
Citation: Wang, T.; Qin, L.; Dai, C.;

Wang, Z.; Gong, C. Heterogeneous

Learning of Functional Clustering

Regression and Application to

Chinese Air Pollution Data. Int. J.

Environ. Res. Public Health 2023, 20,

4155. https://doi.org/10.3390/

ijerph20054155

Academic Editors: Junzo Watada

and Wentao Gu

Received: 31 December 2022

Revised: 22 February 2023

Accepted: 23 February 2023

Published: 25 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

International  Journal  of

Environmental Research

and Public Health

Article

Heterogeneous Learning of Functional Clustering Regression
and Application to Chinese Air Pollution Data
Tingting Wang 1, Linjie Qin 2,*, Chao Dai 1, Zhen Wang 1 and Chenqi Gong 3

1 School of Statistics, Huaqiao University, Xiamen 361021, China
2 Department of Economics, Xiamen University, Xiamen 361005, China
3 College of Mathematics and Statistics, Chongqing University, Chongqing 401331, China
* Correspondence: qinlinjie@stu.xmu.edu.cn

Abstract: Clustering algorithms are widely used to mine the heterogeneity between meteorological
observations. However, traditional applications suffer from information loss due to data processing
and pay little attention to the interaction between meteorological indicators. In this paper, we combine
the ideas of functional data analysis and clustering regression, and propose a functional clustering
regression heterogeneity learning model (FCR-HL), which respects the data generation process of
meteorological data while incorporating the interaction between meteorological indicators into the
analysis of meteorological data heterogeneity. In addition, we provide an algorithm for FCR-HL
to automatically select the number of clusters, which has good statistical properties. In the later
empirical study based on PM2.5 concentrations and PM10 concentrations in China, we found that the
interaction between PM10 and PM2.5 varies significantly between regions, showing several types of
significant patterns, which provide meteorologists with new perspectives to further study the effects
between meteorological indicators.

Keywords: functional data analysis; heterogeneity learning; clustering regression;
meteorological data

1. Introduction

Environmental pollution is a hot global issue and has been given high attention by
all governments. Among air pollutants, particulate matter (PM) poses the greatest risk to
human health [1]. The Organization for Economic Cooperation and Development (OECD)
estimates that air pollution will be the leading environmental cause of death by 2050.
Therefore, it is important to mine the regional heterogeneity of air pollution and its internal
patterns. Meteorological data such as temperature, humidity, atmospheric pressure, and
pollutant concentrations are continuously changing in the atmosphere at a specific location.
Unfortunately, we are unable to obtain the original curves of continuous data directly. The
usual approach is to sample at a given time interval, thus obtaining time-series type data
in discrete cases. Obviously, no matter how intensive our sampling time is, there is no
way to avoid information loss. When performing heterogeneity mining, it is necessary
to calculate the distance between meteorological data from different regions. There are
generally two types of method for discrete type of meteorological data. The first one is
to extract representative observation statistics from continuous time by series, e.g., mean,
variance, etc. [2,3], and the second is to treat time series data according to the ordinary
high-dimensional Euclidean space. The former method further produces information loss
from data processing, while the latter maintains the full picture of discrete information,
but there is a problem of “curse of dimensionality” due to the high dimensionality when
calculating the distance of sample observations. However, the use of functional data analy-
sis (FDA) for meteorological data can avoid these problems and bring more advantages in
data processing.
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First of all, FDA respects the data generation process more. It converts discrete data
into functional data by interpolation or smoothing [4]. The advantage of this treatment
is that it retains as much information as possible about the variation of the sample in
the time domain, while also preserving the characteristics of the curve fluctuations. In
addition, with Functional Principal Component Analysis (FPCA), functional data objects
can be projected from time domain data to frequency domain data, providing a frequency
domain perspective for time series analysis. Intuitively, the meteorological time series
is decomposed into a combination of functional components, which is also consistent
with the characteristics of meteorological data. For example, temperature is influenced
by diurnal and seasonal variations, pollutant concentration is influenced by seasonal
variations, traffic peaks, and other cyclical factors. In particular, meteorological data is
often a combination of multiple trends over time. After FPCA, we can calculate the distance
between sample observations based on the finite component scores, which can effectively
avoid the problem of dimensional curse. Therefore, mining the heterogeneity and internal
pattern of meteorological data under the perspective of FDA has natural advantages.

Heterogeneous learning is achieved through clustering methods. Clustering is the
typical method to mining heterogeneity. Clustering algorithms are a classical class of
unsupervised learning algorithms that cluster samples based on the similarity of their
observations. There exists a wide range of applications in the mining of meteorological
data, such as analysis of spatial and temporal variation of pollutants, air quality moni-
toring and optimization of monitoring network, and correlating pollutant concentrations
with specific synoptic conditions [4]. The commonly used clustering methods to study
meteorological data are Partitioning clustering [5–7], Hierarchical clustering [8–10], Fuzzy
clustering [11–13] and Model-based clustering such as the EM method, SOM method,
etc. [14,15].

The above applications and models all have a common defect, that is, they are all clus-
tered directly based on the data itself, ignoring the potential structural information between
the related data, and the heterogeneity between the clusters is insufficiently described. In
fact, there are complex correlations between various air pollutants. For example, nitrogen
oxides are correlated with each other [16], and there are complex correlations between the
concentrations of PM10 and PM2.5 [17]. The correlation between meteorological data has
the potential to optimize the clustering algorithm. Therefore, from the idea of clustering
regression, we want to excavate the potential relationship between different meteorological
indicators and use it as auxiliary information to guide the clustering.

Cluster regression was first mentioned by Späth [18], which has given rise to new
ideas and vitality in the era of big data. Joki et al. [19] introduced the support vector
machine model in machine learning into CLR (Cluster-wise linear regression), transformed
the problem into an unconstrained non-smooth optimization problem, and designed a
method based on an incremental algorithm and double beam method combined with the
DC optimization method. Numerical experiments verify the reliability and effectiveness
of the method. The results show that the method after adding a support vector machine
optimizes the partitioning effect when outliers in the data. Amb et al. [20] designed a CLR
algorithm based on DCA (difference of convex algorithm) and incremental method and
used the quasi-Newton method to solve the problem. They found that the new method can
effectively solve the CLR problem under large-scale data from the evaluation of synthetic
data and real data. Da Silva and de Carvalho [21] proposed the W-CLR (Weighted Cluster-
wise Linear Regression) model, which solves the possible overfitting problem of the original
model and can better describe the linear relationship of subspace samples. Experiments
on the W-CLR synthetic dataset and benchmark datasets validate the effectiveness of the
method. In terms of the application of the model, Bagirov et al. [22] selected the monthly
rainfall data from 1889 to 2014 in eight different geographic locations in Australia and
proposed a clustered linear regression (CLR) method for monthly precipitation forecasting.
The results show that the method has advantages over models such as multiple linear
regression, neural networks, and support vector machines. Torti et al. [23] studied the
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heterogeneity problem from the perspective of CLR based on EU mask trade data, achieved
the selection of the optimal number of clusters and the best combination through a two-step
method, and obtained the optimal stable solution. However, the above research is still at
the level of linear regression. With increasingly complex data and interrelationships, simple
linear regression can hardly describe the potential connections between the data accurately.

This paper combines the dual advantages of FDA perspective with cluster regression
and proposes a functional clustering regression heterogeneity learning method (FCR-
HL). In summary, FCR-HL has the following three advantages: (1) clustering from FDA
perspective, which is more suitable for the generation process of meteorological data,
and greatly reduces the information loss problem of the original data. (2) The auxiliary
information (i.e., the regression relationship between air pollutants) is incorporated into
the clustering process to optimize the clustering results. In addition, the regression patterns
within each group can be automatically identified. (3) We develop an adaptive selection
process of the number of clusters, effectively avoiding the limitation of manual setting.
The clustering results have a direct impact on the subsequent studies. The model we
constructed can optimize the clustering results while mining the heterogeneity patterns of
different groups, and thus has practical significance and application value.

2. Methods

The FCR-HL model mainly solves four problems: (1) the optimization problem of
clustering: partitioning data into different clusters with the perspective of regression can
incorporate more information to attain a better clustering effect, and how to solve the
optimization problem is the key point. (2) Parameter estimation problem: the parameters
in the regression that explain the impact of the covariate on the response variable need to
be estimated within each cluster. (3) Clustering number estimation that decides how many
clusters are needed is an important part for the model. (4) Iterative algorithm: it is difficult
to solve the problem of both partition and parameter estimation simultaneously; our model
gives an iterative process to solve the three problems mentioned above. The following will
explain the solutions to the four problems, respectively.

2.1. Clustering Optimization and Parameter Estimation

Ramsay and Dalzell [24] proposed functional data analysis, which uses non-parametric
ideas to fit data, and can effectively capture the continuous characteristics of data. In the
functional data analysis, the functional regression model is an effective and convenient
method. This paper mainly focuses on one typical functional regression models, that is, the
covariates are functional data, and the response variables are scalar types, which have a
functional covariate and scaler response variable:

Yi = α0 +
∫

Xi(t)α1(t)dt + ei, i = 1, 2, . . . , n, t ∈ [0, T] (1)

where the response variable Yi is a scalar and the vector expression is Y = (Y1, Y2, . . . , Yn)
′,

n is the observation number, and the covariate variable Xi(t), t ∈ [0, T] represents ith
functional trajectory that has a bounded upper limit T. Assuming ei ∼ iid N

(
0, σ2), the

Karhunen-loeve expansion can be used for the functional covariates to obtain Equation (2):

Xi(t) = u(t) +
∞

∑
k=1

ξik ϕk(t) (2)

where u(t) = E[X(t)] represents the mean function of the covariate, and ϕk(t) is the
eigenfunction corresponding to the kth largest eigenvalue λk of the covariance G(s, t) =
Cov(X(t), X(s)), the eigenfunctions are orthogonal to each other, and satisfy

∫
ϕ2

k(t)dt = 1
and

∫
ϕk(t)ϕl(t)dt = 0, k 6= l. Using the functional principal component analysis (FPCA),

ξik named as the functional principal component scores of Xi(t)− u(t) in the direction of
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ϕk(t) are obtained, which satisfy E[ξik] = 0 and Var[ξik] = λk. According to Formula (2),
Formula (1) can be rewritten as:

Yi = α0 +
∫ [

u(t) +
∞

∑
k=1

ξik ϕk(t)

]
α1(t)dt + ei ≈ β0 +

K

∑
k=1

βkξik + ei (3)

where β0 = α0 +
∫

u(t)α1(t)dt, βk =
∫

ϕk(t)α1(t)dt, the mean function u(t) of Xi(t) is
mapped to the constant parameter β0, and ϕk(t) are mapped to the parameter βk. In other
words, the parameter β0 includes the mean value of Yi when Xi(t) = 0 and the information
of the mean trend of Xi(t), and the parameter βk stands for the effect of the kth deviations
of Xi(t) on Yi. In this way, the auxiliary information between the covariate and the response
variable is reflected in the parameter βk. This paper builds the FCR-HL model based on the
auxiliary information to cluster the data.

For Equation (3), the summation term is truncated at K, which is determined using the
AIC criterion Li, et al. [25], which is to estimate the optimal K, which is given by minimizing
the sum of the pseudo-Gaussian loglikelihood and K. Note Y = (Y1, Y2, . . . , Yn)

T , ξ i =

(1, ξ1, ξ2, . . . , ξK)
T , ξ = (ξ1, ξ2, . . . , ξn)

T , β = (β0, β1, β2, . . . , βK)
T , e = (e1, e2, . . . , en)

T ,
we rewrite Formula (2) in a matrix expression:

Y = ξβ + e (4)

The advantage of using FPCA technology is that the infinite-dimensional functional
data can be converted into low-dimensional data, and then it helps to construct a linear
regression model relating to the principal component scores. On one hand, this method can
reduce the computational difficulty and the algorithm complexity due to the dimensional
curse. On the other hand, it can preserve the nonlinear characteristics in the covariate,
which are utilized for the regression analysis. At the same time, the principal component
scores estimated by FPCA have good statistical characteristics, especially the unbiasedness
and consistency, which are helpful for inferring the subsequent parameter estimations
discussed later.

The goal of clustering optimization in this paper is to cluster data from the perspective
of the regression hyperplane. The FCR-HL model mainly has two steps of iterations: First,
obtaining the parameter estimates under the given partition. Second, clustering samples
based on the parameter estimates. According to the two-step iterative algorithm, the
optimal regression clustering results can be found.

Firstly, given a partition, the parameters are estimated from the perspective of the
regression hyperplane and with the data that has been partitioned. Compared with the
random partition, it takes the relationship between the covariate and response variable
as an auxiliary information for clustering. The parameters can be estimated with greater
accuracy once the partition has deduced the heterogeneity between the data. It is assumed
that the samples from the same partition have the following relationship:

yim = ξ′im βm + em, em ∼ N
(

0, σ2
m

)
, im ∈ Cm, m = 1, 2, . . . , M (5)

where C = {C1, C2, . . . , CM} represent the sub-populations and
M
∑

m=1
|Cm| = n where |Cm|

is the samples size of the cluster Cm, and M is the number of clusters, which may grow
with sample size, yim are the observed response data belonging to the cluster Cm, ξ im are the
vector scores derived from the observed functional covariate xi(t) belonging to the cluster
Cm, and βm = (1, βm1, βm2, . . . , βmK)

T are the coefficients of the cluster Cm.
In (5), it is necessary to first solve the unknown functional principal component scores,

and then we can estimate the parameter βm. It should be noted that the estimate of the
functional principal component scores can directly affect the result of the parameter es-
timates, considering that the PACE (principal component analysis through conditional
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expectation) method proposed by Yao, et al. [26] is unbiased and consistent estimation
method for the functional principal component scores. The PACE method gives the estima-
tors ξ̂ik = Ê(ξik

∣∣Xi) where Xi = (X(ti1), X(ti2), . . . , X
(
tini

)
)
′ and ξik and X

(
tij
)

are jointly
Gaussian. Then, the PACE method is used to estimate the functional principal component
scores and the mean function according to Formula (2), by which the principal compo-
nent score estimates ξ̂ and the estimation of the mean function û(t) have the following
convergence properties:

supt∈T|û(t)− u(t)| = Op

(
1√
nhu

)
(6)

lim
n→∞

ξ̂ = E[ξ|X] in probability (7)

where û(t) is obtained by the local liner smoother, and hu is the bandwidth used in the local
linear smoother. Formulas (6) and (7) show that û(t) converges to u(t) and ξ̂ are unbiased
estimates for ξ when n→ ∞ , which are the good statistical characteristics mentioned
before. Thus, ξ can be replaced by the estimates ξ̂ as a new regression model shown in
Formula (8):

yim = ξ̂ ′im βm + eim , eim ∼ N
(

0, σ2
im

)
, i ∈ Cm, m = 1, 2, . . . , M (8)

Based on Formula (8), the log-likelihood function can be shown in Formula (9):

logLn

(
K, C,

(
β1, σ2

1

)
, . . .

(
βM, σ2

M

))
= −1

2

M

∑
m=1

∑
i∈Cm

log2π + logσ2
im +

(
yim − ξ̂′im βm

)2

σ2
im

 (9)

It is difficult to obtain the optimal partition and the estimates of the unknown pa-
rameters in (9) just by maximizing logLn

(
M, C,

(
β1, σ2

1
)
, . . .

(
βM, σ2

M
))

. Thus, an iterative
method is proposed. Firstly, the optimization objective of clustering, fixing βm at β̂m and
σ2

im at σ̂2
m, is to maximize the log-likelihood function when the observation data (yi, xi(t))

belongs to the cluster:

Ĉm = argmax1≤m≤M

(
logLn

(
M, Cm,

(
β̂m, σ̂2

m

)))
= argmax1≤m≤M

{
− 1

2

(
log2π + logσ̂2

m +
(yi−ξ̂′im β̂m)

2

σ̂2
m

)}
∝ argmin1≤m≤M

{
logσ̂2

m +
(yim−ξ̂′im β̂m)

2

σ̂2
m

} (10)

To solve Formula (10), the parameter estimations
(

β̂m, σ̂2
m

)
needs to be obtained. The

idea is to maximize the log-likelihood function of the data within the class. Formula (11) is
the log-likelihood function of the data i ∈ Cm:

logLn

(
M, Cm,

(
βm, σ2

m

))
= ∑

i∈Cm

(−1
2

log2π + logσ2
m +

(
yi − ξ̂′im βm

)2

σ2
m

 (11)

Then, the parameters β̂m are obtained according to the maximum likelihood estima-
tion:

β̂m = argmaxβm

 ∑
i∈Cm

(−1
2

log2π + logσ2
im +

(
yim − ξ̂′im βm

)2

σ2
im


 =

(
ξ̂′im ξ̂ im

)−1(
ξ̂′im yim

)
(12)
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σ̂2
m =

∑i∈Cm

(
yi − ξ̂′im β̂m

)2

n̂m
(13)

n̂m =
∣∣Ĉm

∣∣ (14)

where n̂m represents the sample size of the cluster Ĉm and σ̂2
m = σ̂2

im for simplification. Then,

parameter estimations ˆ(βm, σ̂2
m, Ĉm) are brought into Formula (9) to obtain the log-likelihood

function of the complete data:

logLn

(
M, C,

(
β̂1, σ̂2

1

)
, . . .

(
β̂M, σ̂2

M

))
= −1

2

M

∑
m=1

∑
i∈Cm

(
log2π + logσ̂2

m +
(yim−ξ̂′im β̂m)

2

σ̂2
m

)
(15)

When fixing the partition Cm, the β̂m and σ̂2
m are the maximum likelihood estimators of

the regression within the cluster, as shown in (12) and (13). When fixing β̂m and σ̂2
m, the,

the likelihood function will be maximized if the test data belongs to the cluster Cm. It
is noted that the log-likelihood function is a monotonically increasing function, so it can
reach the local maximum if a limited number of iterations are carried out alternatively.
Furthermore, the parameter estimates derived from this optimization also have good
statistical characteristics. First, the principal component scores obtained by FPCA are
obtained by mapping the information of the data itself to the direction of the principal
component. ξ̂ are the unbiased estimates of ξ. Thus, ξ̂ and ξ can be considered as non-
random variables for the response variable Y, and the maximum likelihood estimation can
give estimates having good statistical characteristics, for example, the unbiasedness:

E
(

β̂m

∣∣∣X) = E
(

E
(

β̂m

∣∣∣ξ̂)∣∣∣X) = βm (16)

Var
(

β̂m

∣∣∣ξ̂) = E
(

β̂m
2
∣∣∣ξ̂)− (E

(
β̂m

∣∣∣ξ̂))2
= σ2

(
ξ̂T ξ̂

)−1
(17)

where variance of β̂m can be used to verify the significance of the parameter. Because only
the variance of β̂m is estimated correctly, the significance results of the parameter estimates
are reliable.

From Formulas (6), (7), (16), and (17), it can be known that the β̂m converges to βm
in probability. Therefore, it can be ensured that the obtained optimal number of clusters
converges to the real number with probability 1 when data is clustered from the perspective
of regression hyperplane.

In addition, it is also noted that the estimations using maximum likelihood are based
on the classical assumption that the error term in Formula (8) obeys independently and
identically normal distribution. Once the assumption is broken, the maximum likelihood
estimation results are problematic. Thus, when it comes to the data which violates the
independently and identically normal error distribution, a robust estimation (M-estimation)
scheme, a generalized maximum likelihood estimation method is given. A special case of
M-estimation is the Huber distribution, which has a normal distribution at the origin and
an exponential distribution at the tail. The parameter estimation can be obtained according
to the Huber distribution:

β̂m = argmin

{
∑

i∈Cm

ρc

(
yim − ξ̂′im βm

)}
(18)

ρc(t) =
{ 1

2 t2, |t| < c
c|t| − 1

2 c2, |t| ≥ c
(19)
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where ρc(t) is the error function of the Huber distribution, and c is a fixed constant. Given
parameter estimates β̂m, the optimal objective function for clustering can be obtained from
sample observations (yim , xim(t)):

Ĉm = argmin
{

ρc

(
yim − ξ̂′im βm

)}
(20)

This function ρc(t) is also strictly monotonically increasing.
The partition above is under the condition of a given number of clusters, so the next

step is to give an estimation method for the number of clusters.

2.2. Estimation of the Optimal Number of Clusters

After estimating model parameters and optimizing the clustering scheme, we need
to discuss the estimation of the optimal number of clusters. In this paper, the information
criteria is used as the clustering loss function among the iterative algorithm. Then, we
can simultaneously update the identification of heterogeneity in clusters and the optimal
number of clusters.

After using the FPCA, the sample data is
{(

y1, ξ̂1

)
,
(

y2, ξ̂2

)
, . . . ,

(
yn, ξ̂n

)}
. Ac-

cording to the previous analysis, it is assumed that the sample is composed of M sub-
populations, and the characteristics of each population are represented by the regression
hyperplane determined by the parameters.

Denote the partition {C = Cm, m = 1, 2, . . . , M}, Cm , {m1, m2, . . . , mnm}, and obtain
the regression model of each subpopulation is:

YCm = ξ̂′Cm
βm + eCm (21)

eCm ∼ N
(

0, σ2 Inm

)
(22)

nm = |Cm| (23)

where nm is the sample size of cluster Cm and n =
M
∑

m=1
nm, YCm

=
(
ym1 , ym2 , . . . , ymnm

)′, ξ̂Cm =
(

ξ̂m1 , ξ̂m2 , . . . , ξ̂mnm

)′
is the response variable and prin-

cipal component scores belonging to Cm, respectively, and ξ̂mj =
(

ξ̂mj1 , ξ̂mj2 , . . . , ξ̂mjK

)′
for

j = 1, 2, . . . , nm, and Inm is a nm × nm identity matrix. Notice that ξ̂Cm is a K× nm matrix,
both YCm and eCm are nm × 1 vectors. The estimation of the number of clusters adopts the
information criterion method based on the maximum likelihood estimation proposed by
Shao and Wu [27], which is denoted as LS-C and can be obtained by:

Dn
(
ĈM
)
= min

CM

M

∑
m=1

YCm − ξ̂′Cm
β̂m

2 + q(M)An (24)

where β̂m is estimated by the maximization likelihood estimation in this case, q(M) is a
strictly increasing function of M and q(M) = MK generally, and An ∝ log(n) or An ∝
loglog(n). The first part is the residual sum of squares and the second part is a penalty
function relating to M and n. At the same time, Shao and Wu [27] have proved that the
estimate derived by Dn

(
ĈM
)

will converge to the correct number of regression hyperplanes
(or the number of the clusters) with probability 1 when the sample size is large enough
( n→ ∞ ). It is noted that the LS-C is based on the maximum likelihood estimation. Again,
a robust estimation for the case that does not have an independently and identically normal
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error distribution. Rao, et al. [28] constructed the robust information criterion denoted as
RM-C:

Rn
(
ĈM
)
= min

CM

M

∑
m=1

∑
i∈Cm

ρc

(
YCm − ξ̂′Cm

β̂m

)
+ q(M)An (25)

where β̂m is obtained by using the M-estimation in this case, and both q(M) and An are
same with Formula (24). By minimizing the information criteria LS-C or RM-C when the
error distribution is independently identical normal or not, the number of clusters and the
partition can be obtained. The advantage of the information criteria LS-C and RM-C is
that the estimated number of clusters converges to the real number when the sample size
is large enough, and the details can be referenced in Shao and Wu [27] and Rao, Wu and
Shao [28].

2.3. Iterative Algorithm Design

In the FCR-HL model proposed in this paper, parameter estimation, clustering opti-
mization, and the estimation of the number of clusters are all continuously updated in the
iterative process, and this section will explain the iterative algorithm.

First, the residual sum of squares obtained based on maximum likelihood estimation
within the cluster is recorded as RSS (residual squares sums), and the residual sum of
squares obtained based on M-estimation is recorded as RRSS (robust residual squares
sums):

RSS(CM, β1, β2, . . . , βM) =
M

∑
m=1

YCm − ξ̂′Cm
β̂m

2 (26)

RRSS(CM, β1, β2, . . . , βM) =
M

∑
m=1

ρc

(
YCm − ξ̂′Cm

β̂m

)
(27)

Then, within the cluster RSS at each candidate M is calculated for the least square
regression or the RRSS for the M-estimation based regression to approximate the local
minimization, and determine the optimal cluster number by the information criteria LS-C
or the RM-C, respectively.

In addition, the regression-based cluster method is easily affected by the initial parti-
tion. The global minimum of the information criterion or its good approximation can be
achieved when using a good initial partition. Thus, it is necessary to determine the initial
partition C0. Based on the idea proposed in Qian, et al. [29], we extend it to handle the func-
tional data. The following table Algorithm 1 shows the iterative initial partition algorithm.

Algorithm 1 An iterative algorithm for initial partition.

Step 1: Using the FPCA on X(t) to estimate the functional principal component score ξ̂.
Step 2: Through mapping the mean function u(t) and the basis function ϕ(t) to the parameter β,
respectively, we build a functional regression model where the functional principal component
scores are the covariates.
Step 3: Parameters are estimated by the maximum likelihood estimation or robust estimation and
based on the whole data.
Step 4:
(1) Set a distance threshold d and a sample size constant c.
(2) For l = 1, we calculate the distance between the point and the regression hyperplane obtained
in Step 3. If the distance is less than the threshold d, then the point is partitioned into C0,1,

otherwise the point is partitioned into Cc
0,1, where |C0,1| > c,

∣∣∣ Cc
0,1

∣∣∣ > c, otherwise go to Step 5.

(3) For l = l + 1, a point in the dataset ∩l
i=1C0,i

c, we estimate the parameters again and calculate
the new distance. If the distance is less than d, the point is partitioned into C0,l+1, otherwise into

Cc
0,l+1, where

∣∣C0,l+1
∣∣ > c,

∣∣∣Cc
0,l+1

∣∣∣ > c, otherwise go to Step 5.

Step 5: Obtain the initial partition C0 =
{

C0,1, . . . , C0,l ,∩l
i=1C0,i

c
}

.
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It should be noted that the constants c and d are set based on the data. The initial
partition is an iterative hierarchical binary clustering method, which adopts a regression
model such as the least square regression in each iteration. The regression is robust, having
a high breakdown threshold; thus, the Algorithm 1 is highly likely to produce a reasonable
initial partition. After the initial partition, the iterative algorithm of the FCR-HL model are
shown in the table Algorithm 2:

Algorithm 2 The Partition iteration algorithm based on the initial partition.

Step 1: Let s = 1, we calculate the RSS0 or RRSS0 of the initial partition C0, and the parameter
estimation β̂.

Step 2: Let s = s + 1, we calculate the RSS or RRSS of the data
(

yi, ξ̂ i

)
in C0, i and in C0,j′ , j 6= j′,

respectively, and we can obtain the RSSmin or RRSSmin, where RSSmin < RSS0 or RRSSmin <
RRSS0. Then the updated partition is Cj = Cj + {(yi, xi(t)}, Ci = Ci − {(yi, xi(t)}, and let
RSS0 = RSSmin or RRSS0 = RRSSmin.
Step 3: Continue to iterate Step 2 until RSS0 or RRSS0 no longer drops.

In summary, the parameter estimations{
β̂m, σ̂2

m, M̂
}

and the partition ĈM =
{

Ĉ1, Ĉ2, . . . , ĈM
}

are updated in the iterative algo-
rithm. Finally, the final regression clustering result can be obtained.

In the simulation analysis and the empirical data analysis, the K-means method has
been used as a comparison model as it is a representative cluster method which only utilizes
the distance between observations themselves. Our model emphasizes the importance of
the auxiliary information between the response and covariate and cluster data from the
regression perspective to dig the heterogeneity.

3. Results
3.1. Data Simulation
3.1.1. Model Comparison Based on Heterogeneity Partitioning

We simulate data from three different groups that satisfies Yij = α
j
0 +

∫
Xij(t)α

j
1(t)dt +

εi, i = 1, 2, . . . , 500; j = 1, 2, 3. The number of units is 500 for each group and t is
uniformly designed on [0, 1]. Firstly, the functional covariate is generated by Xij(t) =

6
∑

k=1
ξ ik ϕk

(
tij
)

where ξ ik ∼ N(0, 1) and they are independent with each other k, and ϕk(t)

are the cubic spline basis functions. Then, the different coefficients in three groups are
simulated by α1

1(t) = ϕ1(t)− ϕ2(t), α2
1(t) = 10ϕ1(t) + 7ϕ2(t), α3

1(t) = −4ϕ1(t), where
ϕ1(t) =

√
2 sin(2πt), ϕ2(t) =

√
2 cos(4πt).

After obtaining the functional principal component scores “Score1” and “Score2” of
Xj(t) that are treated as the new explanatory variables in the regression clustering model,
our model can reduce the regression analysis from the infinite dimension. Since the error
is identically independent distributed, we use LS-C information criterion as the selection
criterion for the number of clusters, where q(M) = MK, An = clog(n) where c = 2.
Adopting the FCR-HL model proposed in this paper, the information criterion is obtained
as shown in Figure 1:
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Figure 1 shows that LS-C reaches the minimum when K = 3 (the scale of the vertical
axis is so large that the values of LS-C at K = 3 and K = 2 in Figure seem to be close, but
they are not), which is the estimation of the optimal number of clusters and consistent with
the number of real clusters. When K = 1, the LS-C reaches the maximum which means that
data without partition have poor performance. It encourages us to pay more attention to
the clustering regression. To show the superiority of the FCR-HL model, we compare the
performance of the confusion matrix with that of the K-means that is a popular and widely
used cluster method in Tables 1 and 2.

Table 1. Confusion Matrix of the simulation data based on the FCR-HL model.

Real Cluster

Cluster1 Cluster2 CLUSTER3

Predicted cluster
cluster1 440 9 8
cluster2 19 477 2
cluster3 41 14 490

Table 2. Confusion Matrix of the simulation data based on the K-means model.

Real Cluster

Cluster1 Cluster2 Cluster3

Predicted cluster
cluster1 500 246 241
cluster2 0 129 127
cluster3 0 125 132

Each row in a confusion matrix represents a predicted cluster, while each column
represents a real cluster. Table 1 shows that 440, 477, and 490 samples were correctly
clustered into groups, respectively. The confusion matrix of the K-means clustering method
in Table 2 indicates that the K-means method has a good behavior on the partition of the first
group, but it cannot effectively partition the data of the second and third group. Considering
the relationship between response variables and functional explanatory variables, our
model shows how the regression relationships change between clusters, not the distance of
the data observations themselves. The confusion matrixes show the improvement when
the auxiliary information has been added into the partition process of the data. Next, we
show the heterogeneity between the clusters.

3.1.2. Heterogeneous Hidden Information Mining

Traditional cluster methods, such as the K-means method, can only provide partition
results, while our model can provide regression information of each cluster. In addition,
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when the regression analysis is carried out to the different clusters, the heterogeneity
can be mined. If the regression analysis is carried out to the data without partition, the
heterogeneity has been ignored and the results of the regression analysis may be exact
enough or even wrong. Therefore, it is necessary to identify the heterogeneity of data with
the help of FCR-HL model.

First, the regression results of the data without partition are shown in Table 3.

Table 3. Regression Results for the Pooled Data.

Estimate Std. Error t Value Pr(>|t|)

(Intercept) −0.03764 0.28243 −0.133 0.894
Score1 0.22366 0.02075 10.781 <2 × 10−16 ***
Score2 −1.27693 0.05027 −25.401 <2 × 10−16 ***

Significance: ‘***’ represent significant at the significance level of 0.

Table 3 shows that if the data has not been clustered, that is, assuming that all the data
are from one population, the estimated parameters are all significant at the significance level
0.05, while the R2 that explains the goodness of fitting is only 0.3371, which is relatively
small. Again, it is necessary to identify the heterogeneity of the data first, and then perform
regression analysis within clusters. Then, the results will be more reliable.

Using the FCR-HL model in the simulated data by setting d = 0.02, which is adjusted
adaptively, we have the regression results of the three clusters. And the regression results
of three clusters are shown in the Table 4.

Table 4. Regression Results based on the FCR-HL Model.

Estimate Std. Error t Value Pr(>|t|)

cluster1
(Intercept) 0.0538 0.0208 2.584 0.0101 *

Score1 0.3107 0.0049 63.228 <2 × 10−16 ***
Score2 0.3525 0.0087 40.321 <2 × 10−16 ***

cluster2
(Intercept) −0.0704 0.0222 −3.166 0.00164 **

Score1 3.2098 0.0037 858.3 <2 × 10−16 ***
Score2 −2.1598 0.0069 −312.43 <2 × 10−16 ***

cluster3
(Intercept) −0.0782 0.0201 −3.899 0.000109 ***

Score1 0.0169 0.0009 18.151 <2 × 10−16 ***
Score2 −1.2642 0.0024 −536.697 <2 × 10−16 ***

Significance: ‘***’, ‘**’, ‘*’ represent significant at the significance level of 0, 0.001 and 0.01, respectively.

The parameters in the three groups are all significant at the significance level of 0.05,
and the R2 of the three groups are 0.9158, 0.9994 and 0.9981, respectively, which means
that these three regressions have better performance. Therefore, it can be shown that the
FCR-HL model has improved the fitting effect and obtain reliable parameter estimations.

Comparing with the results given by the K-means method, our model utilizes the
relationship between the response variable and the functional explanatory variable, and
incorporates this auxiliary information into the cluster process to improve the accuracy
of clustering. In addition, the FCR-HL model can update the parameter estimates by
updating the principal component scores and the number of clusters when new data enters
into the sample.

3.2. Climate Data

Using the classic Canadian weather data, which contains the annual temperature
change and rainfall information of 35 stations, the annual rainfall is used as the response
variable, using the temperature as the explanatory variable to study the influence of
temperature on rainfall. Figure 2 shows the temperature of each site:
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tively, and are obtained by the FCR-HL model, the latter two curves can better reflect the 

Figure 2. Temperature data for 35 sites (one color stands for one site).

From Figure 2, although the temperature at each site has a similar trend of change,
there are differences in the size of the trend change and the time of the change. If we
disregard these characteristics and do regression analysis on the pooled data directly,
the finding may be contradictory to the truth. Moreover, the relationship between the
temperature and rainfall is very important to distinguish which cluster the data belongs
to. We use the FCR-HL model to partition the data and explain the impact of temperature
on rainfall. The number of sites is small, the maximum likelihood parameter estimation
method is no longer applicable, and the robust estimation algorithm will be used to estimate
the parameters. Thus, the RM-C is calculated to obtain the optimal number K and the
cluster results shown in Figure 3.
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and the clustered data (the right panel).

The left picture of Figure 3 is the value of RM-C under different K obtained by the
iterative algorithm, and it is obvious that RM-C reaches the minimum at K = 2, which
means that the optimal number of clusters is 2. The sites belonging to the two clusters are
shown in Table A3, which shows that the logarithmic annual rainfall of the sites in cluster1
are always bigger than sites in cluster2. This cluster result is convincing.

To clearly illustrate the usefulness of the FCR-HL model, the parameter estimations
for the two clusters given by the FCR-HL model and parameter estimations given by
the direct regression on the pooled data. The parameter beta in the picture explains the
impact of the temperature on annual rainfall over time. As we can see, although the
yellow curve obtained by the use of regression analysis on the pooled data is smother than
both the black curve and the blue curve, which corresponds to the cluster1 and cluster2,
respectively, and are obtained by the FCR-HL model, the latter two curves can better reflect
the considerable difference fluctuation of the data. That is, the parameter estimations
after clustering can highlight the different characteristics of the data from different sub-
populations. More specifically, the parameter estimations for the cluster1 are bigger than
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the parameter estimations for the cluster2 when t ≤ 50 and t ≥ 230, which indicates that
the influence of temperature on the annual rainfall of the sites in cluster1 is always bigger
than that of the sites in the cluster2, and the parameter estimations of the cluster1 are
smaller than the parameter estimations of the cluster2 when 50 ≤ t ≤ 230, which indicates
that the influence of temperature on the annual rainfall is always smaller for the sites of
cluster1 than the sites of cluster2, conversely. In addition, the black curve and blue curve
have shown considerable different degrees of volatility, which indicates that the influence
of temperature on annual rainfall varies between groups and also over time.

In addition, Table 5 represents the parameter estimations of the regression directly
on the pooled data. Cluster1 and cluster2 stand for the regression on the partitioned
data. The R2 value of the pooled data and two clusters are 0.7567, 0.5692 and 0.6868,
respectively. It is noted that there are only thirty-five sites, and the sample sizes of the
two clusters are not large enough to ensure the unbiasedness and consistency of both the
score estimators ξ̂ and the regression estimators β̂. Given this condition, the R2 value of the
clustered data is not promoted. However, Table A3 shows the reasonability of the partitions
given by FCR-HL model. Although the performance of the R2 value is not ideal for the
Canadian weather data, we may still suggest adopting the proposed model in clustering
and heterogeneity learning.

Table 5. The regression results for both the pooled data and the clustered data given by
the FCR-HL model.

Estimate Std. Error t Value Pr(>|t|)

pool data

(Intercept) 2.8148 0.0252 111.6310 0.0000 ***
score1 0.0016 0.0002 7.9700 0.0000 ***
score2 0.0016 0.0007 2.4350 0.0211 *
score3 −0.0062 0.0014 −4.4100 0.0001 ***
score4 −0.0054 0.0027 −1.9860 0.0562 .

group1

(Intercept) 2.8476 0.0729 39.0860 2 × 10−16 ***
score1 0.0017 0.0009 1.9420 0.0711
score2 0.0021 0.0010 2.0300 0.0605 *
score3 −0.0061 0.0022 −2.7980 0.0135 *
score4 −0.0129 0.0085 −1.5110 0.1516

group2

(Intercept) 2.5803 0.0421 61.2410 0.0000 ***
score1 0.0004 0.0003 1.4130 0.1879
score2 −0.0012 0.0007 −1.8560 0.0931
score3 −0.0029 0.0015 −1.8790 0.0896
score4 −0.0045 0.0020 −2.2300 0.0498 *

Significance: ‘***’, ‘*’, ‘.’, and ‘ ’ represent significant at the significance level of 0, 0.01, 0.05, and 1, respectively.

After analyzing the simulated data and climate data, it can be seen that the FCR-HL
model improves the accuracy of clustering, and it can be seen from the results that the
FCR-HL model can detect the heterogeneity information.

3.3. China Air Pollution Data

As typical pollutants in atmosphere, inhalable particulate matter such as PM10 and
PM2.5 bring risk to human health [1,30] and obtain a lot of attention from researchers. In
the research on urban air quality, the concentration of PM10 and PM2.5 have a significant
correlation with each other. This correlation has variability across seasons and regions.
This paper uses the FCR-HL model to study the heterogeneity and characteristics of air
quality in different regions of China. We first obtain national air quality data from China
Meteorological Data Network (https://www.resdc.cn/data.aspx?DATAID=289, accessed
on 15 February 2023), and then we clean the data. Finally, we obtain PM10 and PM2.5
concentration data of 1602 stations across the country from 1 January 2019, to 31 December
2019, with a frequency of hours. The annual average PM10 concentration of each station was
obtained as a response variable, and the daily average PM2.5 concentration was obtained as

https://www.resdc.cn/data.aspx?DATAID=289
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a functional explanatory variable. Figure 4 shows the functional representation of discrete
PM2.5 concentration data:
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Figure 4. The PM2.5 concentrations at all sites (one color stands for one station).

Figure 4 shows that the PM2.5 concentration at some stations exhibit the same pattern
of change over time, while there are different patterns at other stations in the same period.
The coefficients of the regression are inexact if we make use of regression analysis on all
the data, as different groups of stations possess different relationships between PM10 and
PM2.5. This indicates that the stations need to be partitioned first. At the same time, the
auxiliary information would be beneficial for clustering.

Using the FCR-HL model proposed in this paper and considering the auxiliary infor-
mation between PM10 and PM2.5, we first perform functional principal component analysis
on PM2.5, and build a functional regression model:

yi = ξ̂′iβ + ei (28)

where yi is the PM10 concentration for the station i, and ξ̂ i is the vector estimated scores of
the PM2.5 for the station i.

To explain the advantages and necessity of the model more clearly, firstly, the coeffi-
cients over time of the functional regression without partitioning are shown in Figure 5, and
then the coefficients over time of the functional regression in each cluster are
shown in Figure 6.
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The coefficients in Figures 5 and 6 show how the impact of PM2.5 on PM10 changes
over time without partitioning and under partitions, respectively. The coefficient indicates
the annual average change in PM10 concentration with daily PM2.5 concentration, and their
signs indicate the positive and negative aspects of the correlation. Note that the impact of
PM2.5 on PM10 means that the PM10 concentration changes with the change of the PM2.5
concentration over time. In Figure 6, according to the iterative clustering algorithm, the
stations are divided into 11 groups as the optimal number of clusters is estimated to be 11,
and the heterogeneity partition for analyzing the relationship between PM10 and PM2.5 are
also shown.

As we can see, the regression coefficients in Figure 5 are much smoother over time.
Most of them are small and positive values, which consider that the influence of PM2.5
on PM10 is almost positive and small over time for all stations. However, the impact may
not be exact enough without taking into account the heterogeneities between stations as
mentioned above. On the contrary, the coefficients after utilizing FCR-HL model are more
convincing for the influence of PM2.5 on PM10. In Figure 6, the regression coefficients for
all 11 groups have entirely different characteristics. First, these regression coefficients are
both positive and negative, which differ from those in Figure 5. Second, the regression
coefficients of all 11 clusters have more steep variation trends than those in Figure 5.
Regression coefficients differ from one cluster to another. For example, the coefficient of
cluster1 shows a rise and then a fall, and includes a local maximum and a local minimum
from day 0 to day 100, which means that the impact of PM2.5 on PM10 increases first
and then decreases, while the coefficient of cluster 5 only decreases and only has one
local minimum from day 0 to day 100, which means that the impact of PM2.5 on PM10 is
always decreasing. For another example, a similar trend is observed for the coefficients
of cluster1 and cluster 9 from day 0 to day 100, but the values are different, especially
the local maximum and local minimum. All these differences between the 11 clusters
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can demonstrate the existence of heterogeneity and the importance of the heterogeneity
partition. Additionally, the coefficients of each cluster can better show the varying impact
over time. As for the stations of the cluster1, the impact of PM2.5 on PM10 is negative at the
beginning and then positive until close to day 100, from where the impact is negative until
close to day 230 and then positive until day 300, and the impact is negative on the last day.
By that analogy, how the impact of PM2.5 on PM10 varies over time and how much impact
of PM2.5 on PM10 at a fixed time can be obtained for the 11 clusters.

In addition, from (28), the parameters estimations for the pooled data and grouped
data are shown in Tables A1 and A2 (in Appendix A), respectively. It can be seen from
Table A1 that the functional principal component scores 5 and 6 in the regression results
are not significant, and the R2 of the regression is 0.7484. In Table A2, the results of
the 11 groups divided by the FCR-HL model show that the functional principal component
scores are almost significant except the score3 in the 4th group and the score6 in the 7th
group, and the R2 of all groups are all above 0.9. It is noted that the functional explanatory
variable in the FCR-HL model is expanded by the Karhunen-loeve theory, after which the
functional principal component scores contain the essential information of the explanatory
variable. Thus, the insignificance of the functional principal component scores in Table A1
resulting in the rejection of important parameters bears witness to the inaccuracy of the
regression analysis on the pooled data which has the heterogeneity feature. By contrast,
almost all the parameters estimated by the FCR-HL model are significant, which means
that almost all the essential auxiliary information has been widely used for clustering.
Additionally, the improvement of R2 of all the groups also testifies the efficiency of the
FCR-HL model. In the end, these comparisons show that the FCR-HL model can effectively
work on heterogeneity partition and mining its internal information.

The K-means method is also used to compare the performance of the R2 with that of
the FCR-HL model. The comparison is shown in Table 6.

Table 6. The performance of the R2 of the K-means method and FCR-HL model.

Cluster R2

K-means

cluster1 0.1761
cluster2 0.5314
cluster3 0.1686
cluster4 0.7081
cluster5 0.4111
cluster6 0.7845

FCR-HL model

cluster1 0.9939
cluster2 0.9947
cluster3 0.9939
cluster4 0.9734
cluster5 0.9723
cluster6 0.9941
cluster7 0.9873
cluster8 0.9916
cluster9 0.9893

cluster10 0.9955
cluster11 0.9983

From Table 6, it is obvious that FCR-HL model promote the goodness of the regression
analysis of the PM10 on PM2.5 significantly. Considering the auxiliary information will
improve the cluster results, since the distance that is the key role in clustering has been
set to be the distance between the data and regression hyperplane, not between the data
itself. Then, the results of the FCR-HL model help us to better understand how the PM2.5
concentrations impact the PM10 concentrations.

In summary, the PM2.5 and PM10 data in the empirical analysis section are clustered
into 11 groups by using our model. On one hand, the impact of the PM2.5 on the PM10



Int. J. Environ. Res. Public Health 2023, 20, 4155 17 of 21

varies over time and between groups, by which there is obvious heterogeneity between
groups. On the other hand, the significance of the parameters in Tables A1 and A2 expresses
the importance of the partition to avoid the loss of essential information. In each cluster,
the impact of the PM2.5 on PM10 has up-and-down fluctuations, which means that the
PM10 concentration changes with the PM2.5 concentration up and down. Moreover, the
coefficients in all clusters show that the impact is not always positive.

4. Discussion

This paper constructs a heterogeneity learning model from the perspective of data
clustering, which can solve the problem of clustering and provide implicit structural
information about heterogeneity at the same time. Combining the regression model with
the clustering algorithm can not only incorporate more effective information into the
clustering and improve the accuracy of the clustering, but also analyze more precisely the
relationship between the explanatory variables and the explained variables in different
clusters (also called as the subpopulations). In addition, because the complexity of the actual
data makes the classical regression model unable to capture the continuous characteristics of
the data, we need functional data analysis techniques to add the continuous characteristics
of the data to improve the research of regression clustering. Based on the functional data
analysis technology, this paper uses the principal component scores and then reconstructs
a new regression function. Using the iterative algorithm and information criterion, we
can obtain the number of clusters and parameter estimations simultaneously. Regarding
the FCR-HL model, the advantages in statistics are: first, each parameter estimation is
consistent; second, the iterative algorithm can give cluster results at the same time, and
they can be updated when new samples are added. The advantage in the application is that
it detects the heterogeneity in data and explains how the covariate impacts the response.

In addition, both data simulation and empirical results illustrate the effectiveness of
the new model and its broad application prospects. Simulation, case data and empirical
data are used, and the results given by the FCR-HL model are compared with the that
of the well-known K-means method. The comparisons show that our model can better
partition data as the regression clustering utilizes the auxiliary information to explain how
differently regression performs across the clusters, while the K-means method focus on
how the distances among data behave differently across the clusters.

In summary, the data for environmental research and public health, for example,
the climate data, has heterogeneity. In this way, the FCR-HL model is proving to be
hugely powerful. Two future directions are pointed out. (1) We will analyze other types
of air pollution data and public health data to make our model more systematized and
comprehensive. (2) The auxiliary information plays an important role in our model, and
data is inextricably linked in a complex social network. Therefore, digging more useful
information, such as the network information and text information, and then putting them
into the model will improve the study of the heterogeneity learning.

5. Conclusions

In this paper, we proposed the FCR-HL model to handle air pollution data. Firstly,
the starting point of the article lies in the heterogeneity learning in the data and extends
it to the functional data. Secondly, we introduce the model design, parameter estimation,
and the iterative algorithm. To testify the validity of our model, the famous K-means and
our model are both used in the simulation and climate data, and the performance of our
model is better. An empirical analysis on the air pollution data is adopted in the final. The
results show that the impact of the PM2.5 on PM10 varies between clusters and over time.
To sum up, the FCR-HL model captures the continuity in data itself and incorporates the
auxiliary information to support multiple pieces of information, including the number
of subpopulations and how the PM2.5 impact the PM10 over time. Thus, this model may
provide some effective information for the policymaking department and a new perspective
for research.
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Appendix A

Table A1. The regression results of the pooled air pollution data.

Estimate Std. Error t Value Pr(>|t|)

(Intercept) 63.6477 0.4041 157.519 2 × 10−16 ***
score1 0.0781 0.0012 67.745 2 × 10−16 ***
score2 −0.0446 0.0046 −9.764 2 × 10−16 ***
score3 0.0479 0.0067 7.201 9.15 × 10−13 ***
score4 1.2418 0.5128 2.422 0.0156 *
score5 −0.8467 0.5523 −1.533 0.1255
score6 1.9677 2.25668 0.872 0.3834

Significance: ‘***’, ‘*’, and ‘ ’ represent significant at the significance level of 0, 0.01, and 1, respectively.

Table A2. Regression results of the clustered air pollution data given by the FCR-HL model.

Estimate Std. Error t Value Pr(>|t|)

cluster1

(Intercept) 6.45 × 10 1.76 × 10−1 365.78 <2 × 10−16 ***
score1 8.81 × 10−2 5.88 × 10−4 149.88 <2 × 10−16 ***

score2 −7.03 ×
10−2 2.64 × 10−3 −26.59 <2 × 10−16 ***

score3 5.82 × 10−2 3.06 × 10−3 19 <2 × 10−16 ***
score4 6.59 2.34 × 10−1 28.22 <2 × 10−16 ***
score5 −4.3 2.17 × 10−1 −19.8 <2 × 10−16 ***
score6 −1.44 × 10 1.11 −12.96 <2 × 10−16 ***

cluster2

(Intercept) 55.0751 0.1337 411.858 <2 × 10−16 ***
score1 0.0789 0.0005 160.485 <2 × 10−16 ***
score2 -0.05 0.0019 −26.169 <2 × 10−16 ***
score3 0.0058 0.0023 2.573 0.011 *
score4 3.3271 0.1821 18.266 <2 × 10−16 ***
score5 −3.9563 0.2132 −18.555 <2 × 10−16 ***
score6 2.1775 0.7535 2.89 0.0044 **

cluster3

(Intercept) 60.4412 0.2281 264.932 <2 × 10−16 ***
score1 0.0974 0.0008 123.178 <2 × 10−16 ***
score2 −0.0468 0.0032 −14.712 <2 × 10−16 ***
score3 −0.161 0.0032 −50.531 <2 × 10−16 ***
score4 −6.1258 0.2505 −24.454 <2 × 10−16 ***
score5 −7.8931 0.2726 −28.958 <2 × 10−16 ***
score6 6.3206 1.1952 5.288 5.50 × 10−7 ***

cluster4

(Intercept) 104.0814 2.0545 50.661 <2 × 10−16 ***
score1 0.0315 0.0053 5.981 1.30 × 10−6 ***
score2 −0.259 0.0148 −17.474 <2 × 10−16 ***
score3 0.0167 0.0291 0.574 0.57
score4 20.1699 1.6918 11.922 4.11 × 10−13 ***
score5 7.6024 1.6622 4.574 7.26 × 10−5 ***
score6 52.44 6.3217 8.295 2.27 × 10−9 ***
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Table A2. Cont.

Estimate Std. Error t Value Pr(>|t|)

cluster5

(Intercept) 6.12 × 10 1.62 × 10−1 376.952 <2 × 10−16 ***
score1 3.28 × 10−2 7.63 × 10−4 42.908 <2 × 10−16 ***
score2 3.97 × 10−2 2.02 × 10−3 19.622 <2 × 10−16 ***

score3 −2.03 ×
10−2 2.40 × 10−3 −8.432 2.08 × 10−14 ***

score4 9.82 × 10−1 2.37 × 10−1 4.151 5.41 × 10−5 ***
score5 9.92 2.71 × 10−1 36.566 <2 × 10−16 ***
score6 −2.99 × 10 9.93 × 10−1 −30.08 <2 × 10−16 ***

cluster6

(Intercept) 6.55 × 10 1.58 × 10−1 415.781 <2 × 10−16 ***
score1 6.05 × 10−2 6.30 × 10−4 96.018 <2 × 10−16 ***

score2 −9.49 ×
10−2 2.13 × 10−3 −44.605 <2 × 10−16 ***

score3 1.09 × 10−2 2.10 × 10−3 5.194 6.6 × 10−7 ***
score4 −7.36 1.80 × 10−1 −40.973 <2 × 10−16 ***
score5 1.49 × 10−1 2.27 × 10−1 65.489 <2 × 10−16 ***
score6 −5.20 × 10 9.65 × 10−1 −53.847 <2 × 10−16 ***

cluster7

(Intercept) 74.7728 0.2767 270.233 <2 × 10−16 ***
score1 0.0388 0.001 39.286 <2 × 10−16 ***
score2 0.1413 0.0031 45.309 <2 × 10−16 ***
score3 −0.0197 0.0042 -4.719 7.42 × 10−6 ***
score4 10.5498 0.2731 38.627 <2 × 10−16 ***
score5 9.7765 0.3227 30.291 <2 × 10−16 ***
score6 0.5924 1.7418 0.34 0.734

cluster8

(Intercept) 77.3713 0.3616 213.98 <2 × 10−16 ***
score1 −0.0449 0.0015 −30.61 <2 × 10−16 ***
score2 0.3551 0.0048 74.57 <2 × 10−16 ***
score3 −0.1436 0.0059 −24.25 <2 × 10−16 ***
score4 −7.0449 0.48 −14.68 <2 × 10−16 ***
score5 29.8419 0.5953 50.13 <2 × 10−16 ***
score6 −70.2609 2.4218 −29.01 <2 × 10−16 ***

cluster9

(Intercept) 6.29 × 10 1.69 × 10−1 372.187 <2 × 10−16 ***
score1 5.10 × 10−2 6.71 × 10−4 75.997 <2 × 10−16 ***

score2 −2.14 ×
10−2 2.41 × 10−3 −8.901 2.45× 10−15 ***

score3 9.14 × 10−2 2.57 × 10−3 35.527 <2 × 10−16 ***
score4 −6.33 2.25 × 10−1 −28.095 <2 × 10−16 ***
score5 5.51 2.26 × 10−1 24.375 <2 × 10−16 ***
score6 −5.27 × 10 1.03 × 10 −51.265 <2 × 10−16 ***

cluster10

(Intercept) 6.10 × 10 1.15 × 10−1 530.873 <2 × 10−16 ***
score1 7.02 × 10−2 3.82 × 10−4 183.837 <2 × 10−16 ***
score2 1.00 × 10−2 1.53 × 10−3 6.573 4.07× 10−10 ***

score3 −3.93 ×
10−2 2.21 × 10−3 −17.808 <2 × 10−16 ***

score4 −5.85 ×
10−1 1.59 × 10−1 −3.684 0.0003 ***

score5 9.67 × 10−1 1.61 × 10−1 6.013 8.35 × 10−9 ***
score6 −4.00× 10 7.40 × 10−1 −54.035 <2 × 10−16 ***

cluster11

(Intercept) 7.46 × 10 1.81 × 10−1 411.65 <2 × 10−16 ***
score1 9.24 × 10−2 4.03 × 10−4 229.33 <2 × 10−16 ***

score2 −9.89 ×
10−2 2.14 × 10−3 −46.2 <2 × 10−16 ***

score3 1.28 × 10−1 3.33 × 10−3 38.49 <2 × 10−16 ***
score4 −1.28 × 10 2.44 × 10−1 −52.26 <2 × 10−16 ***
score5 8.20 2.68 × 10−1 30.61 <2 × 10−16 ***
score6 4.40 × 10 9.94 × 10−1 44.22 <2 × 10−16 ***

Significance: ‘***’, ‘**’, ‘*’, and ‘ ’ represent significant at the significance level of 0, 0.01, and 1, respectively.
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Table A3. Two clusters for the Canadian weather case by using the FCR-HL model.

Sites

cluster1

St. Johns(3.17), Halifax(3.16), Sydney(3.17),
Yarmouth(3.10), Charlottvl(3.08),

Fredericton(3.05), Scheffervll(2.90),
Arvida(2.95), Bagottville(2.97), Quebec(3.08),

Sherbrooke(3.05), Montreal(2.97), Ottawa(2.96),
Toronto(2.89), London(2.98), Thunderbay(2.85),

Vancouver(3.06), Victoria(2.93), Pr.
George(2.78), Pr. Rupert(3.41)

cluster2

Winnipeg(2.71), The Pas(2.65), Churchill(2.61),
Regina(2.57), Pr. Albert(2.61), Uranium

Cty(2.56), Edmonton(2.67), Calgary(2.60),
Kamloops(2.43), Whitehorse(2.43),

Dawson(2.52), Yellowknife(2.43), Iqaluit(2.62),
Inuvik(2.42), Resolute(2.16)

The values in the brackets are the logarithmic annual rainfall of the sites.
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