therefore, it is concluded that the ET outperforms all other models for the 

pre-emptive diagnosis of MS. 

Figure 4 illustrates the Receiver Operating Characteristics (ROC) curve that evaluates 

the discrimination ability of the classifiers with different thresholds. Accordingly, Figure 

4 reveals that the AUC values for the executed classifiers ranged from 0.91 to 0.94. How-

ever, XGBoost and ET achieved the highest values at 0.93 and 0.94, respectively.  

 

(a) 
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(b) 

Figure 4. AUC values: (a) weak classifiers, (b) ensemble classifiers. (The red diagonal shows the 

AUC of 0.5m which separates the line to above or under 50%) 

4.1. Interpretation of the Final Recommended Model 

Since ML applications have become more popular over the past eight years or so, 

they are now having a major influence on humanity in various ways, such as lending de-

cisions and making judgments. However, because most models are opaque by nature, 

mindlessly implementing their recommendations in applications that affect people could 

result in problems with justice, safety, and reliability, among many other concerns [43]. 

Accordingly, this has caused a branch of AI known as XAI to emerge, which is an essential 

component of enhancing the trust and dependability of AI and ML. Currently, many tech-

niques, most notably ML and DL techniques, are not visible in how they operate and are 

hence referred to as black-box models. In order to gain adequate trust, and in some situa-

tions, achieve even greater performance through human–machine collaboration, XAI is 

particularly focused on comprehending or interpreting the judgments made by the pro-

posed opaque or black-box models. However, it has been recognized that this poses seri-

ous issues for several industries, including health sciences and criminal justice. Conse-

quently, arguments have been made in favor of AI that is explicable [44]. Therefore, this 

work implements two XAI techniques, including SHAP and LIME. 

4.1.1. Shapley Additive Explanation (SHAP)  

Black-box ML models are frequently used, making comprehending their results chal-

lenging. Accordingly, explainable ML algorithms that dissect the results are used to iden-

tify characteristics that influence the model’s output [45]. SHAP is one of the proposed 

methods, explaining each feature’s impact on the model and permitting both local and 

global analysis for the intended dataset. Each case prediction is proved using this method 

by computing all impact-considered attributes and employing SHAP values generated 

from the coalition game theory. The effect of each attribute on the SHAP value is roughly 

averaged across all possible permutations. Furthermore, the absolute SHAP value repre-

sents the degree of the feature’s impact on model prediction, making it possible to utilize 

it as a measurement of feature relevance [46]. 
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Figure 5 reveals that the high values of all features, except platelets, strongly influ-

ence the prediction, whereas their low values negatively influence the positive prediction. 

Overall, features including “Age”, “BP- Systolic”, and “Alkaline Phosphatase” have sig-

nificant importance in model prediction, whereas those including “ALT (Dimension)” and 

“LDH” have a slight effect in comparison to other features. 

 

Figure 5. Shapely values using the ET model. 

4.1.2. Local Interpretable Model-Agnostic Explanations (LIME) 

LIME is a technique for explaining black-box models, or models whose inner logic is 

obscure and difficult to comprehend [47]. LIME adjusts the feature values for a single data 

sample and monitors its impact on the output. In this method, data around an instance 

are simulated via random perturbation, and specific selection techniques are employed to 

assess the significance of attributes. Accordingly, a feature selection process is developed, 

which selects the features from the new data that best characterize the model result. Fi-

nally, a straightforward model is developed, fitted to the newly chosen data, and used to 

create an explanation for the intended model [48]. 

The positive probability prediction generated by the ET model, shown in Figure 6a, 

was 88%. The figure reveals that features including “Age”, “Alkaline Phosphatase”, and 

“LDH” contributed to the correct classification of the model for pwMS. Contradictorily, 

Figure 6b explains the negative prediction generated by the ET model, where the negative 

probability prediction was 84%. The figure reveals that all features except for “Alkaline 

Phosphatase”, “AST”, and “LDH” have contributed to the correct prediction of non-MS 

patients.  
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(a) 

(b) 

Figure 6. Lime results for the ET model. (a) Positive prediction probability, (b) negative prediction 

probability. 

5. Discussion 

With the significant advancement of technology in the past couple of decades, emerg-

ing technologies, such as ML, have shown a promising revolution in healthcare. The value 

of ML lies in its ability to interpret the vast amounts of healthcare data generated daily by 

electronic health records, allowing healthcare providers to improve and speed up care 

delivery by evaluating a broader range of data [49]. Moreover, it has been proven that 

deploying ML models in healthcare systems could contribute significantly in terms of au-

tomating primary/tertiary healthcare systems and introducing intelligent decision-mak-

ing techniques, resulting in lower medical testing costs and time and higher average life 

expectancy [50]. 
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Over the past two decades, MS has become more prevalent, especially in Saudi Ara-

bia, with a prevalence of approximately 40.4 people per 100,000 of the general population 

and 61.95 per 100,000 of the Saudi national population [5]. Few pwMS are diagnosed in 

the early stages of the illness, and pwMS in Saudi Arabia may not be provided with opti-

mum delivery care. Therefore, it is suggested that utilizing ML to pre-emptively diagnose 

MS may contribute to reducing the associated risks.  

Several studies have been conducted to diagnose pwMS using ML techniques, attain-

ing optimistic outcomes. However, very small datasets with few positively confirmed 

pwMS were used, which may cause the proposed models to be biased to certain patterns 

[17,20,22,23]. Additionally, most of the studies that achieved significant outcomes relied 

on MRI images, which are known to have a large sample requirement. Additionally, it is 

observed that the MRI market in Saudi Arabia reached USD 100.14 million in 2021 and is 

expected to reach USD 140.77 million by 2027 at a compound annual growth rate of 5.61% 

[51]. Therefore, acquiring MRI data is an inherently costly and lengthy procedure. The 

long data-capture times result in limited patient throughput, discomfort, and motion ar-

tifacts [52]. Accordingly, it is essential to overcome the limitations of the previous work 

by developing a timely model for detecting MS. As an alternative to MRI, blood testing 

can be a less invasive and cost-effective test. Globally, blood sample-handling infrastruc-

tures and clinical routines for blood testing have already been well established. Accord-

ingly, it can play an essential role in cutting the costs of diagnosing diseases [53].  
This study’s main objective was to build the first ML model to diagnose MS using 

demographical data and clinical biomarkers collected from the Eastern Province of Saudi 

Arabia. Several ML algorithms have been developed and compared to find the best-per-

forming model. The results indicated that, with only minor variations in their perfor-

mance metrics, practically all models performed similarly. However, the ET model out-

performed the remaining proposed models, attaining an accuracy of 94.74%, a recall of 

97.26%, a precision of 94.67%, an F1-score of 95.95%, and an AUC of 0.94 using 11 attrib-

utes. The SHAP XAI technique showed that features including “Age”, “BP- Systolic”, “Al-

kaline Phosphatase”, “Platelet”, and “Creatinine” have the greatest impact on the model’s 

prediction.  

The patient’s age is ranked as the most important feature in screening MS patients 

from others, which aligns with the research [10]. The research showed that age is a signif-

icant predictor for the diagnosis of MS because aging induces changes in the brain. The 

second most important feature, BP—systolic, was also shown to have a gradient associa-

tion with MS [54]. Moreover, platelet was proven to have an association with MS by the 

study [55]. Their investigation aimed to evaluate the MS patients’ platelet adhesiveness. 

Both pwMS and the control group had blood samples collected, and the final platelet 

count percentage showed the degree of platelet stickiness. The results showed that platelet 

stickiness raised in pwMS compared to the control subjects. Additionally, creatine was 

also proven to have a significant effect on the prediction of MS, where the study [56] 

showed that MS patients experienced higher levels of creatinine than the control group, 

which consisted of healthy subjects having the same age and gender.  

The fact that several studies are in line with the SHAP findings shows the reliability 

of the proposed model. In addition, as opposed to previous studies in the literature, this 

study focused on the prediction of MS using clinical data instead of MRI imaging, ensur-

ing that the model is computational and cost-efficient.  

6. Conclusions 

MS is a chronic inflammatory disease that causes long-term functional impairment 

and disability. It is usually misdiagnosed as other diseases, such as functional neurologic 

disorders, migraines, and arterial disease, since the symptoms vary depending on the im-

pacted areas and the damage. Furthermore, there are no specific tests that can identify MS 

with certainty. Therefore, specialists must use a differential diagnosis that depends on 

ruling out other conditions that might have a similar set of symptoms. Few people have 
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been diagnosed accurately in the early phases of their disease and receive timely care that 

contributes to reducing the course of the disease, which proves the importance of early 

screening and diagnosis in preventing complications that negatively impact patients’ 

quality of life. Accordingly, this study aimed to propose a clinically applicable and cost-

effective ML model to screen MS pre-emptively using clinical laboratory biomarkers. Ac-

cording to the comparison between the results achieved from the implemented models, 

the ET classifier outperformed other models with an accuracy of 94.74%, a precision of 

94.67%, a recall of 97.26%, and an F1-score of 95.95% using 11 features after using the 

SelectKBest approach. Furthermore, XAI was employed to ensure that medical specialists 

could easily understand how the algorithms could comprehend or interpret the judg-

ments and the most relevant features of the predictive model. The findings of SHAP indi-

cated that features including “Age”, “BP- Systolic”, and “Alkaline Phosphatase” have sig-

nificant importance on the model prediction.  

Since the occurrence of MS cases is greater in the central part than in the eastern part 

of KSA, it is recommended to collect data from different regions that could improve and 

verify the obtained results for future work. Consequently, the trained algorithm will be 

evaluated on new patients to confirm its dependability level and improve it to acquire 

better accuracy. Additionally, the model could be upgraded to diagnose the stages of MS 

reliably. 
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