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Abstract: Biochar can effectively reduce the phytoavailability of mercury (Hg) in soil, but the mech-
anisms are not fully understood. In this study, the dynamic changes in Hg content adsorbed by
the biochar (BC-Hg), Hg phytoavailability in the soil (P-Hg), and soil dissolved organic matter
(DOM) characteristics were determined over a 60-day treatment period. Biochar obtained at 300 ◦C,
500 ◦C and 700 ◦C reduced the P-Hg concentration assessed by MgCl2 extraction by 9.4%, 23.5% and
32.7%, respectively. However, biochar showed a very limited adsorption on Hg, with the maximum
BC-Hg content only accounting for 1.1% of the total amount. High-resolution scanning electron
microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDS) results showed that the
proportion of Hg atoms in biochar after 60 d was barely detectable. Biochar treatment can shift soil
DOM toward higher aromatic content and molecular weight. Additionally, the addition of high-
temperature biochar increased more humus-like components, but low-temperature biochar increased
more protein-like components. Correlation analysis and partial least squares path modeling (PLS-PM)
showed that biochar promoted humus-like fractions formation to reduce the Hg phytoavailability.
This research has deepened the understanding of the mechanisms by which biochar stabilizes Hg in
agricultural soils.

Keywords: biochar; mercury; pyrolysis temperature; dissolved organic matter; soil remediation

1. Introduction

Heavy metal pollution is a growing environmental problem worldwide and has
attracted widespread attention [1,2]. Mercury (Hg), an extremely toxic element, can damage
the nervous system of animals and humans. In addition, Hg tends to accumulate and
amplify via the food chain, eventually constituting a health risk and carcinogenicity to
humans, and even lives in the environment exposed to low concentrations of Hg [3]. In
order to assess the impact of Hg on soil organisms, there is a growing tendency to use the
concept of availability [4,5]. Availability can determine the fate of metals in the soil and
their ability to be leached into groundwater or taken up by plants. To this end, it is required
to find ways to reduce Hg availability to plants by retaining it in the soil or converting it in
situ into its most stable and less toxic form [6,7].

Biochar is a sustainable carbon-rich material made by the cracking of biomass in an
oxygen-limited environment [8]. Owing to its high adsorption capacity for heavy metals,
biochar is often used for soil remediation [9,10]. Biochar has shown excellent performance
in Hg immobilization, but it has been less researched, other than the metal(loid)s such as Pb,
As, and Cd. In particular, the pathway of Hg immobilization by biochar is still unclear. On
the one hand, the addition of biochar can adsorb heavy metals to reduce availability [11–13].
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On the other hand, biochar inevitably leads to a series of biogeochemical interactions in the
soil matrix, causing changes in soil properties (e.g., soil pH and DOM properties), which
affect the immobilization of heavy metals [14–16]. Biochar changes soil DOM both by
releasing DOM (i.e., the easily mineralizable and extractable carbon fraction in biochar) into
the soil solution and adsorbing the native soil DOM into its pore structures [17]. Given the
high affinity of Hg for DOM, the effect of biochar-influenced DOM on Hg phytoavailability
should be carefully considered.

The mobility and availability of heavy metals are affected by its capacity to form
soluble or insoluble complexes with soil DOM and its binding properties to DOM, which
are mainly associated with the structure and composition of DOM [18,19]. A number of
studies have investigated the influence of various chemical functional groups, composi-
tional structures, and sources of DOM on Hg availability [20–22]. For example, highly
aromatic humic-like substances can be amended to Hg-contaminated soil and it shows
a higher Hg binding capacity [23]. Combined with the results of existing studies, it has
been initially discovered that biochar appears to affect soil DOM properties such as the
components and content, and thus affects the Hg availability [24,25]. The pyrolysis tem-
perature was one of the key factors that significantly influenced the content, structure and
composition of biochar-derived DOM [26,27]. However, little is known about the changes
in the composition of soil DOM and its corresponding effects on Hg phytoavailability when
applying biochar produced at different pyrolysis temperatures.

In this study, we hypothesized that biochar-induced variations in soil DOM properties
and therefore Hg–soil interactions play key roles in controlling the Hg phytoavailability. To
test this hypothesis, we designed a nylon bag-biochar incubation experiment. Specifically,
a certain amount of rice straw biochar with three different pyrolysis temperatures (300 ◦C,
500 ◦C, 700 ◦C) was placed in a nylon mesh bag and then added to the Hg-contaminated
soil. The main objectives of this study were (1) to clarify the main action mode of biochar on
Hg by assessing the adsorbed Hg content by biochar and the available Hg content in soil;
(2) to determine the effect of biochar produced at different pyrolysis temperatures on the
soil DOM properties; and (3) to reveal the potential mechanisms by which biochar immo-
bilizes Hg in soil. The findings from this study could assist in improving the mechanistic
understanding of Hg availability in soils under biochar amendment as well as provide a
theoretical guidance for the practical application management of biochar.

2. Material and Methods
2.1. Preparation of Biochar and Soil

The soil samples used in this study were collected from farmland in Yongzhou, Hunan
Province. Soils with a depth of 0–10 cm were used in the experiments, which were air-dried,
mixed, sieved to a diameter of ≤2 mm and stored in a greenhouse (~22 ◦C) prior to the
experiments. The basic characteristics of the soil are shown in Table S1 and its operation is
described in the Supplementary Materials.

Since Hg concentrations in various human-influenced contaminated soils vary in
the range from 0.04 to >100 mg kg−1 [20,28], the Hg concentrations chosen in previous
experimental studies are not uniform. We chose a soil Hg concentration of 20 mg kg−1

because this is representative of the typical Hg-contaminated agricultural soils in mining
areas [29]. Specifically, a calculated solution of Hg(NO3)2 was added uniformly to 1 kg
of air-dried soil, mixed continuously and allowed to increase its moisture content to 20%
w/w [30]. The soil was then covered with dark plastic lids (to reduce the potential losses of
Hg) and incubated for 7 days to homogenize the soil [31].

Biochar was made from rice straw. The straw was heated in a tubular furnace with
limited air at a rate of 10 ◦C min−1. In the temperature range (200–700 ◦C) applied in the
previous studies [30,32], the pyrolysis temperatures 300, 500 and 700 ◦C were used. After
reaching the final pyrolysis temperature, the pyrolysis residence time was 120 min. The
choice of pyrolysis temperature was determined by the particular physicochemical changes
that each temperature can produce for the biochar. Increasing the pyrolysis temperature
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(~700 ◦C) is beneficial to both increase the specific surface area (SSA) and ash content of
the biochar [33]. However, it reduces the dissolved organic carbon (DOC) content. In
contrast, biochars pyrolyzed at lower temperature (~300 ◦C) have more functional organic
groups, more DOC content and lower SSA [34]. The choice of a pyrolysis temperature
of 500 ◦C was based on the possibility of exhibiting the intermediate properties at both
low- and high-temperature biochars. Changes in these properties by pyrolysis temperature
may have an impact on the biochar’s ability to adsorb and release DOM, which in turn
determine the effectiveness of Hg immobilization. The basic characteristics of biochar were
analyzed and its specific operations are shown in the Supplementary Materials.

2.2. Experiment Design

Each biochar was sieved to obtain the particle sizes of 0.15 to 0.5 mm, which is of-
ten found in biochar-treated Hg-contaminated soils [30]. The selected application rate
of biochar was 5%, and this application rate was widely used in the studies of Hg-
contaminated soil [35,36]. The biochar was packed into acid-washed microporous mesh
nylon bags (pore size 0.05 mm). This was aimed at preventing biochar particles from
leaching into the soil, as well as allowing the transport of Hg [37,38]. The bagged biochar
and 12 g of soil were placed sequentially in a 50 mL polypropylene centrifuge tube so that
the biochar could be uniformly and tightly encapsulated by the soil.

This experiment was set up with four treatment groups: control (CK), 300 ◦C biochar
treatment (3BC), 500 ◦C biochar treatment (5BC) and 700 ◦C biochar treatment (7BC). Each
group had three replicates. All the treatments were incubated in a constant temperature
chamber at 28 ◦C. Soil moisture content was controlled at 70% of the water holding capacity
(WHC). The moisture content was adjusted every two days by adding deionized water to
maintain a constant mass. Samples were destructively sampled on days 5, 15, 30, 45 and 60
of the incubation experiment.

2.3. Sampling and Chemical Analyses

During each destructive sampling, the biochar-treated soil and bagged biochar were
collected separately from each treatment sample for further analysis. Soil pH was measured
with a pH electrode using a solid/water ratio of 1:2.5 (w/v). The chemical functional groups
of the soil were characterized using infrared spectroscopy (IRAffinity-1, Shimadzu, Kyoto,
Japan). Before analysis, soil samples and potassium bromide were mixed and pressed at a
ratio of 1:150 to prepare thin slices. The scanning wavelength was 4000–400 cm−1, with a
resolution of 4 cm−1 and a scan number of 32. The infrared spectra were processed using
the EZ OMNIC 7.3 software. The quantification of the Hg phytoavailability in biochar-
treated soils and the total Hg in biochar was undertaken to determine the main way in
which biochar acts to immobilize Hg in contaminated soils. The phytoavailable Hg was
analyzed at a ratio of 1M MgCl2:soil of 1:10 with shaking at 200 rpm for 1 h. It was found
that the MgCl2 extractable level of Hg was representative of the Hg phytoavailability and
showed a good correlation with Hg content in the plant body [39–41]. The Hg content was
then measured by cold vapor atomic fluorescence spectrometry (CVAFS) [42]. Scanning
electron microscopy (SEM) with energy dispersive spectrometry (EDS) (ZEISS Gemini
SEM 300, Oberkochen, Germany) was used to determine the morphology and chemical
composition of the biochar particles, as described in the Supplementary Materials.

2.4. Characterization of Water-Extractable DOM

The extraction of DOM followed the procedure previously described in a related
study [43]. Prior to analysis, the filtrate was stored in the dark at 4 ◦C. The concentration
of DOC in the extracted DOM was measured using a TOC analyzer (Shimadzu L series,
TOC-CHP, Kyoto, Japan). The DOC of all the samples was uniformly adjusted to 10 mg L−1

to avoid the inner-filter effect prior to UV–Vis and fluorescence analysis [44]. The UV
absorbance of DOM was measured using a 1-cm quartz cuvette and a UV/Vis spectropho-
tometer (Perkin-Elmer Lambda 14). The scanning was performed with deionized water as
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the blank and operated with scanning wavelengths of 200–600 nm. Detailed information
about the procedures and parameters of parallel factor (PARAFAC) analyses and simul-
taneous fluorescence spectroscopy (SFS) can be found in the Supplementary Materials.
Several spectral parameters were used to characterize DOM, including SUVA254 (specific
UV-absorbance values at 254 nm), E2/E3 (absorbance at 254 nm divided by absorbance at
365 nm), Frl (freshness index), FI (fluorescence index) and BIX (biological index) and HIX
(humification index). Details of the calculation of the DOM spectral parameters are given
in Table S3.

2.5. Statistical Analysis

Tests of variance for the non-normally distributed data set were performed by Kruskal–
Wallis one-way ANOVA. Statistical significance (p) was declared at <0.05 (two-tailed).
Correlation analysis was based on Spearman’s rank correlation coefficient (rs) at the p < 0.01
or p < 0.05 level. All graphs were plotted by Origin 2022b. Partial least squares pathway
modeling (PLS-PM) was performed using Smart-PLS 3 to assess the effect and relative
contribution of biochar-induced soil pH, DOC and DOM characteristics (e.g., components
and properties) on Hg phytoavailability. PLS-PM was first conducted to show the associa-
tions among all the variables (full model), and then we kept the variables with loadings
greater than 0.4 to the latent variable for further PLS-PM analysis [45]. Finally, the DOM
components include the relative abundance of the three DOM components. The DOM
properties are the set of sources and molecular weights of DOM represented by BIX, Fl and
E2/E3.

3. Results and Discussion
3.1. Effect of Biochar on Hg Phytoavailability in Soil

In order to reveal the potential mechanism of biochar-induced Hg phytoavailability in
soil, we investigated the phytoavailable Hg content in the “biochar-treated soil” and the
Hg content of biochar through adsorption.

The reduction of P-Hg in the soil by biochar was significant. The treatment groups of
5BC and 7BC resulted in a rapid reduction in phytoavailable Hg content in the soil within
5 d compared to CK (Figure 1e). Consistent with previous studies, this work observed that
the treatment effect of biochar could be achieved in a relatively short time using biochar
(550 ◦C) to immobilize 28.3 mg/kg Hg-contaminated soil [46]. The largest reductions of
3BC, 5BC and 7BC occurred at 30 days, which declined by 15%, 40% and 47%, respectively.
This was followed by a slight increase in P-Hg concentrations. This work shows that rice
straw biochar without modification can effectively immobilize Hg. In addition, the results
revealed that the pyrolysis temperature of biochar made a significant difference to Hg
phytoavailability.

The SEM-EDS results showed that the surface structure of biochar became more
porous as the pyrolysis temperature increased, which was also supported by N2-BET
results that biochar produced at the highest temperature had the largest specific area
(Table S2). The fresh biochar had a relatively smooth and porous surface with a high
content of C and the presence of Mg, K, Ca, Fe and Mn. Biochar recovered after 60 d
had visible microaggregates on the surface and in pores, with higher concentrations of
Al, Fe, Mn and Ca than fresh biochar. However, Hg was below the detection limit in
biochar (Figure 1d). Furthermore, we found that the adsorption of Hg in soil by 3BC, 5BC
and 7BC (Figure 1f) was 1.434–2.491 mg/kg, 2.756–4.414 mg/kg and 2.405–4.113 mg/kg,
respectively, by ablation-CVAFS analysis. The maximum amount of BC-Hg was only 1.1%,
which indicated that the Hg adsorption by biochar was insignificant. While biochars have
been often applied as an amendment to contaminated soils, there are few comparative
sorption data. A similar study has shown that biochar exhibits low sorption capacity in
situ treatment of Hg-contaminated sediments [47,48]. In fact, the effectiveness of in situ
amendments to Hg is based on stoichiometric considerations (the amendments active
binding sites should exceed that of Hg in sediments) and the distribution coefficients (Kd)
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of the amendment for Hg since the amendment functions by competing Hg against the
natural sorbents [49]. In this study, the main reason for this phenomenon could be that Hg
readily formed complexes with soil organic matter [31,50], reducing free Hg adsorption on
biochar. Overall, our results indicate that biochar has limited adsorption to Hg in soil.
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Figure 1. SEM images of fresh biochar at 300 ◦C (a), 500 ◦C (b) and 700 ◦C (c). The element
composition of the biochar removed from soil (d). The phytoavailable Hg contents in the soil (e) and
the concentration of Hg in BC (f). Data are presented as mean ± standard deviation (SD), n = 3. CK,
control; 3BC, 300 ◦C biochar treatment; 5BC, 500 ◦C biochar treatment; 7BC, 700 ◦C biochar treatment.

3.2. Changes in Physicochemical Properties of Soil

The results of soil infrared spectroscopy with different biochar amendments (Figure 2)
showed that the chemical functional group composition of the soil with biochar and the
soil without biochar was basically similar, but the peak intensities of these characteristic
peaks were different. According to previous studies, the peak at 790 cm−1 was attributed
to the C-H bending vibration of the benzene ring; the peak at 925 cm−1 was attributed to
the basic vibration peak of illite; the peak at 1032 cm−1 was attributed to the C-O stretching
of polysaccharides, alcohols and phenols vibration; and the 1677 cm−1 was attributed to
the aromatic C=C stretching vibration [51,52]. Compared with CK, the absorption peak
intensity of 5BC and 7BC at 1677 cm−1 increased slightly, and the absorption peak height
of 3BC was basically similar to that of CK. On the contrary, the absorption peak intensity at
1032 cm−1 was slightly decreased for 5BC and 7BC, but increased significantly for 3BC. In
addition, 3BC also significantly improved the absorption peak intensity at 790 cm−1. This
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result suggests that differences in the functional groups of soil organic matter are associated
with the properties of biochar prepared at different pyrolysis temperatures.
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amendment.

With the addition of biochar, the soil pH has improved considerably in the short term
(Figure S1). Compared to CK, the pH increased by 0.2, 0.5 and 0.65 after 60 d for 3BC, 5BC
and 7BC, respectively (Table 1). This is mainly related to the high alkalinity of biochar,
which contains large amounts of alkali ions that replace H+ in soils and thus improves
pH (Figure 1d). All biochar treatments increased soil DOC content, and in particular,
the biochar obtained at higher pyrolysis temperature increased the DOC content more
significantly. The maximum soil DOC content was 913.17, 949.78 and 1073.68 mg/kg for
3BC, 5BC, and 7BC, respectively. However, the DOC content of the biochars declined
markedly with increasing production temperature (Table S2). This result suggests that the
DOC release from biochar to the environment may be influenced by other factors. We found
that pH was significantly and positively correlated with DOC content (rs = 0.562, p < 0.01),
which was in line with previous studies [14,19]. This may be attributed to the presence
of C-O-C bonds in the cellulose and hemicellulose of biochar which broke rapidly with
increasing pH [53]. After 30 d, DOC concentration in the biochar-treated group showed a
significant decreasing trend over time, leading to a reduction in DOC differences between
the treatment groups. This may be related to microbial depletion in the soil [54,55].

Table 1. Changes in pH and DOC of soil amended with biochar at 300 ◦C, 500 ◦C and 700 ◦C pyrolysis
temperatures.

Incubation
Time (d)

Soil pH DOC (mg kg−1)

CK 3BC 5BC 7BC CK 3BC 5BC 7BC

5 4.94 a 5.00 ab 5.50 ab 5.74 b 657.22 a 691.47 b 797.47 c 866.72 c
15 5.05 a 5.76 ab 5.94 ab 6.19 b 610.63 a 913.17 bc 894.97 b 960.07 c
30 5.09 a 5.39 ab 5.86 ab 6.15 b 706.88 a 867.18 b 949.78 b 1073.68 c
45 5.62 a 5.71 a 6.01 ab 6.27 b 746.49 a 663.96 b 729.69 a 770.29 a
60 5.64 a 5.85 a 6.12 ab 6.3 b 806.69 a 678.87 b 720.59 b 773.09 ab

Data are presented as Mean, n = 3. Different letter in the same row means significant differences at p < 0.05.
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Soil DOC and pH are two key factors for biochar to mitigate the biotoxicity of heavy
metals [15,56]. We observed a negative correlation of P-Hg with pH (rs = −0.644, p < 0.01)
and DOC (rs = −0.692, p < 0.01), respectively. At higher pH (alkaline conditions), metals
tend to produce more stable forms, while at lower pH (acidic conditions) they tend to
occur as soluble organometallic or free ionic species with high availability [57,58]. In
addition, an increase in soil pH can also cause an increase in the net negative charge of
soil surfaces, promoting the adsorption of metals on the soil surface and reducing metal
utilization [59]. The interaction between DOM released from biochar-amended soils and
metals can effectively control the availability of Hg [25,60,61]. However, the opposite result
was also observed in previous studies, showing that mobility and availability of Hg in soil
increased with increasing DOC content [19,20]. This paradoxical phenomenon may be due
to the diversity of DOM. Therefore, the simple correlation between DOC concentrations
and phytoavailable Hg does not adequately reflect its intricate relationship.

3.3. Effect of Biochar under Different Pyrolysis Temperatures on the Spectral Properties of
Soil DOM
3.3.1. UV–Vis Absorption Spectral Characteristics

UV–Vis spectroscopy showed that the degree of shift in DOM characteristics in soils
was different. Compared to the 5th day, the absorption rate at shorter wavelengths in
each treatment group decreased significantly in the 60th day (Figure S2). SUVA254 has
been widely used to evaluate the aromaticity of DOM [62]. The aromaticity and molecular
weight of DOM have a positive relationship with SUVA254 and an inverse relationship
with E2/E3 values [63], which was further confirmed by a negative correlation between
SUVA254 and E2/E3 of DOM samples in this experiment (rs = −0.818, p < 0.01). Previous
studies showed that biochar amendments enhance the DOM released from soils as well
as shift DOM composition toward higher aromatic content [14]. In our experiments, the
aromaticity and molecular weight of soil DOM increased with increasing the applied
biochar pyrolysis temperature in the other treatment groups, except for 3BC that slightly
decreased the aromaticity and molecular weight of soil DOM (Figure 3). This is because
the aromaticity and molecular weight of DOM released from biochar gradually increase
with increasing pyrolysis temperature [64]. Additionally, the aromatic component of
organic matter is difficult to be accessed by microorganisms due to its hydrophobicity and
possible toxicity [65]. Therefore, high-temperature biochar DOM remained in the soil. The
aromaticity and molecular weight of soil DOM increased in each treatment group with
incubation time (Figure 3), which was in line with a former study [66]. This indicates a
gradual release of aromatic substances or consumption of small non-aromatic substrates by
microorganisms. Overall, the soil DOM properties were influenced by the biochar addition
and varied with the pyrolysis temperature.

3.3.2. Parallel Factor Analysis and Fluorescence Indicators

The different components of soil DOM play critical roles in regulating the fate of
Hg [67]. Therefore, soil DOM fractions were investigated. A total of three components
(C1–C3) were extracted from the soil samples (Figure 4). The excitation and emission
characteristics of the components and its comparison with former studies are shown in
Table S5. Component C1 (250, 310/425 nm) was similar to the traditional combination
of humic-like peaks A and M and was described as a fulvic acid-rich humic substance of
terrestrial origin [68,69]. This component was generally considered to be a low molecular
weight compound from terrestrial plants or soil organic matter related to biological activ-
ity [70,71]. Component C2 (267, 370/480 nm) was considered to be a humus-like component
of terrestrial origin [72]. This excitation and emission property were related to terrestrial
organic matter consisting of high molecular weight and aromatic organic compounds [73].
The results showed that SUVA254 was positively correlated with C2% (Table S6), indicating
that Component C2 consists of compounds with relatively high aromaticity and molecular
weight. Component C3 (<240, 290/375) was derived from authigenic protein-like material
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associated with microbial degradation [68,74]. The relative abundance of C3 was nega-
tively correlated with HIX (rs = −0.583, p < 0.01) and positively correlated with recently
produced DOM, suggesting that Component C3 consists of DOM produced by indigenous
microorganisms. Based on the fluorescence spectra, the molecular structure of component
C3 was relatively simple [75].

Int. J. Environ. Res. Public Health 2023, 20, x FOR PEER REVIEW 8 of 19 
 

 

microorganisms. Overall, the soil DOM properties were influenced by the biochar addi-
tion and varied with the pyrolysis temperature. 

 
Figure 3. SUVA254 and E2/E3 of DOM in soil treated with biochar at different incubation times (5 d 
and 60 d). Data are presented as mean ± standard deviation (SD), n = 3. Different letters indicate 
significant differences between treatments of the soil (one-way ANOVA, p < 0.05), respectively. CK, 
control; 3BC, 300 °C biochar treatment; 5BC, 500 °C biochar treatment; 7BC, 700 °C biochar treat-
ment. 

3.3.2. Parallel Factor Analysis and Fluorescence Indicators 
The different components of soil DOM play critical roles in regulating the fate of Hg 

[67]. Therefore, soil DOM fractions were investigated. A total of three components (C1–
C3) were extracted from the soil samples (Figure 4). The excitation and emission charac-
teristics of the components and its comparison with former studies are shown in Table S5. 
Component C1 (250, 310/425 nm) was similar to the traditional combination of humic-like 
peaks A and M and was described as a fulvic acid-rich humic substance of terrestrial 
origin [68,69]. This component was generally considered to be a low molecular weight 
compound from terrestrial plants or soil organic matter related to biological activity 
[70,71]. Component C2 (267, 370/480 nm) was considered to be a humus-like component 
of terrestrial origin [72]. This excitation and emission property were related to terrestrial 
organic matter consisting of high molecular weight and aromatic organic compounds [73]. 
The results showed that SUVA254 was positively correlated with C2% (Table S6), indicat-
ing that Component C2 consists of compounds with relatively high aromaticity and mo-
lecular weight. Component C3 (<240, 290/375) was derived from authigenic protein-like 
material associated with microbial degradation [68,74]. The relative abundance of C3 was 
negatively correlated with HIX (rs = −0.583, p < 0.01) and positively correlated with recently 
produced DOM, suggesting that Component C3 consists of DOM produced by indige-
nous microorganisms. Based on the fluorescence spectra, the molecular structure of com-
ponent C3 was relatively simple [75]. 

Figure 3. SUVA254 and E2/E3 of DOM in soil treated with biochar at different incubation times (5 d
and 60 d). Data are presented as mean ± standard deviation (SD), n = 3. Different letters indicate
significant differences between treatments of the soil (one-way ANOVA, p < 0.05), respectively. CK,
control; 3BC, 300 ◦C biochar treatment; 5BC, 500 ◦C biochar treatment; 7BC, 700 ◦C biochar treatment.

Int. J. Environ. Res. Public Health 2023, 20, x FOR PEER REVIEW 9 of 19 
 

 

 
Figure 4. Three fluorescent components (C1: humic-like component enriched with fulvic acids, (a); 
C2: humic-like component, (b); C3: protein-like component, (c)) and corresponding excitation/emis-
sion loads (d–f) in biochar-treated soils as determined by EEM-PARAFAC analysis, and the fluores-
cence intensity (g–i) of the components during incubation. Data are presented as mean ± standard 
deviation (SD), n = 3. CK, control; 3BC, 300 °C biochar treatment; 5BC, 500 °C biochar treatment; 
7BC, 700 °C biochar treatment. 

Among the three components analyzed by EEM, the fluorescence intensity of the ful-
vic acid-rich humus (C1) was the highest (Figure 4), indicating that the DOM components 
of the studied soil were dominated by fulvic acid-rich humus. Compared to CK, the ap-
plication of biochar increased the relative abundance of the three compositions in the soils. 
However, the biochar produced at higher pyrolysis temperature contributed more humic-
like fractions to the soil DOM. In addition, the degree of soil DOM humification (HIX, 
Figure S4) increased following high-temperature biochar application, which seemed to be 
influenced by the release of exogenous DOM from organic amendments [14]. Conversely, 
more protein-like fraction and higher autotrophic capacity (e.g., Frl, BIX, Fl, Figure S4) 
were observed in the soil DOM treated with low-temperature biochar. This indicated that 
the microbial activity in the 3BC soil was enhanced under stimulation of exogenous nu-
trients and energy. The changes in the composition of fluorophores seemed to comple-
ment and confirm the results of UV–Vis spectra. The high aromaticity and molecular 
weight, and the high humification degree of DOM in biochar-treated soil can be attributed 
to the increase of humic-like, aromatic and condensed aromatic components [76]. The 
lower SUVA254 values in the 3BC treatment (Figure 3) indicated that the 3BC treatment 
contained more soluble substances in the soil that were easily absorbed by soil microor-
ganisms [77]. Therefore, the autochthonous contribution in the soil DOM of the 3BC treat-
ment was increased. Overall, compared with low-temperature biochar inputs, high-

Figure 4. Three fluorescent components (C1: humic-like component enriched with fulvic acids, (a); C2:
humic-like component, (b); C3: protein-like component, (c)) and corresponding excitation/emission
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(SD), n = 3. CK, control; 3BC, 300 ◦C biochar treatment; 5BC, 500 ◦C biochar treatment; 7BC, 700 ◦C
biochar treatment.
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Among the three components analyzed by EEM, the fluorescence intensity of the fulvic
acid-rich humus (C1) was the highest (Figure 4), indicating that the DOM components
of the studied soil were dominated by fulvic acid-rich humus. Compared to CK, the
application of biochar increased the relative abundance of the three compositions in the
soils. However, the biochar produced at higher pyrolysis temperature contributed more
humic-like fractions to the soil DOM. In addition, the degree of soil DOM humification (HIX,
Figure S4) increased following high-temperature biochar application, which seemed to be
influenced by the release of exogenous DOM from organic amendments [14]. Conversely,
more protein-like fraction and higher autotrophic capacity (e.g., Frl, BIX, Fl, Figure S4) were
observed in the soil DOM treated with low-temperature biochar. This indicated that the
microbial activity in the 3BC soil was enhanced under stimulation of exogenous nutrients
and energy. The changes in the composition of fluorophores seemed to complement and
confirm the results of UV–Vis spectra. The high aromaticity and molecular weight, and the
high humification degree of DOM in biochar-treated soil can be attributed to the increase of
humic-like, aromatic and condensed aromatic components [76]. The lower SUVA254 values
in the 3BC treatment (Figure 3) indicated that the 3BC treatment contained more soluble
substances in the soil that were easily absorbed by soil microorganisms [77]. Therefore,
the autochthonous contribution in the soil DOM of the 3BC treatment was increased.
Overall, compared with low-temperature biochar inputs, high-temperature biochar could
promote more aromatic and large molecular weight humus into soil and the concomitant
low bioavailability for soil microorganism. These differences may influence the binding
capacity of DOM to Hg, as spectral characteristics are important factors controlling DOM
complexation with metals [78,79].

3.3.3. 2D-COS Analysis of Fluorescent Components

To illustrate the effect of biochar on the degree of compositional variation of soil-
derived DOM, 2D-COS analysis was performed (Figure 5). In the synchronous plot, the
auto-peaks attributed to protein-like substances at 267 and 294 nm and the auto-peaks
attributed to fulvic acid-like substances at 330 and 370 nm were mainly observed to be
concentrated [80]. In the CK group, the intensity of the auto-peaks decreased in the order
of 330 > 267, 370 > 294 nm; in 3BC, the intensity of the self-peaks decreased in the order
of 330 > 294, 370 > 264 nm; in 5BC and 7BC, the intensity of the self-peaks decreased in
the order of 330 > 370 > 294 > 267 nm. This indicated that the fluorescence of the fulvic
acid-like components of the soil was more susceptible than that of the protein-like material.
In the four synchronous maps, the cross-peaks were positive except at 267 nm, indicating
that the peak intensities at 294 nm and 330, 370 nm showed the same variation trend, while
the peak at 267 nm showed the opposite trend with the incubation process.

In the asynchronous map of the CK group, five cross-peaks located at the lower right
corner were observed, and according to Noida’s rule [81], the order of wavelength change
with time was: 267→330→370, 420 nm; 267→294 nm. In the 3BC and 5BC groups, four
cross-peaks were observed in the asynchronous map, and the order of wavelength changes
with time was: 267→330→370 nm; 294→370 nm and 267, 294→370 nm; 330→370 nm,
respectively. The degree of variation in the fractions of the CK, 3BC and 5BC treatment
groups were similar, and the all results indicated that the protein-like substances changed
more strongly than the fulvic acid-like substances. In the asynchronous map of the 7BC
group, five cross-peaks were observed in the lower right corner, and the wavelengths
changed with time in the following pattern: 330→267, 380→405 nm; 330→360 nm. The
7BC group showed stronger changes in fulvic-like substances than humic-like and protein-
like substances. The different changes presented by the biochar treatments illustrated
the effect of pyrolysis temperature on the changes in soil DOM composition. In addition,
the variation of wavelength with time was different in the same fluorescent component,
showing the heterogeneity of DOM.
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biochar treatment; 5BC, 500 ◦C biochar treatment; 7BC, 700 ◦C biochar treatment.

3.4. Correlation of DOM Properties with Phytoavailable Hg

The Spearman’s rank correlations between DOM properties and Hg phytoavailability
in soil are summarized in Table S6. Biochar treatments can lead to higher aromaticity, molec-
ular weight of soil DOM (Figure 3). This facilitates organics–metal binding, followed by the
formation of high molecular weight organic matter–metal complexes and/or attachment to
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the surface of soil particles, thereby reducing the solubility and availability of metals [21,82].
In general, hydrophobic fractions of DOM, particularly humic molecules, have a high
content of reduced sulfur (e.g., sulfides and thiols), which causes a preferential affinity for
Hg [83,84]. There was a negative correlation between P-Hg and the relative abundance of
C1 (rs = −0.489, p < 0.05) and C2 (rs = −0.495, p < 0.05), but no significant relationship with
the relative abundance of C3 (p > 0.05), implying that less humified organic matter has a
lower capacity and strength to bind Hg than recalcitrant organic matter [21]. However, a
significant negative correlation of P-Hg values with C2% was observed in our experiments,
but not in C1%. This may be due to the instability of the C1 component. In most cases,
the stability of metal–organic complexes increased with increasing soil pH, with higher
stability of humic-like substances compared to fulvic-like substances (acidic soil pH) [85,86].
This was further backed up by the negative correlation between C1% and pH (rs = −0.439,
p < 0.05) and the positive correlation between C2% and pH (rs = 0.919, p < 0.01) in the
studied soils. In the contaminated soils, the decomposition of the C1 component may led
to the release of Hg originally bound to organic matter, which helps to understand why
P-Hg values increase slowly in the later stages of incubation. In addition, the P-Hg was
significantly and positively correlated with the C3% (rs = 0.589, p < 0.01). Consistently, Frl
was positively correlated with P-Hg (rs = 0.529, p < 0.05). This suggests that the microbial
source of fresh DOM seems to bring a negative effect on Hg immobilization. The high E2/E3
and BIX values in 3BC may imply a significant DOM contribution from low molecular
weight microbial sources, while the opposite is true for high-temperature biochar. This
explains the differences in Hg immobilization by biochar that was produced at different
temperatures. Overall, humus-like components with higher aromaticity and molecular
weight are difficult to be biodegraded and thus present relatively high complexation ability
to reduce the Hg phytoavailability [26]. Protein-like substances with relatively simple and
unstable molecular structures may release “new” Hg from the soil through mineralization
of organic matter and microbial metabolism [31,87].

3.5. PLS-PM Analysis

Considering the limited number of samples, further multivariate statistical analysis by
PLS-PM was chosen to assess the effect of biochar-induced changes in soil properties on Hg
phytoavailability (Figure 6). The good predictive value of the model was demonstrated by
the goodness-of-fit (GOF) of 0.733. The direct effect of DOC content on P-Hg was the largest
(−0.467). In contrast, the DOM components had a significant negative effect on P-Hg
(−0.258), although its effect was less than that of DOC. This indicates that biochar-induced
changes in DOM fractions also play an important role in reducing the phytoavailable Hg.
Interestingly, our PLS-PM showed that the direct effect of pH on P-Hg was not significant.
This means that pH may indirectly control Hg mainly by promoting changes in soil DOM
concentration and fraction. Based on this work, biochars produced at low temperatures
may not be suitable for Hg immobilization because of its low improvement in the soil
properties. Biochars produced at 500 ◦C or higher may be more appropriate for practical
applications of Hg immobilization.
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3.6. Cost-Benefit Analysis of Using Biochar

The economic costs of biochar remediation often determine whether it is feasible in
practice [88]. The amount of utilized biochar for Hg-contaminated soil remediation is shown
in the Supplementary Materials (about 100 tons/ha). Assuming that the average price of
biochar is about USD 300/ton [25], the rough cost of biochar remediation of contaminated
farmland at this application rate is USD 30,000/ha. The economic cost is lower than the
average of existing technologies for the remediation of heavy metal-contaminated soil
(about 40,000 USD/ha) in China [89]. Therefore, it may be economically acceptable to
use this application rate. Moreover, biochar may increase crop yields while immobilizing
Hg [90,91]. A previous study carried out a meta-analysis of the relationship between
biochar and crop yields, and showed that the overall positive effect of biochar on crop
yields was about 10% with high statistical significance [92]. The greatest positive effect
was seen in the biochar application rate of 100 t/ha (approximately 5% wt., Supplementary
Materials). Therefore, when viewed in combination with the environmental benefits from
metal immobilization and the yield benefits from plant promotion, this biochar application
rate may provide a viable option for maximizing economic benefits.

4. Conclusions

This study showed that biochar reduced the Hg phytoavailability mainly by altering
soil DOM properties rather than by its sorption. The application of biochar improved soil
pH and increased the DOM composition with aromatic and high molecular weight. In
particular, the addition of high-temperature biochar significantly increased the humic-like
components of the soil. Humus-like components were effective in reducing Hg phy-
toavailability by forming stable complexes with Hg. Altogether, these results suggest that
biochar (especially the high-temperature biochar) increases the highly aromatic humic-
like substances to immobilize Hg in contaminated soils. In fact, the factors affecting
Hg availability in the rhizosphere soil environment are extremely different from those
in the non-rhizosphere soil environment. Therefore, future work needs to focus on the
impact of soil constituents (e.g., root exudates, minerals and microorganisms) on the Hg
immobilization by biochar in long-term field experiments.
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