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Abstract: Water pollution caused by microplastics represents an important challenge for the environ-
ment and people’s health. The weak international regulations and standards in this domain support
increased water pollution with microplastics. The literature is unsuccessful in establishing a common
approach regarding this subject. The main objective of this research is to develop a new approach to
necessary policies and ways of action to decrease water pollution caused by microplastics. In this
context, we quantified the impact of European water pollution caused by microplastics in the circular
economy. The main research methods used in the paper are meta-analysis, statistical analysis and an
econometric approach. A new econometric model is developed in order to assist the decision makers
in increasing efficiency of public policies regarding water pollution elimination. The main result of
this study relies on combining, in an integrated way, the Organisation for Economic Co-operation
and Development’s (OECD) data on microplastic water pollution and identifying relevant policies to
combat this type of pollution.

Keywords: microplastics; water pollution; water anti-pollution policies; circular economy

1. Introduction

The global economy, in its quest for economic efficiency during the period of extensive
development (1970–2010), developed alternative materials based on polyethylene and
polyurethane elastomer compounds. These compounds directly increase the marginal yield
of production, but their impact on the environment and the health of the population has
been neglected. In the case of water, microplastics are also found in sediments. The main
characteristic of microplastics is their slow biodegradation, which leads to the formation of
microplastic residues contaminating the environment and aquatic organisms. Poor aquatic
wildlife health directly impacts human consumers in the food chain.

The presence of microplastics in the marine and freshwater aquatic environment has
gradually increased and there is now a high rate of contamination of ecosystems and
food chains, which are exposed to increasing amounts of new microplastics, hampering
remediation efforts by the relevant entities.

Current research shows that the impact of microplastics on the environment, especially
the aquatic environment, is devastating, leading to irreversible changes in the biodiversity
of the aquatic macroenvironment and causing multiple diseases in the population.

In this context, our approach aims to demonstrate that anti-pollution policies, although
heavily supported financially, are currently not very effective, particularly due to disparities
in anti-pollution policies regarding types of plastic and at a regional level.
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Regional disparities lead to the dissipation of efforts to combat pollution, and more
effective pollution-control measures are needed.

In the case of microplastics, both consumption and production show a large regional
disparity (see Figure 1).
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Figure 1. Regional disparities in microplastics consumption and production.

The authors have arrived at these disparity rates using statistics found in the United
Nation’s Environment Programme, “Mapping of Global Plastics Value chain and Plastics
Loses to the Environment” [1].

We started our approach with the European Commission’s implementation of the
EU Plastic Strategy, which strongly emphasises the elimination of intentionally added
microplastics in various products. This approach by the European Commission is supported
by the European Chemicals Agency (ECHA). Unfortunately, there is no common concern in
this area at the global level either, except for the relatively limited involvement of the OECD.

Returning to the EU27, some Member States have already banned by national legisla-
tion the intentional use of microplastics in consumer products. These bans cover a wide
area, from food to cosmetics.

According to international statistics, 42,000 tonnes of microplastics end up in the
environment every year in Europe [2]. The main sources of microplastic pollution in
European waters are artificial turfs for sports fields and the wear and tear of larger pieces
of plastic produced as commercial packaging waste.

In 2022, the European Commission launched a draft regulation on Registration, Evalu-
ation, Authorisation and Restriction of Chemicals (REACH) regarding synthetic polymer
microparticles [3], which came up for discussion among Member States at the end of 2022
and will be finalised in 2023.

The main directions are to set strict criteria for the release of non-degradable polymers,
as the lower limit size of the particles has been eliminated.

In this case, one opposition came from the Committee for Socio-Economic Analysis
(CASE) in December 2020, which supported imposing a lower limit of 1 nm for restricting
microplastics.

In support of this scientific approach, we define the following research objectives:
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O1. Determine the level of connection of microplastic water pollution to the regional
microplastic limiting capacity;

O2. Determine the level of connection of water pollution with the level of implementa-
tion of the circular economy;

O3. Define a regional regression correlation model of microplastic water pollution
control using circular economy tools;

O4. Define relevant public policy proposals to increase the effectiveness of actions to
combat water pollution caused by microplastics.

The study continues with the Section 3, in which the model-building methodology is
presented, followed by the Sections 4 and 5 in which the working hypotheses and policy
proposals are demonstrated. The Section 6 is dedicated to conclusions.

2. Literature Review

The latest research in the field of microplastic water pollution presents significant,
sometimes contradictory, aspects of pollution management, sources of pollution and its
impact on the environment and human health.

An extremely unpleasant finding reveals that microplastics are widely found in aquatic
environments. Authors such as Shi et al. [4] look for solutions regarding the efficient
removal of microplastics from water and propose nano-Fe3O4 magnetic technology, which
causes optimal magnetization of microplastics by surface adsorption. The next operation
consists of magnet suction. The yield of this process varies between 62% and 87% in
case of water pollution with polyethylene, polypropylene, polystyrene and polyethylene
terephthalate, with dimensions of about 200–900 µm.

According to Wang et al. [5], cases of advanced microplastic-contaminated water,
treatment technologies, exoelectrogen biofilm and associated microbial electrochemical
processes occupy an important place. The analysis quantifies the impact of microplastics
on the exoelectrogenic biofilm, with potential mechanisms revealed at the gene level. The
authors believe that this approach can lay the methodological foundations for the future
development of efficient water treatment technologies.

Since microplastics are present in both water resources and water supply systems
(in pipes), some specialists, such as Chu et al. [6], focus on quantifying the presence of
these microplastics throughout the distribution system. The analysis found that nylon
and polyvinyl chloride were predominant in the water samples, but that the existence of
efficient drinking water treatment plants and distribution systems prevented microplastics
from entering the tap water. Furthermore, the authors note the necessary correlation
between the stability of pipe scales and improved water quality and safety. Monitoring the
presence of microplastics in water sources is also reviewed by Nicolai et al. [7], who use a
new particle counter based on a real-time fluorescence emission analysis. The case study
covers polyvinyl chloride and high-density polyethylene. The presence of microplastics in
a drinking water treatment plant in Barcelona (Spain) is analyzed by Dronjak et al. [8]. The
analysis focuses on microplastic particles in water with sizes between 20 µm and 5 mm. The
authors use Fenton’s reagent and hydrogen peroxide, as well as a zinc chloride solution.
Visual identification was carried out with an optical and stereoscopic microscope, finally
obtaining a microplastic removal yield of 98.3% from water, the main types of microplastics
removed being polymers and synthetic cellulose, polyester, polyamide, polypropylene,
polyethylene, polyurethane and polyacrylonitrile.

The conceptual approach to microplastic water pollution using reference materials is
by Seghers et al. [9]. The authors support the use of a kit with microplastics immobilized in
solid NaCl and a surfactant that they implemented for polyethylene terephthalate (PET)
particles in water. Information on particle size distributions and shapes was obtained
using laser diffraction, and the homogeneity of these particles was calculated using an
ultra-microbalance.

Other authors, such as P. Wang et al. [10], propose the use of solar energy for the
efficient removal of plastic particles from water. Basically, a bubble is created in a high-
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power density glass ball by focusing it in sunlight. It then collects the plastic particles into
large clumps. The advantage of this method is that it does not use chemical or biological
reagents or filters. Additionally, the costs of implementing the procedure are much lower
than those of “classical” technologies.

An alarming finding is made by Karapanagioti and Kalavrouziotis [11], who state
that “no microplastic removal treatment is currently used for drinking water”. The authors
analysed the presence of microplastics in waters from different regions of the world, such
as Russia, India, Italy, Greece and Cyprus, finding a direct connection between microplastic
concentrations in water and surrounding land uses. The studies involved direct sampling
of water and soil as well as sampling organisms that interacted with microplastics, such as
zooplankton or zebra mussels.

An alternative method of treating water pollution containing plastic is presented by
Martin et al. [12] and consists of using iron oxide nanoparticles with hydrophobic coatings
to magnetize waste plastic particles. The authors claim that this method allows for the
complete removal of particles 2–5 mm in size, and almost 90% of nanoplastic particles
100 nm–1000 nm in size, using a simple 2-inch NdFeB permanent magnet.

The presence of microplastics in lake waters is reviewed by Viitala et al. [13], focusing
on the Lake Saimaa sub-basin (Finland). The authors quantify the connection between the
presence of the local wastewater treatment plant and the plastic concentration in different
compartments of the receiving lake based on the collection of bottom sediment samples.
These samples were analysed using pyrolysis-gas chromatography-mass spectrometry. The
results showed the presence of higher concentrations of polyethylene (PE), polypropy-
lene (PP) and polystyrene (PS) in the water near the wastewater treatment plant effluent
discharge site compared to other sites.

Microplastic pollution is more pronounced in semi-enclosed seas to which many
urban conurbations have access. Authors such as Trani et al. [14] have studied the case of
the Mediterranean Sea since 2012, focusing on the Salento peninsula (Apulia, Italy). The
analyses cover both surface waters and microplastics ingested by certain marine organisms.
For this purpose, Neuston and Manta net monitoring were used and the level of microplastic
contamination of different fish and mussel species was targeted. The results of the analysis
show that microplastic water pollution is higher in the Adriatic Sea than in the Ionian Sea
and that the concentration of microplastics at the sea surface and in the gastrointestinal
tract of targeted species is higher. Another semi-enclosed sea is the Black Sea, whose plastic
pollution is analysed by Strokal et al. [15] based on five scenarios modelled using a model
assessing riverine inputs of pollutants to the sea (MARINA-Global) for 107 sub-basins. The
authors state that European rivers flowing into the Black Sea discharge more than half of
all microplastics and, as a result, make proposals for environmental policies capable of
reducing pollution in the Black Sea to zero. Microplastic pollution of marine systems is the
subject of an investigation by Yuan et al. [16] that reviews the current state of research in
this area. The authors consider seafood consumption, lung inhalation and skin infiltration
to be the main causes of human exposure to microplastics from the marine environment.
The authors highlight the risks that microplastics in water pose on human health, referring
to certain cancers and chronic and acute toxicity. The risks microplastics pose to human
health are also addressed by Sarma et al. [17]. The authors conclude that urban wastewater
flushing is the main source of microplastic water pollution. The impact of microplastics on
human health through commercial fish, crustacean and bivalve species, is addressed by
Sánchez-Guerrero-Hernández et al. [18], based on a case study of the main commercial fish
species in Spain: the European anchovy and the European sardine. In order to determine
the presence of microplastics in these fish, the authors used an alkaline organic oxidant
(KOH-H2O2), which identified nylon as the main polymer found in both fish species. The
impact of microplastics on health is the subject of a study by Kadac-Czapska et al. [19],
who consider that the most common route of exposure is the gastrointestinal tract. In this
context, microplastics (PET, PE, PP, PS, PVC, PA and PC) enter the human body through
the consumption of fish, shellfish and water.
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Technologies to remove microplastics from water are investigated by Gao et al. [20],
who consider both technical processes and related costs. Furthermore, the authors refer to
the practical efficiency of plastic removal technologies from water and their impact on the
environment.

Microplastic pollutants < 5 mm in diameter from different countries and regions are
reviewed by Yang et al. [21] in terms of abundance, morphology and polymer types in
water and lake sediments. The authors conclude that the level of microplastic pollution
depends on the level of local development and the economic structure of the areas analysed.
The authors sound the alarm for an optimal microplastic pollution control system in
lake systems.

The connection between microplastics (polyethylene and polyvinyl chloride), UV and
bacteria (Gram-negative and Gram-positive) in water is presented by Manoli et al. [22]. The
authors aim to quantify the effect of microplastics on UV disinfection performance in order
to increase the efficiency of physical and chemical disinfection processes in different waters.

The increase in plastic production, the development of international trade in these
products and plastic waste and the intensification of the use of plastics in the economy
on the African continent are addressed by Deme et al. [23]. The authors study legislation
supporting sustainable economic development in African countries and conclude that
national policymakers’ approaches are ineffective in this area. As a result, these authors
support environmental policy decisions based on price, legislation and the implementation
of the best practices in microplastics waste management.

An interesting analysis developed by Usman et al. [24] discusses plastic production,
plastic waste management defects and human health. The analysis shows that the presence
of microplastics in food and drinking water has long-term health effects on the population.
The authors mention that “there is no regulation of plastic contamination of food and
drinking water” and propose increased collaboration in this area at international and
national levels. Microplastic water pollution can lead to rare forms of cancer, as shown in a
study by Mocanu et al. [25]. This approach is also taken up in the research carried out by
Nastase et al. [26].

Lofty et al. [27] critique the circular economy from the perspective of the use of
sewage sludge generated by wastewater treatment plants in agriculture. The authors
believe that there is a possibility that plastic successfully removed from sewage treatment
plants and deposited in the soil may return to natural waters through runoff or seepage
into groundwater. Based on official statistics provided by the European Commission and
Eurostat, the authors state that the practice of spreading sludge on agricultural land can lead
to the creation of an impressive global reservoir of plastic pollution. A contrary approach
sees the circular economy as the key to a more sustainable use of plastic. The authors of
this approach, Syberg et al. [28], consider that “explicit considerations of microplastics
contamination are rarely taken into account in studies of the transition to a plastic circular
economy”. Furthermore, they state that there are situations and areas where recycling can
lead to increased microplastic contamination. The circular economy from the perspective
of microplastic water contamination is addressed by Syberg et al. [28], with the authors
providing recommendations on how reducing microplastic contamination and transitioning
to the circular economy can be interlinked in future research. Moreover, in the view of
Cook et al. [29], the development of the circular economy must not have negative effects
on human health and the environment. The authors use the scenario method to quantify
the environmental impact of post-consumer plastic packaging resource recovery processes
and recommend to developing countries the mechanical reprocessing of these plastics at
the expense of chemical recycling procedures. In the framework of the circular economy,
bioplastics represent a great challenge according to Rosenboom et al. [30] in the process
of transforming them into high-quality materials. The authors stress the need for new
regulations and financial incentives to support the sustainable recycling of these categories
of bioplastics.
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Perpetuation of plastic pollution along the food chain in the aquatic environment of
the Vipacco River, northeastern Italy is studied by Bertoli et al. [31], who state that the
main source of microplastic pollution in the aquatic environment is urban wastewater
discharge. The effects of this pollution are quantified at the level of entire macrobenthic
invertebrate communities and have results that are difficult to generalize. As a result, the
authors stress the need for further studies. In this context, other authors, such as Mehinto
et al. [32], propose a risk-management system for aquatic ecosystems. The authors establish
four thresholds for plastic contamination of water based on studies in the literature, on
the basis of which they define two mechanisms of effects: dietary dilution with thresholds
ranging from ~0.5 to 35 particles/L and tissue translocation with thresholds ranging from
~60 to 4100 particles/L. Another model for risk assessment of marine water pollution with
plastic is presented by Yuan et al. [33], who call for a screening strategy. This strategy
allows the prioritisation of polymers of primary interest in marine waters: PUR, PVC, PAN,
ABS, PMMA, SAN, TPU, UP, PET, PS and HDPE. The authors make recommendations
to policy makers on how to better manage microplastics in marine waters. Microplastics
are, according to Hossain et al. [34], one of the fastest-growing wastes in the world. The
authors conduct an impressive meta-analysis of Australia’s plastic waste management
system in the context of the transition to the circular economy. The analysis shows that
the most widespread forms of plastic in the environment are high-density polyethylene,
polyethylene terephthalate and low-density polyethylene. In the case of microplastics,
households generate the largest amount of PET and HDPE. The management of microplastic
waste, including that found in water, is strongly influenced by the involvement of local and
regional communities.

According to research by Campanale et al. [35], 50% of microplastic particles between
0.02 and 0.1 mm in size are transported by water runoff. The authors focus their research
on temporary ponds, stormwater retention ponds and small streams, drawing attention
to the extremely small number of studies (eight) conducted so far on the ecosystems and
related to these water resources.

Other authors, such as Vuori and Ollikainen [36], point out that there are no standards
regulating the amount of microplastics in wastewater. Their approach focuses on the
cost-effectiveness of three types of wastewater treatment (activated sludge, rapid sand
filtration and membrane bioreactor) and two sludge management technologies (anaerobic
digestion and incineration), aiming to quantify the impact of microplastic pollution on the
aquatic environment and aquatic ecosystems. The analysis concludes that the removal of
microplastics from wastewater is technically feasible and economically profitable.

An interesting cause of increased water pollution caused microplastics is the impact
of flooding on waste management facilities. According to Ponti et al. [37], these floods
can release micropollutants into freshwater systems, impacting the marine environment,
agricultural ecosystems and human health. Based on the existing situation in the UK, the
authors propose a correlated analysis of the official waste statistics with rainfall and river
flood extent maps. Furthermore, they believe that site-specific mitigation measures and
containment systems capable of reducing the amount of flood-induced microplastics from
waste management facilities are needed.

Risk management for aquatic ecosystems is considered by Mehinto et al. [32] to be
closely related to pollution control measures that mitigate environmental emissions. The
authors use four pollution risk thresholds, official statistical data, microplastic toxicity
studies and a metanalysis in the field. Following this analysis, the authors make recom-
mendations on the quantification of water pollution, including microplastics, and a more
efficient identification of risk thresholds. Risk management of microplastic pollution of
water sources is also addressed by Thornton Hampton et al. [38], who point out that there
is no internationally unified approach to how microplastic concentrations should be re-
ported. For this reason, the authors recommend that microplastic concentrations should be
calculated at least by both mass and number.
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An analysis of the degree of pollution of water sources caused by microplastics is
carried out by Chakraborty et al. [39] and covers the period of 2015–2021. The authors
use Raman spectroscopy and conclude that the most widespread microplastics in water
sources are polystyrene (PS), polyethylene terephthalate (PET), polyethylene (PE) and
polypropylene (PP). In addition to this, the authors define the main sources of microplastic
water pollution as urban waste, fishing activities and industrial waste.

An interesting study carried out by Angelakis et al. [40] highlights, on the one hand,
the historical evolution of water quality and, on the other hand, the current challenges for
water quality management and protection. The authors believe that the analysis of the
methods and solutions offered by the evolution of mankind in relation to the management
of water sources is beneficial to look at for present and future solutions in this field.

The analysis of microplastic pollution in Italian marine waters is carried out by Sbrana
et al. [41], in the context of European marine water protection legislation and its impact
on marine ecosystems. The analysis reveals that the concentration of microplastics in the
water decreases with distance away from the coast, except in areas where sea currents are
very strong. Moreover, the concentration of plastic in surface waters is four times higher
than in deep waters.

In the case of the Lis river basin (Portugal) and coastal area, microplastic pollution
is analysed by Sá et al. [42], the authors using a sample of 105 companies in the area and
comparing samples collected from surface water and sediment. The most common particles
in the water analysed were polyethylene (37%), polyacrylate (18%) and polystyrene (18%),
and in sediments, polyethylene terephthalate (29%) and polyacrylate (23%). The analysis
concludes that factors contributing to the increase in microplastic water pollution are
population growth, plastic production and environmental conditions conducive to the
transmission of microplastic particles into water sources. A similar approach, carried out by
Kittner et al. [43], considers microplastic pollution in the Danube River and aims to define a
systematic pollution-monitoring strategy. Chemical analysis is performed using the thermal
extraction desorption technique, gas chromatography/mass chromatography. Following
the analysis of the collected samples, polyethylene, polystyrene and polypropylene were,
alarmingly, found in abundance in the water.

The lack of standard protocols and technologies for removing microplastics from water
through wastewater treatment plants is addressed by Sadia et al. [44], who review the
efficiency of wastewater treatment plants and the possibility of converting microplastics into
renewable energy sources. To this end, the authors developed a sustainable methodology
for wastewater treatment.

Other authors such as Melchor-Martínez et al. [45] stress the need for sustainability of
microplastic production under conditions of increasing economic efficiency. The authors
conducted a meta-analysis of production methods, highlighting the environmental impact
and mitigation of conventional and emerging plastics, as well as regulations in the field.

In terms of plastic recycling, according to Nikiema and Asiedu [46], only 9% of the
9 billion tonnes of plastic ever produced has so far been recycled. The authors reviewed
microplastic removal technologies and their efficiency, starting with pollution sources and
until microplastics reach the sea, covering stormwater, municipal wastewater treatment
and drinking water. The final result provides a guide on implementable measures for the
treatment and elimination of water pollution caused by microplastics.

A new technology for removing plastics from water sources is the use of superhy-
drophobic surfaces, which have a water contact angle of >150◦. According to Rius-Ayra
et al. [47], the increase in research related to this technology shows its importance. The au-
thors believe that superhydrophobic materials allow the removal of five types of emerging
pollutants, including microplastics.

The literature review is an argument in favour of the present scientific approach and
highlights the need for a new approach in the field.
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3. Materials and Methods

Since the intensification of global trade, interventions to limit environmental pollution
caused by microplastics, especially in the aquatic environment, have become a priority for
international environmental organisations. Several campaigns have been carried out to
monitor pollution and inform stakeholders about its effects.

These issues have taken on a global dimension through OECD efforts to collect infor-
mation on microplastic pollution. In our scientific research, we used OECD databases [48]
for the period of 1990–2019 for the indicators presented in Table 1.

Table 1. Description of the indicators used in the analysis.

Region Symbol Name Unit of
Measure Databases (accessed on 3 January 2023)

1. United States (US)
2. Canada (CAN)
3. OECD America
4. OECD EU
5. OECD non-EU
6. OECD Asia
7. OECD Oceania
8. OECD Latin America (OECDLatAmerica)
9. Other non-OECD EU (OthEU)
10. Other Eurasia (OthEurasia)
11. Middle East North Africa (MENorthAfrica)
12. Other Africa (OthAfrica)
13. Non-OECD Asia (NonOEDASIA)
14. China
15. India

PWCR
plastic waste
collected for

recycling
tonnes (t) of

plastics

https://stats.oecd.org/viewhtml.aspx?datasetcode=
PLASTIC_WASTE_6&lang=en [49]

PLAE
plastic leakage to

aquatic
environments

https://stats.oecd.org/viewhtml.aspx?datasetcode=
PLASTIC_LEAKAGE_5&lang=en [50]

PUR plastics use by
region

https://stats.oecd.org/viewhtml.aspx?datasetcode=
PLASTIC_USE_9&lang=en [51]

PWRELF
plastic waste by
region and by
end-of-life fate

https://stats.oecd.org/viewhtml.aspx?datasetcode=
PLASTIC_WASTE_5&lang=en [52]

Based on the collected data and literature review, we formulated the following research
hypotheses:

H1. At the global level, the policy to combat water pollution caused by microplastics is directly
and proportionally oriented towards the reduction of regional pollution, with the awareness that
this approach will have an effect of at least 98% in the total reduction in water pollution caused by
microplastics. The hypothesis is a continuation of the results of the research by the authors Blanco
et al., Chu et al., Dronjak et al., Karapanagioti and Kalavrouziotis, Nicolai et al., Seghers et al., Shi
et al., P. Wang et al. and S. Wang et al. [4–11,53].

H2. Globally, plastic recycling mechanisms have been set up on the assumption that this will have a
direct impact on reducing microplastic water pollution. The definition of this hypothesis was made in
accordance with the results of the research undertaken by the authors Angelakis et al., Chakraborty
et al., Kittner et al., Mehinto et al., Sá et al. and Thornton Hampton et al. [32,38–40,42,43].

H3. From the point of view of the coherence of water pollution reduction policies, there is an
increasing trend in the dynamics towards the reduction in correlation errors of the indicators as
the overall experience of the implementation of these policies increases. The construction of this
hypothesis was based on research conducted by the authors Melchor-Martínez et al., Nikiema and
Asiedu, Rius-Ayra et al. and Sadia et al. [44–47].

H4. At the EU level, against the background of intensified efforts to promote the circular economy,
the disparities in terms of combating water pollution caused by microplastics are widening, especially
for countries where the implementation of the circular economy is at an early stage. This hypothesis
is also supported by research carried out by the authors Cook et al., Lofty et al., Rosenboom et al.
and Syberg et al. [27–30].

Using data reported by the OECD (Table 1), we performed a multiple regression
correlation diagram for 15 regions in the world. It has as its pivot the dependent variable
assimilated to the circular economy, i.e., the amount of plastic waste collected for recycling,
which we treated in relation to the monitoring indicators of plastic waste produced at
the regional level, end-of-life plastic waste and the impact of plastic pollution on the
aquatic environment.

https://stats.oecd.org/viewhtml.aspx?datasetcode=PLASTIC_WASTE_6&lang=en
https://stats.oecd.org/viewhtml.aspx?datasetcode=PLASTIC_WASTE_6&lang=en
https://stats.oecd.org/viewhtml.aspx?datasetcode=PLASTIC_LEAKAGE_5&lang=en
https://stats.oecd.org/viewhtml.aspx?datasetcode=PLASTIC_LEAKAGE_5&lang=en
https://stats.oecd.org/viewhtml.aspx?datasetcode=PLASTIC_USE_9&lang=en
https://stats.oecd.org/viewhtml.aspx?datasetcode=PLASTIC_USE_9&lang=en
https://stats.oecd.org/viewhtml.aspx?datasetcode=PLASTIC_WASTE_5&lang=en
https://stats.oecd.org/viewhtml.aspx?datasetcode=PLASTIC_WASTE_5&lang=en
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The system of regional equations for the variables in Table 1 is presented as follows:



PWCRUS = 1.693 ∗ PLAEUS + 0.043 ∗ PURUS + 0.068 ∗ PWRELFUS − 0.742
PWCRCAN = 1.448 ∗ PLAECAN − 0.086 ∗ PURCAN + 0.143 ∗ PWRELFCAN − 0.111

PWCROECDAmerica = 1.003 ∗ PLAEOECDAmerica − 0.173 ∗ PUROECDAmerica + 0.236 ∗ PWRELFOECDAmerica + 0.14
PWCROECDEU = 3.874 ∗ PLAEOECDEU − 0.158 ∗ PUROECDEU + 0.2 ∗ PWRELFOECDEU − 1.7

PWCROECDNonEU = −0.021 ∗ PLAEOECDNonEU − 0.272 ∗ PUROECDNonEU + 0.509 ∗ PWRELFOECDNonEU − 0.299
PWCROECDASIA = 0.094 ∗ PLAEOECDASIA − 0.275 ∗ PUROECDASIA + 0.592 ∗ PWRELFOECDASIA + 0.115

PWCROECDOceania = 21.215 ∗ PLAEOECDOceania − 0.009 ∗ PUROECDOceania − 0.204 ∗ PWRELFOECDOceania + 0.003
PWCROECDLatAmerica = 1.644 ∗ PLAEOECDLatAmerica + 0.084 ∗ PUROECDLatAmerica − 0.175 ∗ PWRELFOECDLatAmerica − 0.083

PWCROthEU = 11.154 ∗ PLAEOthEU − 0.014 ∗ PUROthEU − 0.141 ∗ PWRELFOthEU + 0.045
PWCROthEurasia = 4.762 ∗ PLAEOthEurasia + 0 ∗ PUROthEurasia − 0.03 ∗ PWRELFOthEurasia − 0.025

PWCRMENorthA f rica = 1.096 ∗ PLAEMENorthA f rica − 0.029 ∗ PURMENorthA f rica − 0.005 ∗ PWRELFMENorthA f rica + 0.065
PWCROthA f rica = 0.611 ∗ PLAEOthA f rica + 0.073 ∗ PUROthA f rica − 0.105 ∗ PWRELFOthA f rica − 0.06

PWCRNonOECDASIA = 1.06 ∗ PLAENonOECDASIA − 0.037 ∗ PURNonOECDASIA − 0.048 ∗ PWRELFNonOECDASIA + 0.156
PWCRChina = 5.051 ∗ PLAEChina + 0.05 ∗ PURChina − 0.158 ∗ PWRELFChina − 0.525
PWCRIndia = 5.577 ∗ PLAEIndia + 0.035 ∗ PURIndia − 0.226 ∗ PWRELFIndia − 0.029

(1)

From the analysis of the system of equations constructed on the basis of the β coeffi-
cients of the 15 regional models, it is evident that the variable that best correlated with the
outcome indicator of circular economy efficiency (dependent variable) is the indicator of
monitoring the impact of plastic pollution on the aquatic environment. Thus, the impact of
the circular economy results in long-term effects on the reduction of microplastic pollution,
especially in China, India, Oceania and Europe (see Figure 2).
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Figure 2. Correlation diagram of the effects of the implementation of the circular economy on the
reduction of water pollution caused by microplastics (PWCR vs. PLAE).

The diagram shows that, at the level of the performing sample, the average correlation
is 500%, i.e., the impact of reducing environmental plastic pollution generates a 5-fold
reduction in the impact of microplastics on the aquatic environment in the circular economy,
the maximum magnitude belonging to the Oceania region, where the impact is 21 times
greater. At the European level, in OECD member countries, the impact is up to 3.8 times
and up to 11 times in non-OECD member countries.

Non-EU countries show the lowest correlation between the two indicators, with an
inversely proportional variation of 0.21%. This means that, in these countries, the impact of



Int. J. Environ. Res. Public Health 2023, 20, 4014 10 of 23

the circular economy is low and the strategies to reduce microplastic pollution are not in
accordance with the global and European action guidelines.

After using a multiple regression correlation at the regional level (see Figure 3), it was
observed that there is an inversely proportional relationship between plastic consumption
and use in the regional circular economy of the USA, Canada, OECD America, OECD EU,
OECD Non-EU, OECD Asia, OECD Oceania, Other EU, ME North Africa and non-OECD
Asia. The average value of the inverse correlation is 10%. For the other regions analysed in
the sample, the correlation is directly proportional, but reduced by a maximum of 8%, which
shows that, in relation to the development objectives of clean industry, plastic consumption
does not show significant changes. We consider this a major vulnerability of pollution
policies, which, in this light, should focus additional efforts to improve public policies.
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Figure 3. Correlation diagram of the effects of circular economy implementation on plastic use by
region (PWCR vs. PUR).

Figure 4 shows a significant disparity in the correlation between the implementation
of the circular economy and the reduction of the mass of end-of-life plastic waste, where
developed regions of the world (USA, Canada, OECD America, OECD EU, OECD Non-
EU, OECD Asia) have higher correlation rates. These regions have access to superior
technologies to combat microplastic pollution according to its chemical properties with
significant biological impact. The average correlation reaches 30%, with a maximum of 60%
in the region of Asian OECD member states.

In the other regions analysed, the correlation is inversely proportional, which means
that the policy to combat microplastic pollution does not meet the proposed goal, one
explanation being the orientation of these regions towards commercial expansion and
extensive economic growth.
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Figure 4. Correlation diagram of the effects of the implementation of the circular economy on
end-of-life plastic waste (PWCR vs. PWRELF).

4. Results

Through the application of modelling techniques, the regional model was summarized,
which generated statistically significant coefficients for all 15 regions studied, with the level
of statistical significance exceeding 98% for these regions, with a standard maximum error
estimate of 8% at the level of the sample studied, as shown in Table 2.

This validates hypothesis H1. At the global level, the policy to combat microplastic
water pollution is directly and proportionally oriented towards the reduction of regional
pollution, with the awareness that this approach will have an effect of at least 98% in the
total reduction of microplastic water pollution.

Table 2 shows the distribution of the statistical F function values between the minimum
value of 236.93 points and the maximum value of 5058.97 points, thus demonstrating a
significant regional disparity of policies to combat microplastic water pollution. The
maximum values are attributed to the regions: USA, OECD Latin America, Other Africa
and non-OECD Asia. With respect to these regions, the analysis of the interval between
1990–2019 shows that the value of the circular economy’s impact on microplastic water
pollution reaches the maximum value at the correlation function.

At the opposite pole, the lowest values were recorded for the regions: OECD America,
OECD Non-EU and OECD Asia. It should be mentioned that the level of Sig. coefficients
assimilated to the F function is lower than the selected error representativeness threshold
α = 0.05, which allows for all 15 regions analyzed to reject the null hypothesis and maintain
the alternative hypothesis. This allows the validation of the regional model to combat
microplastic pollution. The ANOVA test is presented in Table 3.

The ANOVA statistical test for the regional models shows the statistical weight of
the regression squares is allocated to the correlational function (98.5%), while the residual
variable has an allocation of only 99.5%. This demonstrates that the model is valid and
representative of the phenomenon studied, validating hypothesis H2. At the global level,
plastic recycling mechanisms were created assuming that this approach will have a direct
impact on reducing microplastic water pollution.

To prove hypothesis H3, we projected in Figure 5 the dynamic distributions of the
evolution of the dependent variable in relation to its predicted values according to the
regional PP-Plot distribution graph. From Figure 5, it follows that the error distribution of
the dependent variable at the regional level has different error peaks (y).

Figure 5 shows that, as experience increases and the current period approaches, the
experience gained by policy makers in the field of pollution control helps straighten the
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trend curves, which proves hypothesis H3. From the point of view of coherence of water
pollution abatement policies, there is an increasing trend to reduce the correlation errors of
the indicators as the overall experience of implementing these policies increases.

Table 2. Model Summary.

Model R R Square Adjusted R
Square

Std. Error of
the Estimate

Change Statistics
Durbin-
WatsonR Square

Change F Change df1 df2 Sig. F Change

1. 0.999 a,b 0.997 0.997 0.099143 0.997 2992.770 3 26 0.000 0.715
a. Predictors: (Constant), PWRELFUS, PURUS, PLAEUS
b. Dependent Variable: PWCRUS
2. 0.998 a,b 0.997 0.997 0.013844 0.997 2857.987 3 26 0.000 0.831
a. Predictors: (Constant), PWRELFCAN, PURCAN, PLAECAN
b. Dependent Variable: PWCRCAN
3. 0.994 a,b 0.988 0.987 0.054194 0.988 727.162 3 26 0.000 0.456
a. Predictors: (Constant), PWRELFOECDAmerica, PUROECDAmerica, PLAEOECDAmerica
b. Dependent Variable: PWCROECDAmerica
4. 0.998 a,b 0.995 0.995 0.285726 0.995 1822.884 3 26 0.000 0.608
a. Predictors: (Constant), PWRELFOECDEU, PUROECDEU, PLAEOECDEU
b. Dependent Variable: PWCROECDEU
5. 0.991 a,b 0.982 0.980 0.099378 0.982 465.494 3 26 0.000 0.543
a. Predictors: (Constant), PWRELFOECDNonEU, PUROECDNonEU, PLAEOECDNonEU
b. Dependent Variable: PWCROECDNonEU
6. 0.982 a,b 0.965 0.961 0.156510 0.965 236.939 3 26 0.000 0.254
a. Predictors: (Constant), PWRELFOECDASIA, PUROECDASIA, PLAEOECDASIA
b. Dependent Variable: PWCROECDASIA
7. 0.998 a,b 0.997 0.997 0.003728 0.997 2865.476 3 26 0.000 1.108
a. Predictors: (Constant), PWRELFOECDOceania, PUROECDOceania, PLAEOECDOceania
b. Dependent Variable: PWCROECDOceania
8. 0.999 a,b 0.997 0.997 0.047812 0.997 3143.947 3 26 0.000 0.396
a. Predictors: (Constant), PWRELFOECDLatAmerica, PLAEOECDLatAmerica, PUROECDLatAmerica
b. Dependent Variable: PWCROECDLatAmerica
9. 0.998 a,b 0.996 0.996 0.004837 0.996 2360.164 3 26 0.000 0.491
a. Predictors: (Constant), PWRELFOthEU, PUROthEU, PLAEOthEU
b. Dependent Variable: PWCROthEU
10. 0.998 a,b 0.996 0.995 0.027975 0.996 1973.765 3 26 0.000 0.177
a. Predictors: (Constant), PWRELFOthEurasia, PUROthEurasia, PLAEOthEurasia
b. Dependent Variable: PWCROthEurasia
11. 0.998 a,b 0.996 0.995 0.027183 0.996 2052.844 3 26 0.000 0.454
a. Predictors: (Constant), PWRELFMENorthAfrica, PURMENorthAfrica, PLAEMENorthAfrica
b. Dependent Variable: PWCRMENorthAfrica
12. 0.999 a,b 0.998 0.998 0.019682 0.998 4091.570 3 26 0.000 0.362
a. Predictors: (Constant), PWRELFOthAfrica, PLAEOthAfrica, PUROthAfrica
b. Dependent Variable: PWCROthAfrica
13. 0.999 a,b 0.998 0.998 0.047965 0.998 5058.977 3 26 0.000 1.023
a. Predictors: (Constant), PWRELFNonOECDASIA, PURNonOECDASIA, PLAENonOECDASIA
b. Dependent Variable: PWCRNonOECDASIA
14. 0.998 a,b 0.996 0.996 0.275743 0.996 2227.735 3 26 0.000 0.389
a. Predictors: (Constant), PWRELFChina, PLAEChina, PURChina
b. Dependent Variable: PWCRChina
15. 0.998 a,b 0.996 0.995 0.074138 0.996 2115.586 3 26 0.000 0.294
a. Predictors: (Constant), PWRELFIndia, PLAEIndia, PURIndia
b. Dependent Variable: PWCRIndia

In order to prove hypothesis H4, the authors analysed the results obtained by the
proposed model (Equation (1)), finding that, at the level of the dependent variable assimi-
lated to the circular economy, the correlation with the impact of water pollution caused
by microplastics was strong, i.e., reducing the amount of plastic waste has the effect of
reducing water pollution caused by microplastics by 3.8 times. It can be seen from equation
1 that the impact of the circular economy on the regional size of plastic consumption in the
EU is inversely proportional, which can be presumed to have a causality with the high level
of regional disparity in plastic consumption. In order to determine the level of regional
disparity of plastic use in the EU, we accessed the Our World in Data database [54] for
the year 2019 (the latest year for which official statistical data are available) and selected
Member States for which we performed an algorithm to plot regional averages against
the overall average for the following indicators: share of EU average mismanaged plastic
waste (%); share of EU average mismanaged plastic waste to ocean (%) and share of EU
average mismanaged plastic waste per capita (%) (see Table 4).
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Table 3. ANOVA test.

Model Sum of Squares df Mean Square F Sig.

1.
Regression a,b 88.251 3 29.417 2992.770 0.000 b

Residual 0.256 26 0.010
Total 88.507 29

a. Dependent Variable: PWCRUS
b. Predictors: (Constant), PWRELFUS, PURUS, PLAEUS

2.
Regression a,b 1.643 3 0.548 2857.987 0.000 b

Residual 0.005 26 0.000
Total 1.648 29

a. Dependent Variable: PWCRCAN
b. Predictors: (Constant), PWRELFCAN, PURCAN, PLAECAN

3.
Regression a,b 6.407 3.000 2.136 727.162 0.000 b

Residual 0.076 26.000 0.003
Total 6.483 29.000

a. Dependent Variable: PWCROECDAmerica
b. Predictors: (Constant), PWRELFOECDAmerica, PUROECDAmerica, PLAEOECDAmerica

4.
Regression a,b 446.456 3.000 148.819 1822.884 0.000 b

Residual 2.123 26.000 0.082
Total 448.578 29.000

a. Dependent Variable: PWCROECDEU
b. Predictors: (Constant), PWRELFOECDEU, PUROECDEU, PLAEOECDEU

5.
Regression a,b 13.792 3 4.597 465.494 0.000 b

Residual 0.257 26 0.010
Total 14.048 29

a. Dependent Variable: PWCROECDNonEU
b. Predictors: (Constant), PWRELFOECDNonEU, PUROECDNonEU, PLAEOECDNonEU

6.
Regression a,b 17.412 3.000 5.804 236.939 0.000 b

Residual 0.637 26.000 0.024
Total 18.049 29.000

a. Dependent Variable: PWCROECDASIA
b. Predictors: (Constant), PWRELFOECDASIA, PUROECDASIA, PLAEOECDASIA

7.
Regression a,b 0.119 3.000 0.040 2865.476 0.000 b

Residual 0.000 26.000 0.000
Total 0.120 29.000

a. Dependent Variable: PWCROECDOceania
b. Predictors: (Constant), PWRELFOECDOceania, PUROECDOceania, PLAEOECDOceania

8.
Regression a,b 21.561 3 7.187 3143.947 0.000 b

Residual 0.059 26 0.002
Total 21.621 29

a. Dependent Variable: PWCROECDLatAmerica
b. Predictors: (Constant), PWRELFOECDLatAmerica, PLAEOECDLatAmerica, PUROECDLatAmerica

9.
Regression a,b 0.166 3.000 0.055 2360.164 0.000 b

Residual 0.001 26.000 0.000
Total 0.166 29.000

a. Dependent Variable: PWCROthEU
b. Predictors: (Constant), PWRELFOthEU, PUROthEU, PLAEOthEU

10.
Regression a,b 4.634 3.000 1.545 1973.765 0.000 b

Residual 0.020 26.000 0.001
Total 4.654 29.000

a. Dependent Variable: PWCROthEurasia
b. Predictors: (Constant), PWRELFOthEurasia, PUROthEurasia, PLAEOthEurasia

11.
Regression a,b 4.551 3 1.517 2052.844 0.000 b

Residual 0.019 26 0.001
Total 4.570 29

a. Dependent Variable: PWCRMENorthAfrica
b. Predictors: (Constant), PWRELFMENorthAfrica, PURMENorthAfrica, PLAEMENorthAfrica

12.
Regression a,b 4.755 3.000 1.585 4091.570 0.000 b

Residual 0.010 26.000 0.000
Total 4.765 29.000

a. Dependent Variable: PWCROthAfrica
b. Predictors: (Constant), PWRELFOthAfrica, PLAEOthAfrica, PUROthAfrica

13.
Regression a,b 34.916 3.000 11.639 5058.977 0.000 b

Residual 0.060 26.000 0.002
Total 34.976 29.000

a. Dependent Variable: PWCRNonOECDASIA
b. Predictors: (Constant), PWRELFNonOECDASIA, PURNonOECDASIA, PLAENonOECDASIA
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Table 3. Cont.

Model Sum of Squares df Mean Square F Sig.

14.
Regression a,b 508.152 3 169.384 2227.735 0.000 b

Residual 1.977 26 0.076
Total 510.129 29

a. Dependent Variable: PWCRChina
b. Predictors: (Constant), PWRELFChina, PLAEChina, PURChina

15.
Regression a,b 34.885 3.000 11.628 2115.586 0.000 b

Residual 0.143 26.000 0.005
Total 35.028 29.000

a. Dependent Variable: PWCRIndia
b. Predictors: (Constant), PWRELFIndia, PLAEIndia, PURIndia
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Table 4. Analysis of the degree of regional disparity on policies to combat plastic water pollution in
the EU.

Country (2019)
Share of EU Average
Mismanaged Plastic

Waste (%)

Share of EU Average
Mismanaged Plastic
Waste to Ocean (%)

Share of EU Average
Mismanaged Plastic
Waste per Capita (%)

Std. Deviation

Belgium 19.70% 44.21% 27.41% 10.2%
Bulgaria 26.89% 15.00% 61.65% 19.8%
Croatia 151.36% 813.69% 588.16% 274.9%
Cyprus 7.22% 37.54% 96.66% 37.1%

Denmark 3.36% 23.39% 9.36% 8.4%
Estonia 5.18% 135.77% 62.65% 53.4%
Finland 22.61% 0.00% 65.60% 27.2%
France 239.68% 54.13% 59.06% 86.3%

Germany 437.21% 24.06% 84.01% 182.3%
Greece 38.87% 309.41% 59.57% 122.9%
Ireland 23.08% 0.00% 75.87% 31.8%

Italy 334.78% 102.57% 88.73% 112.9%
Latvia 8.24% 70.80% 69.34% 29.2%

Lithuania 8.95% 38.05% 52.02% 17.9%
Malta 2.23% 0.00% 81.50% 37.9%

Netherlands 131.42% 237.80% 123.36% 52.2%
Poland 121.86% 11.48% 51.62% 45.6%

Portugal 32.94% 111.50% 51.70% 33.5%
Romania 450.02% 61.98% 372.95% 167.7%
Slovakia 14.83% 0.00% 43.62% 18.1%
Slovenia 7.28% 79.38% 56.21% 30.1%

Spain 175.57% 75.43% 60.29% 51.2%
Sweden 36.71% 53.81% 58.70% 9.4%

Std deviation 136.0% 169.2% 123.7% 65.5%

The overall pollution disparity index calculated based on the standard deviation of
the three regional data sets in Table 4 is 65%. Thus, there is a significant difference between
policies to reduce plastic water pollution and policies to reduce plastic consumption per
capita in the EU. At a regional level, the share of the EU average mismanaged plastic waste
indicator has a disparity of 136%, close to the value of the disparity of the share of the
EU average mismanaged plastic waste per capita indicator, which means that, in terms
of communicating the effects on the environment, there is a successful communication
effort in the EU, with 90% of European citizens aware of the consequences of pollution
on the deterioration of environmental quality. This results from a comparison of regional
disparities between the two indicators.

On the other hand, the Share of EU average mismanaged plastic waste to ocean
indicator shows an increase in regional disparities, up to 169.2%, mainly due to the regional
territorial configuration. The most advanced countries in implementing environmental
policies in this area are Malta, Finland, Ireland and Slovakia. At the opposite end are
Croatia, Greece, the Netherlands, Estonia and Portugal.

In the overall ranking for the three indicators, the highest levels of disparity were
assessed for Croatia, Germany and Romania, with these countries showing the most fluctu-
ating variations from the calculated EU average. These aspects demonstrate hypothesis H4.
In the EU, as efforts to promote the circular economy intensify, the disparities in combating
water pollution caused by microplastics are widening, especially for countries where the
implementation of the circular economy is at an early stage.
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5. Discussion

The research results allow the following aspects to be presented:

• In the US, the synergy between anti-pollution policies and the acceleration of the
circular economy is marked by the period 2004–2013, which covers the global recession
of 2007–2008, with a significant impact on the US economy;

• The period 2004–2012 was the impact period for Canada’s economy, which takes on
the effects of the US crisis;

• In OECD countries in the Americas, there was a reduction in errors relating to the
projection of forecast values in relation to the trend line, the peaks being characterized
by the period 1997–2004. This was against the backdrop of the terrorist attacks of 11
September 2001, followed by the stock market crisis and the effects of the war in Iraq
in 2011–2003. These events redirected public policies towards security, minimising
efforts for other policies such as pollution control;

• With 22 EU OECD member states, the distribution of errors is significant when com-
pared to correct forecast rates and covers extended periods, namely 1992–1995, 2000–
2004 and 2010–2014. In the first mentioned timeframe, major changes in the European
economic policy occurred as a result of the fall of the communist regime in SE Europe.
The second timeframe was assimilated to the EU enlargement efforts, which culmi-
nated in 2004 with the accession of 10 former communist states to the European bloc.
The 2010–2014 timeframe represents the period of global recession triggered in 2007 in
the US and rapidly propagated in the EU. This was a period that saw the bankruptcy
of some renowned European institutions and the reshaping of European policies on
financial risks and stock market trading risks. The phenomenon was boosted by the
last two EU enlargements in 2007 and 2013;

• The distribution of errors was also transferred to the OECD Non-EU countries in the
region, which, in the periods 1997–2000, 2005–2007 and 2010–2016, faced problems
accessing the European single market and structural changes in trade due to EU
regional reconfiguration;

• For Asian OECD member countries, the distribution of trend curves in relation to
predicted values for the circular economy-like variable is superior, with more efficient
correlations. The main disruptions the took place in 1995–2000 and 2011–2014. In
the first period, the economies of these countries were heavily affected by the major
financial crisis that began in Thailand involving the link between the Thai baht and
the U.S. dollar. Indonesia, South Korea and Malaysia were involved in this crisis and
their capital inflows were affected by more than $100 billion in the first year of the
crisis. The effects of the Asian financial crisis spilled over into the economies of Russia
and Brazil. The second period was a consequence of the global economic crisis that
started in 2008;

• In Oceania’s case, the values for the distribution of errors relative to the trend curve
are flattened, the significant periods being 1990–1995 and 2012–2016;

• In the case of OECD Latin American countries, no significant error distributions were
found, with the right-hand side of the forecast containing the likely values of the
regression function;

• In the case of other non-OECD European countries, error distributions were found for
the periods 1996–1999 (the fall of the communist regime and its consequences) and
2003–2014. These periods coincided with the reconfiguration of EU borders and the
major global crisis of 2009;

• Non-OECD Eurasia shows the most significant errors distributed over the period
2011–2013, corresponding to the global crisis of the early 2010s;

• In the non-OECD African region, there are no significant distributions of errors to the
right of the trend. The model is representative of this region;

• In non-OECD Asian countries, the period that witnessed function errors is clustered
between 2012 and 2017 and was strongly influenced by the effects of the economic
crisis in China in 201;
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• At the level of the Chinese economy, there is a significant distribution of errors to the
right of the trend for several periods, namely: 1990–1995, 1997–1999 and 2004–2009;

The Indian economy was characterized by significant error distribution in the periods
of 1999–2000 and 2015–2019,

Based on the results of the analysis, we formulated the following proposals to improve
public policies in the field of combating water pollution caused by microplastics (see
Table 5).

Table 5. Proposals for improving public policies in the field of combating water pollution caused by
microplastics.

Pollution Factor
Plastics Polymer

(Bioplastics–Dependent
Variable)

Effectiveness of
Implemented

Control Measures

Public Policy
Proposals

Graphical Distribution of Correlations with the Reference
Pollutant Factor (Bioplastics) *

Marine coatings

Increased in relation
to the reference
pollutant factor

bioplastics (superunit
level of pollution
reduction in the

correlative
assessment in
relation to the

dependent variable
of value 4.255).

Introducing higher
quality standards for

paints used in the
shipping industry in
order to protect the
environment and

reduce water
pollution caused by

microplastics.
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Table 5. Cont.

Pollution Factor
Plastics Polymer

(Bioplastics–Dependent
Variable)

Effectiveness of
Implemented

Control Measures

Public Policy
Proposals

Graphical Distribution of Correlations with the Reference
Pollutant Factor (Bioplastics) *

Polypropylene (PP)

Reduced in relation
to the reference
pollutant factor

bioplastics (sub-unit
level of pollution

re-reduction in the
correlative

assessment in
relation to the

dependent variable is
close to 0, i.e., 0.032).

New public policies
to control the
production,

consumption and use
of PP in areas such as
consumer packaging,

plastic parts and
textiles in the

automotive industry.
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Table 5. Cont.

Pollution Factor
Plastics Polymer

(Bioplastics–Dependent
Variable)

Effectiveness of
Implemented

Control Measures

Public Policy
Proposals

Graphical Distribution of Correlations with the Reference
Pollutant Factor (Bioplastics) *

Polyurethane (PUR)

Reduced relative to
the reference

pollutant factor
bioplastics (subunit

level of pollution
re-reduction in the

correlative
assessment relative to

the dependent
variable of 0.130).

New pollution
mitigation policies
for polyurethane

elastomers used for
furniture and

vehicles as well as
sound insulation

materials.
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The importance of this study lies in combining in an integrated way OECD data
on microplastic water pollution and identifying relevant policies to combat this type of
pollution.

6. Conclusions

The authors have achieved the objectives proposed in the research as defined in the
introduction. The literature review allowed the development of research hypotheses, which
were subsequently demonstrated in Sections 3 and 4 of the paper.

An interesting econometric model was built to study the connection between the
factors contributing to the increase of microplastic water pollution. Following the im-
plementation of this model at the OECD database level, proposals for improving public
policies in the field of combating water pollution caused by microplastics were carried out.

The novelty of the econometric model and public policy proposals for decreasing
water pollution caused by microplastics are the strengths of this scientific approach. The
novelty of the approach lies in linking chemical elements with economic and social impacts
at a regional level. The model is entirely unprecedented and is in no way an adaptation or
update of an existing model. The public policy proposals in this area were also innovative.

This scientific work encountered difficulties, including the lack of official statistical
information on water pollution caused by microplastics and the lack of a unified approach
and common regulations at an international level.

The main limitation of this paper is the relatively small number of indicators used in
the analysis. The authors propose to expand the number of indicators analysed and the
statistical basis of observations through international collaboration, at least at the academic
level, in a future scientific approach on the same topic.
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