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Abstract: Urban ozone (O3) pollution in the atmosphere has become increasingly prominent on
a national scale in mainland China, although the atmospheric particulate matter pollution has
been significantly reduced in recent years. The clustering and dynamic variation characteristics of
the O3 concentrations in cities across the country, however, have not been accurately explored at
relevant spatiotemporal scales. In this study, a standard deviational ellipse analysis and multiscale
geographically weighted regression models were applied to explore the migration process and
influencing factors of O3 pollution based on measured data from urban monitoring sites in mainland
China. The results suggested that the urban O3 concentration in mainland China reached its peak in
2018, and the annual O3 concentration reached 157 ± 27 µg/m3 from 2015 to 2020. On the scale of the
whole Chinese mainland, the distribution of O3 exhibited spatial dependence and aggregation. On the
regional scale, the areas of high O3 concentrations were mainly concentrated in Beijing-Tianjin-Hebei,
Shandong, Jiangsu, Henan, and other regions. In addition, the standard deviation ellipse of the urban
O3 concentration covered the entire eastern part of mainland China. Overall, the geographic center of
ozone pollution has a tendency to move to the south with the time variation. The interaction between
sunshine hours and other factors (precipitation, NO2, DEM, SO2, PM2.5) significantly affected the
variation of urban O3 concentration. In Southwest China, Northwest China, and Central China, the
suppression effect of vegetation on local O3 was more obvious than that in other regions. Therefore,
this study clarified for the first time the migration path of the gravity center of the urban O3 pollution
and identified the key areas for the prevention and control of O3 pollution in mainland China.

Keywords: ozone; clustering; dynamic variations; influencing factors; mainland China

1. Introduction

Ozone (O3), an important trace component of the natural atmosphere, is formed by
the photochemical reaction of nitrogen oxides (NOx) and hydrocarbons in the atmosphere
after being irradiated by ultraviolet light [1,2]. Studies have shown that long-term exposure
to high concentrations of O3 in the atmosphere not only directly destroys the lung function
and visual function of local residents, but also affects thyroid function and nervous and
cardiovascular systems [3–5]. Many researchers have confirmed that O3 in the near-surface
atmosphere poses a significant threat to the health of organisms. For example, a 10 ppb
increase in 1-day ozone was associated with a 1.56% increase in emergency department
and urgent care visits in the Washington, DC metropolitan area [6]. In the entire Northern
Hemisphere, O3 pollution in the troposphere exhibits an increasing trend, especially in
South and East Asia [7–10]. On the regional scale, the long-term dynamic evolution of
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near-ground O3 has not been systematically revealed. Therefore, it is necessary to research
the dynamic evolution process and spatial distribution characteristics of near-ground O3 in
order to control urban O3 pollution, and this goal motivates this study.

O3 pollution in the atmosphere has become increasingly prominent on a national
scale in mainland China in the last two decades. Mainland China is not only one of the
most densely populated areas in the world, but is also one of the fastest-growing areas
of industrialization and urbanization. Studies have shown that in the past two decades,
near-ground O3 pollution in various regions of mainland China has been increasing, and
the health of more and more residents are threatened by O3 pollution [11–14]. Feng et al.
concluded that the O3 concentration increased by 62.40% during particulate pollution
episodes in Beijing (BTH) in the autumn from 2013 to 2015 [15]. Gao et al. analyzed the
O3 Monitoring Instrument (OMI) satellite data and suggested that the O3 concentration in
northeastern China rose from 81.3 to 87.4 µg/m3 during 2015–2018, and the nonattainment
days kept increasing [16]. Xu et al. showed that under the influence of the southeast
monsoon, O3 pollution in Shanghai became particularly serious when anthropogenic
contaminants were mixed with biological volatile organic compounds [17]. Numerous
studies have reported the level and distribution characteristics of O3 pollution in major
metropolitan areas in mainland China. However, the spatial clustering and temporal
dynamics of O3 concentration have not been systematically clarified for the entire mainland
of China.

Cities are concentrated and sensitive areas of O3 pollution [18]. On the one hand,
gaseous pollutants of NOx and volatile organic compounds (VOCS), which are precursors
of O3, mainly come from industrial activities and automobile exhaust [19,20]. On the
other hand, ozone emitted in cities and suburbs concentrate inside cities along with urban
heat island circulation, causing aggravation of ozone pollution in upper atmospheric
layers [21,22]. In addition, both human and natural factors affect the migration behavior
and dynamic variations of urban O3 pollution. Factors such as the atmospheric particulate
matter concentration, gaseous pollutant concentration, urban traffic conditions, temperature
inversion, wind speed, temperature, hours of sunlight, humidity etc. have significant effects
on the formation and concentration levels of O3 [23–25]. However, most studies on the
influence of factors on O3 pollution focused only on individual urban areas, while the
influence of these factors on O3 has not been revealed on a national scale. In addition,
hypothesis that the rugged terrain and variable vegetation of mainland China may have an
impact on the migration and diffusion of O3.

Considering the above-mentioned reasons, this study explores the characteristics of
spatial clustering and temporal dynamics of the O3 concentration in cities from mainland
China on a long-term scale. We also distinguish the effects of topography and vegetation
characteristics on the distribution of O3 in various regions of China. To achieve these goals,
the rest of this work contains three subsequent steps: (1) the analysis of the spatiotemporal
distribution of the urban O3 concentration in mainland China from 2015 to 2020; (2) the
characterization of the clustering and dynamic evolution of the urban O3 concentration at
both the national and regional scales; and (3) the clarification of the influence of different
typical environmental factors on the O3 concentration in various regions in China.

2. Materials and Methods
2.1. Data Collection

The analysis of long-term and high-precision O3 concentration data helps to clarify
the spatiotemporal distribution and evolution characteristics of urban O3 pollution in
mainland China. We adopted the daily maximum 8-h average (MDA 8) O3 concentration
from 1550 monitoring stations from 336 cities in mainland China spanning from 2015 to
2020. All monitoring sites were derived from urban sites, and non-urban air monitoring
sites were excluded from this study. To control the validity of the data, we strictly followed
the minimum requirements for statistical validity of O3 concentration data as stipulated
in the Ambient Air Quality Standards (GB3095-2012) for statistical analysis. In addition,
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we have also taken into account the adverse effects of anomalous values at individual
monitoring stations at a given moment in time. For this reason, we counted 8-h average
concentration data for O3 containing the following two criteria: (1) at least 6 h of average
concentration values were included; and (2) the difference between the individual moments
of the same monitoring point does not exceed one times the minimum value over a period of
six consecutive periods. Monitoring data that did not meet this requirement were excluded.

The O3 concentration data were collected from the national real-time city’s air quality
release platform in the China National Environmental Monitoring Center (http://106.37.2
08.233:20035/ (accessed on 30 July 2021)). Meteorological factor data were derived from the
National Meteorological Information Center (NMIC) of the China Meteorological Adminis-
tration (http://data.cma.cn/ (accessed on 15 August 2021)), and the normalized vegetation
index (NDVI) was obtained from the Resource and Environment Science Data Center of the
Chinese Academy of Sciences (http://www.resdc.cn/ (accessed on 10 September 2021)).
Detailed data types and sources are shown in Table S1, in Supplementary Materials.

2.2. Methodology
2.2.1. Spatial Autocorrelation Analysis

Spatial autocorrelation analysis is a method to explore the spatial distribution pattern,
the degree of spatial dependence, and the potential spatial dependence of spatial variables
at different locations. It is widely used in the research of air pollution [26,27]. In this study,
the global spatial autocorrelation statistics (Moran’s index) were calculated to explore the
spatial agglomeration characteristics of O3 distribution in cities in mainland China. Geoda
2.0 software (Chicago, IL, USA) was used to calculate the global Moran’s index, and after
999 Monte Carlo simulation tests, statistical tests were performed using the standardized
statistic Z (test level α = 0.05). The local indications of spatial association (LISA) were used
to identify the spatial concentration of O3 in a local area. The calculation and significance
test formulas for global spatial autocorrelation and local spatial autocorrelation are shown
in Equations (1)–(3):

IGlobal =

n
n
∑

i=1

n
∑

j=1
Wij(xi − x)(xj − x)

n
∑

i=1

n
∑

j=1
Wij

n
∑

i=1
(xi − x)2

(1)

Z =
I − E(I)√

VAR(I)
(2)

ILocal =
(xi − x)

∑
i
(xi − x)2 ∑

j
Wij(xi − x) (3)

In these equations, I is the Moran’s index; n is the number of cities; xi and xj are
the O3 concentration of the i-th and j-th cities, respectively; x is the average of the O3
concentration in cities; n is the number of cities; Wij is the spatial weight matrix; VAR(I)
represents the variance of the global Moran’s index; and E(I) represents the expected value
of the Moran’s index.

2.2.2. Hot Spot Analysis

Hot spot analysis was used to identify statistically significant spatial clustering charac-
teristics of high values (representing hot spots) and low values (cold spots). The results
(z score and p value) can be used to identify the spatial clustering locations of high- and
low-valued elements. This method considers the characteristics of O3 in the neighboring
areas. This method is of great significance in revealing the spatial clustering characteristics
of atmospheric pollutants. Using this method, the Getis-Ord Gi* statistic was adopted to
calculate each value of the O3 concentration. The Z score was used to test Gi*. Among
them, if the z score > 1.96, it indicated that there was a high-value cluster or hot spot area
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of O3; if the z score < −1.96, it indicated that there was a low-value cluster or cold spot area
of O3. The formula of Gi* is shown in Equations (4)–(6):

X =

n
∑

j=1
xj

n
(4)

S =

√√√√√ n
∑

j=1
xj

2

n
− (X)

2 (5)

Gi∗ =

n
∑

j=1
Wijxj − X

n
∑

j=1
Wij

s

√
[n

n
∑

j=1
W2

ij−(
n
∑

j=1
Wij)2

n−1

(6)

where, S is the standard deviation of the O3 concentration, and the other parameters are
the same as those in Equations (1)–(3).

2.2.3. Standard Deviational Ellipse Analysis (SDE)

The function of SDE is to quantitatively describe geographic elements with the center,
long axis, and short axis as the basic parameters [28]. The center of the SDE indicates the
spatial distribution characteristics of the elements and their relative positions in space, and
the long and short axes can reflect the spatial distribution of the elements. In this study, the
spatial distribution and movement characteristics of O3 distribution in mainland China
cities were revealed through the variation in the center of gravity, long axis, and short axis
of the SDE. The formula of SDE is expressed by Equations (7)–(9).

Xw =

∑
i=1

wixi

n
∑

i=1
wi

(7)

σx =

√
n
∑

i=1
(wixi cos θ − wiyi sin θ)

n
∑

i=1
w2

i

(8)

σy =

√
n
∑

i=1
(wixi sin θ − wiyi cos θ)

n
∑

i=1
w2

i

(9)

In the equations, (xi, yi) is the spatial region of the research object; wi is the weight;
i is the decision-making unit; x and y represent the relative coordinates of each point
from the center of the standard deviation ellipse, respectively; θ is the rotation angle
of the distribution pattern; and σx and σy are the standard deviations of the x-axis and
y-axis, respectively.

2.2.4. Multiscale Geographically Weighted Regression Model (MGWR)

Compared with the classical geographic weighted regression model (GWR), the
MGWR allows each variable to have a different spatial smoothing level, which can re-
duce the estimation error. The MGWR therefore is a further optimization and improvement
of the GWR. It can optimize the specific bandwidths of each independent variable’s re-
lationship with the dependent variable. Based on the preliminary estimation results of
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GWR, it can decide on an optimal influencing scale using the backward fitting technology
to obtain a more accurate result [29]. The equation of MGWR is shown in Equation (10).

yi = β0(ui, vi) +
k

∑
j=1

βbwj(ui, vi)xij + εi (10)

In Equation (10), (ui, vi) are the coordinates of the local sampling location; β0 is the
bandwidth of intercept, and the subscript “bwk” denotes the bandwidth of variable k; βbwj
is the regression coefficient of the j-th variable at i; and εi is the random error at (ui, vi).

In this study, the GWR estimation is used as the initial estimation. Subsequently,
the difference between the true value and the predicted value obtained by the initializa-
tion estimation is calculated, which represents the initialization residual (ε̂) described by
Equation (11):

ˆ
ε = y −

k

∑
j=1

f̂ j ( f j = βbwjxj) (11)

When the degree of change in the estimated value of the regression coefficient is less
than 1 × 10−5, the model fitting is considered to be completed and the calculation stops.
In this study, all variables were standardized before the model fitting. The calculation of
the MGWR is based on the MGWR2.2 software (https://sgsup.asu.edu/SPARC (accessed
on 25 September 2021)) developed by the Spatial Analysis Research Center (SPARC) of
Arizona State University, USA, and the map production is completed by the ArcGIS10.6
software (Redlands, CA, USA).

2.2.5. Multi-Factor Generalized Additive Model (MGAM)

MGAM is a free nonparametric regression model that can flexibly represent complex
relationships between variables and freely detect the effects of nonlinear regression [30].
A smooth function is used to fit each feature in the model. Furthermore, the model
automatically selects the appropriate polynomial to explain the relationship between the
independent and dependent variables. The equation of MGAM is shown in Equation (12).

y = β0 + f j(K1) + f j(K2) + f j(K3) + · · ·+ f j(KN) (12)

In Equation (12), y is the O3 concentration in the study area, β0 is the intercept of
the model, K1, K2, K3 . . . KN are the main environmental factors, and fj (K) is the smooth
function of K1, K2, K3 . . . KN.

3. Results and Discussion
3.1. Temporal Distribution Characteristics of O3 Concentration in Cities
3.1.1. Interannual Variation of Urban O3 Concentration

The 90th percentile of MDA8 in mainland China in 2015–2020 is listed in Table 1.
The O3 concentration of cities in mainland China exhibited an increasing trend from 2015
to 2018, and then turned into a decreasing trend after 2018. Among them, the urban O3
concentration increased by 6.84% from 2016 to 2017. The coefficient of variation of the urban
O3 concentration in all years exceeded 10% (Table 1), indicating that the O3 concentration
did not distribute uniformly at the monitoring sites, and that there might be characteristics
of aggregation.

https://sgsup.asu.edu/SPARC
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Table 1. Statistical data of the 90th percentile of the MDA8 from urban monitoring stations in
mainland China (2015–2020) (µg/m3) #.

Year Counts Min Max Mean Coefficient of Variation (%)

2015 1491 42 227 142 ± 29 20.52
2016 1462 54 228 146 ± 27 18.52
2017 1425 35 236 156 ± 29 18.78
2018 1489 25 230 157 ± 27 16.92
2019 1579 32 225 152 ± 27 17.98
2020 1550 60 211 143 ± 24 17.10

# MDA8, representing the annual mean O3 concentration of the maximum daily 8 h average.

Furthermore, the O3 concentration in mainland China was higher than that of Europe,
Iran, and India (Table S2). In particular, the average frequency of high O3 concentration days
(>160 µg/m3) in mainland China is significantly higher than that of the above-mentioned
regions/countries. Studies have shown that the formation of urban O3 was due to the
emission of NOx and VOCs, which have undergone complex photochemical reactions in the
air; on the other hand, the formation of O3 was induced by meteorological conditions such
as high temperatures, strong solar radiation, and low relative humidity [31–33]. Compared
with the above-mentioned countries/regions, the high urban O3 concentration in mainland
China was due to the development of industry, the increase in the number of automobiles,
and the rapid expansion of urban areas in the last two decades. The development of cities
not only aggravated the emission of NOx and VOCs [34], but also increased the temperature
of the ground surface and the probability of temperature inversion in local areas [35].

3.1.2. Monthly and Daily Variations of Urban O3 Concentration

The monthly and daily variations of the urban O3 concentration in mainland China
from 2015 to 2020 are shown in Figure 1. On the monthly time scale, the O3 concentration
in November, December, and January was lower than that in other months, while the
O3 concentration in April, May, June, July, and August was higher than that in other
months. The variations in the O3 concentration have obvious seasonal characteristics
(summer > spring > autumn > winter). The strong exchange between the stratosphere
and the troposphere led to increased O3 concentrations in spring and summer [36]. In
addition, strong solar radiation generated a large number of hydroxyl radicals in the
atmosphere, which stimulated the reaction of VOC and hydroxyl radicals to generate
O3 [37,38]. Compared to summer, in autumn and winter the atmospheric troposphere
was relatively stable, and precipitation decreased, which slowed down the dilution and
diffusion of air pollutants. In addition, weaker solar radiation also slowed down the
production of O3 in autumn and winter. However, the change of the O3 concentration
in May should be the focus of attention: the period from May to June in 2017 and 2018
was the time with the highest O3 concentration in mainland China. On the daily time
scale, the urban O3 concentration exceeded the ambient air quality standards of China on
17 May (162 µg/m3), 18 May (165 µg/m3), 27 May (179 µg/m3), 28 May (183 µg/m3),
29 May (165 µg/m3), 2017, and 23 May 2019 (162 µg/m3) (grade II 160 µg/m3) (GB 3095-
2012). The aforementioned phenomenon suggested that the urban O3 concentration has
clustering characteristics on the monthly and daily scales.

Two factors have contributed to the concentration of peak urban near-ground-level
ozone concentrations in May and June. On the one hand, NOx emissions from industrial
agglomerations were elevated in May and June compared to other time periods [39]. On
the other hand, the possibility of precursor phototransformation has been exacerbated by
both the gradual increase in temperature and the increase in the duration of light.
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3.2. Spatial Distribution Characteristics of Urban O3 Concentration

The trend analysis tool was used to perform a three-dimensional perspective analysis
based on the urban O3 concentration and geographic spatial coordinate projection of
mainland China (Figure 2). In the east-west direction (shown by the green line in Figure 2),
the best-fit trendline of the urban O3 concentration presented a “J-shaped” curve, where the
urban O3 concentration showed a trend of low in the west and high in the east. In the north-
south direction (blue line in Figure 2), the best-fit curve presented an “inverted U-shaped”
curve, where the urban O3 concentration in the mid-latitude regions of mainland China
was higher than that in the low- and high-latitude regions. From a national perspective,
the overlapping regions of the eastern coastal and mid-latitude regions (N30◦~N40◦) of
mainland China were the key areas of urban O3 pollution from 2015 to 2020.

Based on the data of urban monitoring points, the detailed spatial distribution charac-
teristics of the urban O3 concentration are plotted in Figure 3. From 2015 to 2016, the urban
O3 concentration pollution area exhibited a spot-like distribution, mainly concentrated in
the Beijing-Tianjin-Hebei region, Shandong Peninsula, and the Yangtze River Delta region
(Figure 3a,b). However, by 2018, the polluted area expanded from a spot-like shape to a
surface-like shape. The areas of high O3 concentration included most cities in North China,
East China, and Central China, and even cities in Southwest China were also polluted by
O3 (Figure 3c,d). From 2018 to 2020, the area of O3 pollution was significantly reduced, and
it was confined to North China and a small part of the Yangtze River Delta (Figure 3e,f). For
instance, since 2017, the near-ground O3 concentration in the Yangtze River Delta region
has shown a downward trend, which was due to the concentrations of O3 precursors (NOx
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and VOCs) emitted in 2017, which were at their peak during this time period. High concen-
trations of NOx and VOCs directly contribute to elevated urban O3 concentrations [39]. The
results showed that although the concentration of O3 in cities from mainland China has
been at a high level, the degree and area of pollution are decreasing. The obvious regional
aggregation characteristics of urban O3 pollution can also be found in Figure 3. The core
areas of pollution were mainly concentrated in the North China Plain and the Yangtze River
Delta. From 2015 to 2018, the expansion of the O3 pollution area in cities in China was
affected by the reduction of atmospheric particulate matter (PM2.5) and NOx emissions [40].
Studies revealed that the reduction of PM2.5 concentrations in the atmosphere slowed down
the aerosol sink of hydroperoxyl-free radicals, thus promoting the production of O3 [41]. In
addition, the increase in temperature and the decrease in humidity on the urban surface
also exacerbated the increase in the urban O3 concentration [41]. From 2019 to 2020, the
reduction in the extent of urban O3 pollution was due to the strengthened management
and control of air pollutant emissions by the government and the impact of the COVID-19
epidemic [42,43].
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3.3. The Clustering Characteristics of Urban O3 Concentration
3.3.1. The Spatial Autocorrelation Characteristics of Urban O3 Concentration

From 2015 to 2020, the distribution of the urban O3 concentration in mainland China
had significant spatial clustering characteristics (Table 2). The difference in the global
Moran’s index of O3 distribution was statistically significant (p < 0.01, and Z > 2.58). The
results indicated that urban O3 distribution from 2015 to 2020 had a significant spatial
positive correlation. The probability of the O3 distribution showing randomness was less
than 0.0001, and the clustering probability of the O3 distribution was much greater than
the probability of random distribution (Table 2). Overall, the distribution of O3 has the
characteristics of spatial dependence and aggregation. In addition, compared with the O3
distribution characteristics in other years, the spatial clustering characteristics of the O3
concentration in 2018 were the most obvious (Moran’s I = 0.7496).
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Table 2. Results of spatial autocorrelation analysis of the urban O3 concentration in mainland China.

Year Moran’s I E(I) Z-Score p-Value Cluster V(I)

2015 0.4908 −0.0030 14.1395 0.0001 Yes 0.0050
2016 0.6137 −0.0031 17.8051 0.0001 Yes 0.0032
2017 0.7496 −0.0030 21.5970 0.0001 Yes 0.0022
2018 0.7613 −0.0030 21.6733 0.0001 Yes 0.0021
2019 0.7538 −0.0030 21.7992 0.0001 Yes 0.0021
2020 0.7053 −0.0030 20.4490 0.0001 Yes 0.0024

A local spatial autocorrelation analysis (LISA) was used to analyze the spatial distribu-
tion characteristics of the O3 concentrations in different local area units in mainland China
(Figure 4). The results showed that the spatial distribution of urban O3 presented the clus-
tering characteristics of the same type in different regions (namely, the high-concentration
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area was adjacent to the high-concentration area (H-H), and the low-concentration area
was adjacent to the low-concentration area (L-L)). Among them, the H-H distribution areas
were mainly concentrated in Beijing-Tianjin-Hebei, Shandong, Jiangsu, Henan, and other
regions. It has been confirmed that O3 pollution was exacerbated by an interaction of
atmospheric pollutants (PM10, NO2, CO, SO2, and PM2.5) and meteorological elements
(average wind speed, sunshine duration, evaporation, precipitation, and temperature) in
metropolitan areas [25]. Therefore, there are three main reasons for the concentration of
O3 in these areas. Firstly, these areas have a large population, rapid economic develop-
ment, and a large number of motor vehicles, which have promoted a large amount of NOx
emissions. Secondly, compared with other regions in China, industrial enterprises such as
petrochemicals, coal-fired power plants, and organic chemical industries gather in these
places, resulting in more VOCs being emitted into the atmosphere [25,44]. Finally, the
intense solar radiation and high temperatures in metropolitan areas in summer directly
induce the photochemical behavior of O3; in addition, the urban thermal circulation retards
the dispersion of atmospheric pollutants. The L-L area was mainly concentrated in the
southwestern region (such as Tibet, Xinjiang, Yunnan, and Guizhou province) and the
northeastern region of China (such as Heilongjiang and Jilin provinces). The reason for the
low concentration of clustering in the southwest is that NOx and VOCs emissions were less
than in other regions. In the northeast, the emission time of O3 precursors was short and
the photochemical reaction was weak, and hence most areas in this region exhibited the
characteristics of low concentration clustering.

Hot spot analysis was used to further verify the accuracy of local spatial clustering
of O3 (Figure S2). The results showed that the area of O3 clustering was wider than that
calculated by LISA, and the clustering regions included North China, East China, and
Central China. Moreover, from 2015 to 2020, the variations in the regions of urban O3
clustering were not obvious, and the clustering regions had been concentrated in the above-
mentioned regions. Overall, the hot spot analysis showed that the clustering area of O3
was basically consistent with the results of the LISA analysis.

3.3.2. Spatiotemporal Evolution Pattern of Urban O3 Concentration

To further investigate the characteristics of spatial clustering and temporal variation
of the O3 concentration, a standard deviation ellipse analysis (SDE) was used (Figure 5). In
general, the standard deviation ellipse of the urban O3 concentration covered the entire
eastern part of mainland China, and the long axis of the ellipse showed a southwest-
northeast trend. It is noteworthy that the direction of the long axis was basically parallel
to the Chinese population boundary (Hu line), indicating that human activities played
a leading role in the increasing O3 concentrations. In addition, parts of the southwest
and northwest regions of China were also included in the ellipse. The occurrence of this
phenomenon may be related to the emission of air pollutants in Western China and the
diffusion of pollutants in the atmosphere.

From 2015 to 2020, the length of the long and short axes of the standard deviation
ellipse changed, and the mean center also moved (Figure S3 and Table S3). The length
of the long axis and the short axis had both shortened and then elongated from 2015 to
2020. The combination of Figure 4 and Table S3 shows that, from 2015 to 2017, the area
of the standard deviation ellipse had shrunk from 3,944,147.97 km2 to 3,835,207.67 km2.
Subsequently, from 2018 to 2020, the area of the standard deviation ellipse had shown an
expanding trend from 3,848,261.55 km2 to 3,921,629.37 km2. The results indicated that
urban O3 in mainland China presented a phenomenon of high concentration clustering
and low concentration diffusion from 2015 to 2020. In addition, the geographic center
of ozone pollution (mean center of the standard deviation ellipse) was in Nanyang City,
Henan Province. The movement direction of the geographic center was first northeast and
then southwest; among them, its maximum moving distance was 36.80 km from north to
south and 27.84 km from east to west. Overall, the mean center tended to move to the
south. This phenomenon implied that the reduction of the atmospheric O3 concentration



Int. J. Environ. Res. Public Health 2023, 20, 3810 11 of 20

in North China played an important role in the prevention and control of national O3
pollution. The emission control of O3 precursors in urban agglomerations in southern
China (e.g., Yangtze River Delta, Pearl River Delta, etc.) are conducive to the reduction of
urban O3 concentrations.
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3.4. Factors Influencing the Distribution Characteristics of Urban O3 Concentration

After multiple covariance testing and PCA analysis, NO2, SO2, PM2.5, CO, DEM,
temperature, sunshine hours, precipitation and NDVI were then respectively used as
explanatory variables and were substituted into the OLS, GWR and MGWR model for
fitting. Model fitting results show that the value of R2 fitted by the MGWR model was
higher than that of the OLS and GWR models, and the AIC value of MGWR fitting was
lower than the AIC value of OLS and GWR fitting. The results indicated that compared
with OLS and GWR, the MGWR model was more suitable for analyzing the influencing
factors of the O3 concentration in 2018 (Table S4). By the calculation of MGWR, it was
found that the regression coefficients of the NO2 concentration, the SO2 concentration,
the PM2.5 concentration, Digital Elevation Model (DEM), sunshine hours, precipitation,
and NDVI were significant overall. The regression coefficients of the other four variables
(air pressure, wind speed, air temperature, and relative humidity) were not statistically
significant. Among them, the concentration of SO2, PM2.5, DEM, sunshine hours, and
precipitation were mainly positively correlated with the spatial distribution of O3, while
NDVI were negatively correlated with the spatial distribution of O3 (Figure S4). On the
spatial scale, emissions of atmospheric gas pollutants may contribute to urban O3 formation,
and the precursors of secondary particulate matter in PM2.5, which also contains ozone
precursors, can contribute to urban O3 concentrations. There is a certain relationship
between the photochemical oxidation of SO2 and O3. A high O3 concentration greatly
promotes the chemical conversion of SO2 to sulfate [25]. Meteorological influences play an
important role in influencing troposphere ozone concentrations, but the dominant factors
show different effects on ozone in different regions [45,46]. The duration of light and the
amount of evaporation are related to solar radiation. Intense solar radiation (sunshine
hours) drives active photochemical reactions, which increase urban ozone concentrations.
Similarly, solar radiation is stronger at higher altitudes than at lower altitudes due to
the weakening effect of clouds and water vapor at lower altitudes that exacerbate the
solar radiation. In addition, the effect of vegetation on regional O3 pollution is also very
closely related. Studies have shown that during drought, vegetation is less effective in
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removing O3 through stomata than during wet periods, exacerbating the extreme effects of
O3 pollution [47].

Bandwidth directly reflected the spatial scale of different influencing factors in the
spatial process [48,49]. The bandwidth value (BW) had a positive correlation with the
spatial influence of the dependent variable. In other words, the larger the BW, the wider
the influence range of the influencing factors on the independent variables; meanwhile,
the spatial influence of the influence factor was similar and the spatial heterogeneity was
smaller [46]. The NO2 concentration (BW 314), DEM (BW 298), and sunshine hours (BW
318) had a wide range of effects on the spatial distribution of O3, and the scope of their
influence spread to the scale of the entire study area (Table S4). The concentration of SO2
(BW 150), PM2.5 (BW 56), precipitation (BW 108), and NDVI (BW 132) had an impact on the
spatial distribution of urban O3 on a local scale, and their influence had not spread to the
entire study area.

Furthermore, the spatial pattern of different influencing factors on O3 was analyzed
(Figure 6). In East China, South China, Central China, and North China, the NO2 concen-
tration and the spatial distribution of O3 showed a positive correlation (Figure 6b). On the
one hand, these places had always been the main population distribution areas in China.
Strong human activities (e.g., vehicle emissions, fossil fuel combustion, and industrial
emissions) caused the emission of NOx and VOCs. On the other hand, these regions are in
low- and mid-latitude regions in China, and radiation and light stimulated the formation
of O3. Studies have shown that tropospheric O3 is a secondary pollutant produced by the
photochemical reaction of NOx and VOCs [50]. Therefore, solar radiation, NOx concentra-
tion, and VOCs concentration directly determined the local O3 concentration. However, the
correlation between the O3 concentration and the NO2 concentration in Northwest China,
Northeast China, and Southwest China was not obvious, because the local emissions of
VOCs and solar radiation were relatively small. The results showed that the variations of
O3 in these areas were affected by other factors. In the southwest, northwest, and northeast
regions of mainland China, urban SO2 concentration and O3 concentration showed a posi-
tive correlation (Figure 6c). The above-mentioned areas are the main coal-burning areas in
mainland China, and the SO2 emitted during the coal-burning process is an important part
of secondary inorganic aerosols [51]. However, in Eastern China, the relationship between
O3 concentration and SO2 concentration was not obvious, which indicated that SO2 was not
the main factor influencing urban O3 pollution in mainland China. Generally speaking, the
concentration of PM2.5 directly affected the local O3 concentration in the entire mainland
of China. The main component of PM2.5 was composed of gaseous pollutants (such as
carbon, organic carbon compound, sulfate, nitrate etc.) [52]. Among them, a minority of
the chemical composition of PM2.5 derived from direct emissions from pollution sources,
and most of it originates from atmospheric photochemical transformations of SO2, NOx
and VOCs [53]. NOx and VOCs were the precursors of O3 formation. Therefore, the O3
concentration and PM2.5 concentration had a mutual influence relationship, especially in
North China, Central China, and Northwest China, where the local PM2.5 concentration
and O3 concentration showed a clear positive correlation (Figure 6d).

On the time scale, the correlation between PM2.5 and O3 concentration in different
seasons was further analyzed. Under the effect of different meteorological elements, the
influence of PM2.5 concentration on O3 concentration was a complex process; however,
urban PM2.5 and O3 concentrations showed a significant negative correlation in all seasons
on the time scale. A significant negative correlation (r = −0.423) was found between O3
and PM2.5 in mainland Chinese cities from 2015–2020. Within the 99% confidence interval,
the correlation coefficients between urban O3 and PM2.5 in different seasons were −0.293
(spring), −0.080 (summer), −0.272 (autumn) and −0.296 (winter). These phenomena have
been attributed to the fact that high concentrations of particles lead to an increase in the
optical thickness of the aerosol, which weakens the photochemical production rate of ozone
and contributes to a decrease in ozone concentration. In addition, an increase in PM2.5
concentration could weaken atmospheric radiation and thus suppress ozone levels through
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the disappearance of UV light [45]. On an hourly scale, we found a particularly interesting
finding that urban O3 concentrations are highly significantly negatively correlated with
PM2.5 concentration at 1, 6, 12, 18, 24, 48 and 72 h in advance (Figure S5).
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The influence of physical geographic elements on the O3 concentration suggested
regional characteristics (Figure 6e–h). DEM had a significant positive correlation with
the O3 concentration in Southwest and Northwest China. On the one hand, Southwest
and Northwest regions of China are at high altitudes, and the solar radiation there was
stronger than it was in other regions. On the other hand, the rugged terrain interfered
with the diffusion and dilution of atmospheric pollutants. Solar radiation and temperature
directly drove the photoreaction of atmospheric pollutants [54,55]. Therefore, for all cities
in mainland China (especially in North China and Northwest China), when the sunshine
time increased, the O3 concentration increased. The effect of precipitation on O3 was due to
the large cloud fraction along with precipitation, which weakens the intensity of insolation
and affects the photochemical production of O3. In addition, precipitation washes out
O3 precursors and limits the O3 formation [56]. Vegetation removed air pollutants by
preventing the migration and diffusion of atmospheric particles and plant transpiration.
Especially in Southwest China, Northwest China, and Central China, the suppression
effect of vegetation on local O3 was more obvious than that in other regions. However,
in Northeast China and East China, the inhibitory effect of vegetation on O3 was not
significant. The reason may be that the VOCs released by plants and the VOCs emitted by
human activities increased the probability of local O3 generation.

3.5. Interaction of Different Factors on the Variation of Urban O3 Concentration

The variation of urban O3 concentration was the result of the compound action of
multiple factors, rather than a simple single factor control [57]. To further explore the main
driving factors of atmospheric pollutants and meteorological factors on the variation of
urban ozone concentration on the Chinese mainland, NO2, SO2, PM2.5, DEM, SH, PREC
and NDVI were selected as explanatory variables, and a GAM model under the interaction
of multiple factors was constructed. Through pairwise combination, 21 groups of interac-
tion terms were obtained. The results showed that these 21 groups of results all passed
the significance test, and the effect on the change of ozone concentration was significant
at the level of p < 0.01 (Table S5). In the model (GAM), the adjusted R2 was 0.609, and
the maximum variance explanation rate was 60.9%, indicating that each interaction term
has a good explanation degree for O3 concentration, and the model fitting effect reached
the standard. In addition, the interaction F value of SH and PREC (5988.0), SH and NO2
(5673.7), SH and DEM (5567.8), SH and SO2 (5522.0), SH and PM2.5 (5462.2) was higher
than that of other factors, and the interaction between SH and other factors significantly
affected the variation of O3 concentration. Numerous studies have confirmed the signifi-
cant contribution of sunshine hours to urban O3 concentration, mainly because sunshine
hours affected the intensity of solar radiation (ultraviolet light) and the temperature of
photochemical reactions [57,58]. However, the interaction of sunshine hours and other
factors on the change of O3 requires further detailed analysis.

The interaction between SH and NO2, SH and SO2, SH and DEM, SH and PREC, SH
and NDVI all showed stimulating effects on the increase of O3 concentration (Figure 7a–f).
This result indicated that the risk of urban ozone pollution was exacerbated by unfavorable
conditions of both pollutants and meteorological elements in areas with strong solar radia-
tion. In general, when the concentration of NO2 was below 100 µg/m3, the response of O3
concentration to the interaction of NO2 and other factors was not obvious. However, when
the NO2 concentration exceeded the threshold (100 µg/m3), the O3 concentration showed
a rapid increase as the concentration of NO2, and other pollutants increased (Figure S6a–c).
PM2.5 concentrations showed different characteristics from other atmospheric pollutants.
With the increase of PM2.5 concentration, the positive promotion effect of other factors
on O3 was shielded (Figure S5f,j–l). Some studies have confirmed that the O3 pollution
season has been extended from winter to spring under the background of reduced PM2.5
and NOx concentrations in the North China Plain [37]. However, it can be seen from the
interaction relationship between PM2.5 and other factors that reducing the emission of
PM2.5 containing sulfate, nitrate and organic components could significantly reduce the O3
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concentration. The role of precipitation was similar to that of PM2.5, with high-intensity
precipitation attenuating the contribution of other factors (Figure S6d,h,k,m), but high-
intensity precipitation and prolonged sunshine promoted the production of O3 (Figure 7e).
When NDVI was lower than ~0.5, with the increase of NDVI and other pollutant concen-
trations, the O3 concentration showed an increasing trend. When NDVI exceeded ~0.5,
even if the concentration of other pollutants increased, NDVI suggested the phenomenon
of inhibiting the production of O3 (Figure S6e,i,l,n,o). This is because under low vegetation
coverage, the BVOCs released by vegetation can participate in photochemical reactions
and promote the generation of O3, while under high vegetation coverage, the vegetation
can block direct sunlight and inhibit the production of photochemical reactions [59,60]. In
addition, VOCs (e.g., isoprene) released from plants contribute directly to ground-level
O3 formation, especially under high temperature conditions. VOC emissions increase
during warm seasons with high insolation and especially during the flowering periods,
often exhibiting exponential temperature dependence [61,62]. Some of the VOCs (e.g.,
monoterpenes and sesquiterpenes) released by plants can cause an increase in near-surface
particulate matter concentrations [63,64]. However, the transfer of VOCs between the
gas and solid phases can slow or exacerbate the formation of urban O3 [61]. Under high
temperature conditions, VOCs released by plants can promote the formation of O3 in cities.
However, plants can also prevent the formation of O3 through surface adsorption and the
weakening of light intensity. These two opposite behaviors have significant changes in
different regions and times.

Figure 7. Interaction of different factors on the variation of urban O3 concentration Three-dimensional
effect plots. (a) NO2 and sunshine hours (SH); (b) SO2 and sunshine hours (SH); (c) PM2.5 and
sunshine hours (SH); (d) Digital Elevation Model (DEM) and sunshine hours (SH); (e) precipitation
(PREC) and sunshine hours (SH); (f) normalized difference vegetation index (NDVI) and sunshine
hours (SH).

4. Conclusions

This study explored the spatial clustering and temporal dynamic evolution charac-
teristics of the O3 concentration in cities from mainland China on a long-term scale. The
different effects of topography and vegetation characteristics on the distribution of O3 in
various regions of China were also verified. The results suggested that the O3 concentration
in China’s cities showed an upward trend from 2015 to 2018, followed by a downward
trend after 2018. The variations in the O3 concentration had obvious seasonal characteristics
(summer > spring > autumn > winter), where the change of the O3 concentration in May
should be the focus of attention. From 2015 to 2016, the urban O3 concentration pollution
area exhibited a spot-like distribution mainly concentrated in the Beijing-Tianjin-Hebei
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region, the Shandong Peninsula, and the Yangtze River Delta region. However, by 2018,
the polluted area expanded from spots to surface. The areas of high O3 concentration
included most cities in North China, East China, and Central China, and even some cities
in Southwest China were also polluted by O3. On the national scale, the distribution of O3
had the characteristics of spatial dependence and aggregation. On a regional scale, the O3
distribution areas of high concentration were mainly concentrated in Beijing-Tianjin-Hebei,
Shandong, Jiangsu, Henan, and other regions. In addition, the standard deviation ellipse
of the urban O3 concentration covered the entire eastern part of mainland China. Overall,
the mean center of the standard deviation ellipse tended to move to the south with the
time variation. DEM had a significant positive correlation with the O3 concentration in
Southwest and Northwest China. Vegetation removed air pollutants by preventing the
migration and diffusion of atmospheric particles and plant transpiration, especially in
Southwest China, Northwest China, and Central China, where the suppression effect of
vegetation on local O3 was more obvious than that in other regions.
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tion characteristics (a) and mean center movement characteristics (b) of standard deviation ellipse,
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