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Abstract: Obstructive Sleep Apnea (OSA) is a chronic sleep-related pathology characterized by
recurrent episodes of total or partial obstruction of the upper airways during sleep. It entails a
high impact on the health and quality of life of patients, affecting more than one thousand million
people worldwide, which has resulted in an important public health concern in recent years. The
usual diagnosis involves performing a sleep test, cardiorespiratory polygraphy, or polysomnography,
which allows characterizing the pathology and assessing its severity. However, this procedure cannot
be used on a massive scale in general screening studies of the population because of its execution
and implementation costs; therefore, causing an increase in waiting lists which would negatively
affect the health of the affected patients. Additionally, the symptoms shown by these patients are
often unspecific, as well as appealing to the general population (excessive somnolence, snoring, etc.),
causing many potential cases to be referred for a sleep study when in reality are not suffering from
OSA. This paper proposes a novel intelligent clinical decision support system to be applied to the
diagnosis of OSA that can be used in early outpatient stages, quickly, easily, and safely, when a
suspicious OSA patient attends the consultation. Starting from information related to the patient’s
health profile (anthropometric data, habits, comorbidities, or medications taken), the system is capable
of determining different alert levels of suffering from sleep apnea associated with different apnea-
hypopnea index (AHI) levels to be studied. To that end, a series of automatic learning algorithms
are deployed that, working concurrently, together with a corrective approach based on the use of
an Adaptive Neuro-Based Fuzzy Inference System (ANFIS) and a specific heuristic algorithm, allow
the calculation of a series of labels associated with the different levels of AHI previously indicated.
For the initial software implementation, a data set with 4600 patients from the Álvaro Cunqueiro
Hospital in Vigo was used. The results obtained after performing the proof tests determined ROC
curves with AUC values in the range 0.8–0.9, and Matthews correlation coefficient values close to 0.6,
with high success rates. This points to its potential use as a support tool for the diagnostic process,
not only from the point of view of improving the quality of the services provided, but also from the
best use of hospital resources and the consequent savings in terms of costs and time.

Keywords: obstructive sleep apnea; design; intelligent system; Machine Learning; neuro-fuzzy
inference system; heuristics; clinical decision support system; medical algorithm; medical decision-making

1. Introduction

Obstructive sleep apnea (OSA) is a chronic pathology affecting about one thousand
million people worldwide [1]. It is characterized by recurrent episodes of total or partial
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collapse of the upper airways during sleep which impairs sleep quality, producing fatigue
symptoms and daytime sleepiness. In spite of its diagnostic difficulty, it is a treatable
pathology using specific therapeutic approaches such as positive airway therapies, which
alleviate the symptoms of the disease. However, if not treated, it will become detrimental
to the patient’s health, causing the development of arterial hypertension, increased risk of
heart and cerebrovascular events, as well as cognitive and metabolic alterations.

The golden standard technique for the diagnosis of OSA is in-lab polysomnogra-
phy [2–7], which consists in a series of physiological measurements during sleep that allow
characterizing the presence of the pathology. Nevertheless, there are other cheaper and sim-
pler alternatives for the diagnosis of this pathology, such as cardiorespiratory polygraphy;
however, it does not collect information on neurophysiological variables [8–10].

After these studies, the next main metric used for assessing OSA severity is often the
apnea-hypopnea index (AHI), which relates to the number of apnea and hypopnea events
recorded in an overnight sleep study divided by the hours of total sleep [6,11]. In this case,
apnea would be defined as the complete interruption of respiratory function for 10 or more
seconds, while hypopnea would refer to a decrease of respiratory flow greater than 30% for
10 s or more, accompanied by micro-awakening or desaturation below 4% [12,13].

Making the problem even worse, the symptoms presented by this type of patient are
not very specific or unusual in the general population (excessive sleepiness, snoring, etc.),
so it is common for many patients who are referred for a sleep test to receive a non-OSA
result. This highlights and points to the need for more and better screening processes, and to
reduce the number of patients referred to units specialized in respiratory sleep pathologies,
allowing the prioritization of those who really need it, thus resulting, besides the relevant
diagnostic and therapeutic advantages, in a significant reduction in associated costs.

In this sense, in recent decades, different types of tools and approaches have been
developed and proposed for the screening of patient candidates for an OSA case, both based
on the completion of questionnaires supported by medical criteria, and on approaches
inspired by artificial intelligence techniques that aim to help in the early detection of
those patients having the highest risk of suffering from the pathology. Among the differ-
ent types of questionnaires, we could highlight the Berlin questionnaire, the STOP-Bang
questionnaire, and the STOP questionnaire which have been widely used to detect the
pathology [14], presenting high sensitivity and low specificity [15]. In relation to the ap-
proaches and techniques supported by artificial intelligence and based on patient clinical
data (i.e., demographic information, comorbidities, or their symptoms), their aim is to
identify and characterize those patients who could suffer from an OSA case, which would
simplify the diagnostic process, making it more affordable and convenient. For example,
the work by Corrado Mencar et al. [16] evaluated the effectiveness and applicability of
Machine Learning approaches to determine the degree of severity of OSA suffered by a
patient. To do this, they started from a data set associated with 313 patients treated in two
Italian sleep units. This set included data from the patients’ history and others derived
from the patients’ answers to some specific questionnaires. On the one hand, they applied
classification approaches which gave a maximum precision rate applying k-fold cross
validation of 44.7%, while on the other, regression approaches were used to determine
the apnea-hypopnea index (AHI), obtaining a minimum root mean square error value of
22.17. In the work by Berk Ustun et al. [17], using a data set containing variables obtained
from the history and symptoms of 1922 patients who underwent sleep tests in the United
States of America, the use of different Machine Learning approaches was analyzed, such as
logistic regression variants, decision trees, support vector machines or Supersparse Linear
Integer Models (SLIM). The authors point out that better results are obtained when only
the information from the patient’s medical history (demographic data and comorbidities) is
used, than when only the information related to the symptoms associated with OSA is used.
They mention that the performance of the different algorithms was similar, with values
for sensitivity [18] of 64.2% and for specificity [18] of 77% in the case of SLIM. Similarly,
in the work by Jayroop Ramesh et al. [19], based on a data set with 1479 patients from the
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Wisconsin Sleep Cohort data set that includes information about demographics, anthro-
pometry, blood tests, derived clinical markers, general health questionnaires, self-reported
history and polysomnography-derived parameters, the performance of different Machine
Learning approaches was analyzed. In that work, the best results were shown for support
vector machines, with values for sensitivity of 88.76% and for specificity of 40.74%. In
the work by Wen-Chi Huang et al. [20], starting from a data set of 6875 Chinese patients
who underwent sleep testing for suspected OSA and that included information on demo-
graphics, anthropometrics, comorbidities, self-reported habitual sleep patterns, and OSA
symptoms, the performance of a series of vector support machines was analyzed for the
classification of patients with AHI levels greater than 5, 15 and 30. After their training and
analysis, the obtention of area under the curve values [21] of 0.82, 0.80 and 0.78, sensitivity
values of 74.14%, 75.18%, and 70.26%, and specificity values of 74.71%, 68.73%, and 70.30%,
respectively, were observed for the previously mentioned classifiers.

In addition to what has already been specifically mentioned for the diagnosis of OSA,
numerous approaches are used in medical diagnosis that use and combine different Ma-
chine and Deep Learning algorithms, among which we could highlight: convolutional
neural networks (CNN) [22–27], recurrent neural networks (RNN) [28–32], genetic algo-
rithms (GA) [33–35], clustering approaches [36–39] or neuro-symbolic approaches, such as
the adaptive neuro fuzzy inference system (ANFIS) [40–43].

Likewise, it is necessary to point out that the usual and most common approach to
compare and determine the effectiveness of this type of predictive systems is to understand
them as binary classifiers [44,45]. A binary classifier intends to determine the relationships
between both the properly classified cases—those that the classifier has succeeded—and
the erroneously classified—those that the classifier has failed— within a data set labeled
with two possible classes. From the information related to the successes and failures of
the classifier, four metrics are generally established from which it is possible to build the
confusion matrix—true positives (TP), true negatives (TN), false positives (FP) and false
negative (FN)—that are used to calculate the sensitivity, specificity, receiver operating
characteristic curve (ROC), as well as the area under that curve (AUC), the accuracy or F1-
score of the binary classifier. In the case of having an unbalanced data set, which is common
in medical settings, it is usually advisable to replace the metrics related to the accuracy of
the model by the Matthews correlation coefficient (MCC), a particularization of the Phi
coefficient [46–48], which allows measuring the performance of the classifier in a more
reliable way, only providing a high score if satisfactory results were obtained in the four
metrics that characterize the confusion matrix [47]. In this sense, the Matthews correlation
coefficient value lies in the interval [−1 1], with −1 and 1 corresponding respectively to
the perfect error and the perfect success in the classification, while the intermediate point 0
indicates a classification based on pure chance [47].

In line with what has been mentioned, this paper addresses the design and develop-
ment of a novel intelligent clinical decision support system applied to the diagnosis of
potential obstructive sleep apnea cases. To this end, starting with the information related to
the patient’s health profile (anthropometry, habits, comorbidities and drugs taken), and de-
ploying a series of algorithms based on Machine Learning that operate concurrently [49–53],
as well as a correcting block based in the joint use of an ANFIS system and a specific heuris-
tic algoritm, the system generates a series of alarms, from which it is possible to estimate
whether a patient suffers from the pathology, as well as determine its degree of severity.

Additionally, to assess the performance of the proposed intelligent system, a proof
test was carried out on a data set unrelated to that previously used in the training and
cross-validation process of the Machine Learning algorithms. In this test datatest, after
applying the correction block, AUC values for the ROC curves close to 0.9 are obtained at
each of the diagnostic levels with Matthews correlation coefficient values close to 0.6.

This article is organized into five sections. In Section 1, the context in which the
proposed system is developed is introduced. Section 2 addresses the conceptual description
of the design of the Clinical Decision Support System, highlighting the different stages
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involved. Once this is done, the implementation of the system is described, pointing to
each of the transformations that are applied to the patient’s data until the alerts associated
to the AHI levels and the decision-making support are generated. Section 3 presents
a demonstration case study that intends to show how the system works. After that, in
Section 4 a discussion of the outcomes of the proposed system is presented. Finally, Section 5
contains the main conclusions of this work.

2. Materials and Methods
2.1. Definition of the System
2.1.1. Database Use

This paper makes use of a data set derived from the analysis and studies performed
on 5000 selected patients carried out and registered between the years 2013 and 2022, all
of them from a healthcare database belonging to the Respiratory Sleep Disorders Unit of
the Pulmonary Department at the Álvaro Cunqueiro Hospital in Vigo (Galicia, Spain). It
should be clarified that those cannot be considered as general population, but that all of
them are patients who were referred from primary care due to suspicion of a potential
OSA case, having undergone a diagnostic sleep test after being screened by expert pneu-
mologists. Said data set includes general and anthropometric information on the patient
(sex, age, height, body mass, body mass index, neck circumference length), their habits
(smoking and alcohol use), previous illnesses (hypertension, resistant hypertension, ACVA
(Acute Cerebrovascular Accident), diabetes, atrial fibrillation, heart failure, COPD (chronic
obstructive pulmonary disease), need for home oxygen-therapy, rhinitis and depression) as
well as the pharmacological treatments they are receiving (benzodiazepines, antidepres-
sants, neuroleptics, antihistamines, morphic and relaxing/hypnotic drugs). In addition to
this, the data set also includes symptoms information coming from a sleep quality-related
interview, which was not used in this work as it contains information affected by a high
degree of uncertainty.

All those patients underwent sleep tests, cardiorespiratory polygraphies in most
cases, determining in each case their apnea-hypopnea index (AHI), a key result both in
confirming the disease diagnosis and in determining the severity of the obstructive sleep
apnea condition that each patient could suffer.

The entire process of data collection and qualitative assessment was carried out
manually by the medical team, except for that information derived from polygraph tests,
which is automatically generated by the machine and then collated and incorporated into
the database by the medical team in charge.

From the initial data set, 400 patients were randomly extracted, excluding them from
the training and validation process of the system, and oriented to carrying out a test of the
predictive capabilities of the intelligent clinical decision support system proposed itself.
The objective was to carry out the test using an independent data set that was different
from those used in the implementation. In this way, it was possible to analyze the outlined
proposal, not only from a theoretical viewpoint related to its architecture, but also from a
practical perspective, demonstrating its relevance and generalization capabilities with new
data, as well as its potential applicability in the field of study [54].

After extracting the 400 patients that would be used in that system test, there was a set
of 4600 patients for model training. Table 1 presents a summary of the main descriptors of
the data set used.

Table 1. Summary of the main descriptors for the training data set.

Descriptor N (%)/Mean ± SD

Male Female

Number of patients 2930 (63.70%) 1670 (36.30%)
Age 55.16 ± 13.32 55.12 ± 13.68
BMI 31.62 ± 5.68 34.91 ± 8.47
Neck perimeter 42.72 ± 3.86 38.11 ± 4.00
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Table 1. Cont.

Descriptor N (%)/Mean ± SD

Male Female

Hypertension 709 (24.20%) 360 (21.56%)
Resistant hypertension 17 (0.58%) 8 (0.48%)
ACVA 29 (0.99%) 6 (0.36%)
ACVA less than a year before 10 (0.34%) 1 (0.06%)
Diabetes 207 (7.06%) 119 (7.13%)
Ischemic heart disease 112 (3.82%) 21 (1.26%)
COPD 38 (1.30%) 12 (0.72%)
Need for home oxygen-therapy 5 (0.17%) 5 (0.30%)
Rhinitis 75 (2.56%) 44 (2.63%)
Depression 98 (3.34%) 158 (9.46%)
Atrial fibrillation 82 (2.80%) 36 (2.16%)
Heart failure 34 (1.16%) 16 (0.96%)
Benzodiazepines 89 (3.04%) 111 (6.65%)
Antidepressants 78 (2.66%) 115 (6.89%)
Neuroleptics 14 (0.48%) 5 (0.30%)
Antihistamines 5 (0.17%) 10 (0.60%)
Morphic 4 (0.14%) 5 (0.30%)
Relaxing/hypnotic drugs 143 (4.88%) 183 (10.96%)

2.1.2. Conceptual Design and Description of the System

Figure 1 shows the flowchart of the Intelligent Decision Support System (IDSS) pro-
posed in this work, which will be described below. Broadly speaking, the proposed IDSS
can be understood as a binary classifier that determines whether the data associated to a
certain patient are compatible with the prognosis of them suffering from OSA. It could even
perform case analysis tasks by identifying recurrence in undiagnosed or misdiagnosed
patients. It is, therefore, an intelligent predictor since it uses inferential models, which help
the medical team to decide if the patient is to be diagnosed with the disease, and hence
its classification as a clinical decision support system. However, this support only affects
one level of information flow, since the true predictive nucleus is the set of inferential
techniques that finally allow the implementation of the binary classifier. In this sense,
an inferential engine, whether statistical, symbolic or a reasonable combination of both,
must always start from a set of explanatory, or independent, variables and another set of
explained, or dependent, variables; that is, what is known must be introduced into the
inference and what is intended to be predicted must be placed into the output, so that the
inference process can establish relationships between both sides of the inference engine (the
nature of these relationships is the main difference between the different existing inferential
models). When determining and selecting the input explanatory variables, a balance must
always be sought between the formalization and diversification capabilities that they have
about the problem and the underlying statistical relationships that may exist. It is clear that
if the variables have statistically significant relationships, their value in the prediction is not
relevant; in the same way that if variables are introduced without apparent causality with
the explained variable, optimal results will not be achieved either. In this case, the medical
team involved in this work determined that practically the whole set of variables present in
the database, identified in Figure 1 and Tables 2–4, could be relevant for the prediction even
assuming that there are certain factors that are more indicative of a suspected case. This
was intended to represent the largest causal chain that could affect the prediction, grouping
all the variables and trusting the methodology to determine the final result.
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Figure 1. Flowchart of the Intelligent Clinical Decision Support System, showing how the information
progresses through three stages. In Stage 1, the initial information is collected and pre-processed.
In Stage 2, the processing of the collected information is carried out, and finally, in Stage 3, a
recommendation regarding the patient’s diagnosis is provided.

Table 2. Information related to general and anthropometric data of the patient.

Data Data Type Comments

Gender Categorical Male/Female
Age Numerical -

Height Numerical It is not fed to the algorithm, but
only used for BMI calculation

Body mass Numerical It is not fed to the algorithm, but
only used for BMI calculation

Body mass index (BMI) Numerical Derived datum, calculated from
height and body mass

Neck circumference length (NCL) Numerical -
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Table 3. Information related to data habits of the patient.

Data Data Type Comments

Smoker Categorical Yes/No/Former smoker

Cigarettes per day Numerical
It is not fed to the algorithm, but

only used for packs-per-year
index calculation

Years as a smoker Numerical
It is not fed to the algorithm, but

only used for packs-per-year
index calculation

Packs-per-year index Numerical
Derived datum, calculated from
cigarettes per day and years as

a smoker
Drinking habits Categorical Yes/No/Casual

Grams of alcohol Numerical Grams of alcohol per day

Table 4. Information related to illnesses and pharmacological treatments.

Illnesses

Data Data type Comments

Hypertension Categorical Yes/No
Resistant hypertension Categorical Yes/No

ACVA Categorical Yes/No
ACVA in less than a year Categorical Yes/No

Diabetes Categorical Yes/No
Ischemic heart disease Categorical Yes/No

COPD Categorical Yes/No
Need for home oxygen-therapy Categorical Yes/No

Rhinitis Categorical Yes/No
Depression Categorical Yes/No

Atrial fibrillation Categorical Yes/No
Heart failure Categorical Yes/No

Pharmacological treatments

Data Data type Comments

Benzodiazepines Categorical Yes/No
Antidepressants Categorical Yes/No

Neuroleptics Categorical Yes/No
Antihistamines Categorical Yes/No

Morphic Categorical Yes/No
Relaxing/hypnotic drugs Categorical Yes/No

Stage 1: Collection of Patient Information

The first stage of the IDSS focuses on the collection of patient information. The
information used in this work is generally objective in nature and can be divided into four
large groups: general and anthropometric data, habits, diseases suffered, and medications
taken by the patient.

The information related to the general and anthropometric data of the patient is
summarized in Table 2. All these data may in turn be classified, according to their nature,
into numerical data and categorical data.

On the other hand, there is the information related to the patient’s habits, which is
summarized in Table 3. As before, the data may be classified as numerical and categorical.

Information is also collected regarding the diseases suffered by the patient, and the
pharmacological treatments they receive, which were previously listed in Section 2.1.1 and
are summarized in Table 4. Both the data related to the diseases and the treatments that
the patient receives are considered as binary categorical; that is, either the pathology in
question is suffered or not and, in the same way, either the corresponding drug is supplied
or not.
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Stage 2: Data Processing

Once the patient information has been collected and structured, it is processed by the
intelligent clinical decision support system using a series of concurrently operating Machine
Learning-based statistical classifiers [49–53]. In order to complete and, to a certain extent,
correct and improve the predictive accuracy of these classifiers, the input data set, labeled
according to the statistical classifiers, is processed sequentially through two adaptive neuro-
fuzzy inference systems (ANFIS) incorporating, in the second, the influence of a specific
heuristic algorithm. The definition and configuration of these statistical classifiers initiated
from a clinical data set, previously introduced in Section 2.1.1, from which different training
data sets are built and labeled with the apnea and non-apnea classes, according to different
AHI threshold levels (10, 15, 20, 25 and 30). It is important to note that depending on the
preferences of the medical team and the clinical aspects to be taken into account, it will
be possible to modify these thresholds and define as many of them as necessary. After
that, the classifiers will be trained, which will make it possible to determine a collection of
scores and labels associated to new patients, facilitating the estimation of the severity of
the condition. As the system is used, it will be possible to evaluate its performance and
correct possible unwanted behaviors. To do this, as mentioned, the system is provided
with a correcting mechanism at the output of each of the different statistical classifiers
based on the joint and sequential use of two adaptive neuro-fuzzy inference systems
(ANFIS) and a specific heuristic algorithm included in the processing of the second one of
them. Both techniques work by expanding the predictive capabilities of the results of the
previous statistical inferential model, acting at each of the levels, significantly increasing
the values of sensitivity, specificity and precision, this last measured using Matthews
correlation coefficient (MCC), here understood as a metric of the precision of the binary
classifier in the predictions made. In this way, by using symbolic approaches together with
other approaches of a purely statistical nature, it is possible to improve the performance
of the proposed intelligent decision support system, establishing a series of fuzzy rules
that make possible the capture of the underlying knowledge in the database used by the
statistical classifiers.

Stage 3: Generation of Alerts and Decision-Making

Given data from a new patient, at the exit of each level and after applying the classifier
and the correcting approach, a label will be obtained which allows determining if the
patient to be studied presents an AHI level above the threshold at each level.

The medical team will be able to select a limit AHI threshold level, so that the system
allows it to highlight those patients who could be a potential OSA case, recommending
sleep tests to confirm or rule out the diagnosis.

2.2. Implementation of the System

The intelligent clinical decision support system proposed and presented in Section 2.1
encompasses a series of stages that range from the collection of patient information to the
generation of alerts, through the necessary processing and inference of the information
collected. Even if the intelligent system has indeed inferential capacity, in this application
the labels determined must not be considered as conclusive, but rather a measure, as
precise as possible, of the risk that the patient has of suffering from obstructive sleep
apnea. Therefore, the system does not have decision-making capacity, since these labels
must be confirmed with new diagnostic tests, as the inferential process does not have all
the relevant information. In this case, the intelligent system only acts as support for the
clinical decision, improving the process by determining a set of labels that are capable of
describing statistically significant underlying relationships between the starting data and
the diagnostic category. If the formalization of the data were complete, then the intelligent
system could have its own decision-making and diagnostic capacity, this being an issue to
be explored in future work.
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To implement the intelligent system, a software artifact will be used which, in turn,
by observing the recommendations of Hevner et al. [55,56], guarantees its potential in-
tegration into any hospital information system. The software will cover all the stages
listed in Section 2.1.2 allowing the acquisition of data, its processing and its subsequent
classification by means of a set of labels. This software artifact is presented in detail below,
explaining with the help of a graphical user interface how the information evolves across
the different stages.

For the design and development of the software artifact, MATLAB© (R2021b, MathWorks©,
Natick, MA, USA) was used together with its App Designer module [57] for the devel-
opment of the graphical interface, with the Classification Learner module [58] for the
training of the supervised learning-based classifiers, and the Fuzzy Logic Toolbox [59]
for the implementation of the ANFIS. In addition, it was necessary to use Python (ver-
sion 3.9.12), together with its Imbalanced-Learn library [60] for performing data augmentation
using SMOTE-NC.

Figure 2 shows a screenshot of the graphical user interface of the software artifact.
Three main regions may be distinguished in this figure. Region (1) is related to the collection
and pre-processing of the information related to the patient. Region (2) represents the data-
processing stage and allows visualizing the AHI levels obtained in each of the statistical
classifiers, as well as those obtained after the correcting process, using for that a series
of indicator lights. Finally, Region (3) allows the user to visualize alerts and generate
recommendations.
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2.2.1. Data Collection

The patient’s data will be collected through a specific region reserved for this purpose
in the software interface. This area is contained in the red box indicated with (1) in Figure 2
and includes a series of questions that the personnel in charge of managing the system
must fill in based on the information about the patient to be diagnosed. Filling in this
questionnaire in full is crucial and must be carried out unhurriedly and in detail to avoid
potential errors or omissions that might lead to an increase in imprecision and vagueness
of data, and as a consequence to an increase in the uncertainty of the system.
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2.2.2. Data Processing

Once the patient’s data has been entered into the application, they will be processed
by the intelligent clinical decision support system. As previously mentioned, a series
of statistical classifiers based on Machine Learning are used for this purpose, besides a
correcting approach based in the use of ANFIS and a specific heuristic algorithm. The
process carried out for the building and definition of these engines is described below. The
results obtained in this block are shown by means of a series of colored light indicators,
which are comprehended in Region (2) of Figure 2, highlighted with a blue box.

Preparation of the Training Dataset

This work starts from a subset of the data set that was previously presented in Sec-
tion 2.1.1 with 4600 patients. Before carrying out the pre-processing of the data, an analysis
of the data was carried out, not finding obvious statistical relationships or significant
correlations that suggested eliminating variables from the inferential process. A fraction
of these data was of nominal or categorical ordinal [61,62] type, so they were coded using
dummy encoding (for each variable, a number of auxiliary binary variables are created that
replace it, equivalent to the total number of categories in the starting variable minus one).
On the other hand, the numerical data (body mass index, age, neck circumference length
or grams of alcohol) was scaled in the zero—one range using the Min-Max normalization,
whose expression is shown in Equation (1). This type of normalization was chosen since in
all the cases contemplated, and at the suggestion of the medical personnel consulted, it was
possible to delimit and set maximum and minimum values between which the different
variables would move.

X′ =
xi −min(x)

max(x)−min(x)
(1)

Once this was done, the various training data sets were determined. To do this,
different AHI threshold levels were established (10, 15, 20, 25 and 30), through which it was
possible to classify each patient from the starting data set with the label apnea or non-apnea
depending on whether the AHI level resulting for the patient corresponded to the threshold
values set at each level. In this case, if the problem is considered as multivariate [63],
the explanatory variables would be the data set that characterizes each patient, while the
explained variable is the label assigned to them. This was the way each starting data set
was formed, which constitutes a perfectly valid labeled data set to be used in the accurate
training process for the application of a Machine Learning algorithm. Thus, different data
sets were defined, five in this case, associated with the different AHI threshold levels
previously mentioned. Table 5 shows the number of existing cases in each of the levels
based on the selected threshold.

Table 5. Summary of the number of cases according to the different threshold levels.

AHI = 10 Dataset
AHI < 10 AHI ≥ 10 Total

1261 3339 4600
AHI = 15 Dataset

AHI < 15 AHI ≥ 15 Total
1773 2827 4600

AHI = 20 Dataset
AHI < 20 AHI ≥ 20 Total

2240 2360 4600
AHI = 25 Dataset

AHI < 25 AHI ≥ 25 Total
2603 1997 4600

AHI = 30 Dataset
AHI < 30 AHI ≥ 30 Total

2907 1693 4600
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Subsequently, the existing imbalance in each of the new data sets between the apnea and
non-apnea labels was analyzed, and if it was the case, an augmentation was made on the data
by using a variant of the Synthetic Minority Over-Sampling Technique (SMOTE) [64,65] that
allows the management of both numerical and categorical data: the SMOTE for Nominal
Continuous (SMOTE-NC) technique. The synthetic data generation strategy with SMOTE-
NC used a number of neighbors k = 5, adding data until having 4000 elements in each
class for the different data sets. Data augmentation in medical diagnostic and analysis
environments is a common practice that tends to improve the results of binary classifiers
that essentially underpin any diagnostic predictive approach [52,65].

Statistical Inference Algorithms

Once the different training data sets were available, already labeled as apnea and non-
apnea based on the different AHI threshold levels previously established, it was possible
to train classifiers based on statistical inference in its Machine Learning sense [66], which
are commonly used in Artificial Intelligence and more specifically in the field of Machine
Learning, to make predictions with data from new patients.

In order to assess in a practical and massive way the efficiency of the multiple and
possible algorithms commonly used in the Machine Learning field, multiple trials were
carried out using the MATLAB Classification Learner app [58]. The different algorithms
used in the training process are commented in Table 6. A k-fold cross type validation [67]
was chosen with k = 5, meaning that the data was initially divided into five equal- or
practically equal-size folds. After this, five subsequent training and validation iterations
of the algorithm were developed so that in each iteration a different fold was taken for
validation while the remaining four were taken for training. Carrying out this validation
for different algorithms, five different performance metrics were obtained, in this case for
each one of them, thus allowing to choose which one presents the best results.

Table 6. Machine Learning models used in the Classification Learner App.

Model Type Variants

Decision Trees Fine, Medium, and Coarse Tree models

Logistic Regression -

Naïve Bayes Gaussian and Kernel Naïve Bayes

Support Vector Machines Linear, Quadratic, Cubic, Fine Gaussian, Medium Gaussian, and Coarse Gaussian Support
Vector Machine

Ensembles Bagged Trees and RUSBoosted Trees

Neural Networks Narrow, Medium, Wide, Two-layer, and Three-layer Neural Networks

For each AHI threshold, the different models obtained were evaluated through the
interpretation of their ROC validation curves taken as a measure of their performance,
standing out among them the Bagged Trees algorithm. It is relevant to point out that the
selection of one algorithm or another does not lead to any limitation in the system presented,
and that in the future, for example in the testing phase of the model, if reasons are observed
that justify the replacement of the current calculation algorithms by others, they can be
replaced without implying a significant change in the structure of the proposed intelligent
system. Figure 3 shows the ROC curves after the validation process and associated with
the different mentioned algorithms corresponding to the different threshold levels. In all
cases, the Bagged Trees are the approaches that stand out, presenting values of area under
the curve between 0.8 and 0.9.
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The determination of the algorithm that presents a greater validation level allows
performing a first prediction of the risk that a patient has of being assigned to one of the
previously established AHI thresholds. However, this is not a conclusive risk, precisely
due to the variability inherent in the statistical inferential process. The validation tests
only determine the fit of the predictive algorithm to the training data, but in no case do
they guarantee success in the prediction of a patient with external and independent data
from those used in the training. That is why, in anticipation of the imprecision expected by
the set of statistical classifiers, a correct algorithmic approach was designed that sought to
improve the classification results by introducing a neuro-symbolic approach and a heuristic
adapted to the problem. Both approaches aim to improve the formalization of the problem
and capture the underlying knowledge in the prediction.

Correcting Approach—Proof Test of the System

In the previous section, Statistical Inference Algorithms, the determination of the different
statistical classifiers was carried out, obtaining plausible and appropriate results supported
by areas under the ROC curve in the cross-validation process between 0.8 and 0.9. At
the output of that block, a series of scores and labels were obtained, from which it is now
possible to establish a prediction and generate the pertinent alerts.

Although very useful, the classifiers used in the previous stage make predictions
through inferential models that, in the vast majority of cases, are opaque or difficult to
interpret. Its objective is to fit the input data to some output labels and for this reason
its predictions must always be considered under uncertainty; but not only an uncertainty
associated with the veracity of the data, but also to the predictive process itself that can force
conclusions that are difficult to understand or even contradictory. Explaining the prediction
models, however, is essential in medical practice because it not only allows understanding
the reasoning process of the system, but also helps to improve its results. In this sense,
symbolic inference models, through their formal representation of knowledge, are very
useful as long as there are environments and experts with the capacity to formalize the
knowledge associated with a certain inferential process. If this is not the case, as happens
in the initial diagnosis of apnea, it is possible to implement algorithms that create their own
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knowledge bases from the existing data and, with this, a set of essential symbolic rules that
allow replacing the expert systems that act with complete formalizations of knowledge.
Likewise, the use of heuristic algorithms, developed and adapted to the problem, allows
to incorporate corrections in the classifier by modeling non-linear and purely stochastic
behaviors. These behaviors can be detected through optimization approaches or, as is
the case, through comparative analysis of the behavior of the data set with respect to the
relationship between the actual and predicted labels. Therefore, to improve the performance
and generalization capacity of the IDSS as it is used, the system has been provided with a
correcting block based on the sequential use of two ANFIS and a specific heuristic algorithm
proposed by the authors. The definition of the correcting block will be improved as the
system is used, since it is necessary to know how it behaves with new cases, noting when
it succeeds and when it fails. For this, it is necessary to have a history of the outputs of
the system, as well as feedback regarding the results of the sleep tests that are performed
on patients.

The correcting block was tested through a first implementation that at the same time,
allows testing the behavior of the model and selecting those statistical inferential classifiers
that present a better performance and generalization capabilities with new data. To this
end, 400 patients were reserved that had not been considered in the training process of the
system’s statistical classifiers, as commented in Section 2.1.1. In this sense, it should be
noted that the statistical classifiers selected after carrying out the proof test do not always
coincide with the models that presented a higher AUC in the cross-validation.

To exemplify the implementation of the correcting block, we focused on the threshold
AHI = 10. After that, and after evaluating the different patients of the test data set using
the different algorithms, we had a relationship of the rates of successes and failures in each
threshold level. Based on this information, the correcting block was defined and configured,
which was deployed in two levels of action based on the use of two sequential ANFIS. The
first one was used to correct the predictive results derived from the statistical inferential
block, and the second incorporated a heuristic algorithm in the calculation of some of the
ANFIS input variables with the aim of improving the results of the previous step.

To show the use of this corrective approach, the test data was used to exemplify the
entire predictive process. With these data, after the evaluations and results obtained, the
Logistic Regression algorithm (with an AUC in training of 0.75) was chosen to represent
the calculation in the previous statistical inferential section.

First Level of the Correcting Block—First ANFIS

Table 7 shows a summary of the configuration of the first ANFIS for the threshold
AHI = 10. This first ANFIS is provided with the two scores determined by the classifier, in
this case the logistic regression, which precedes it (Score 1 and Score 2), the label predicted
by the model (apnea or non-apnea), and the ‘deviation from Score 1’ value, this understood
as the value of Score 1 minus the value of the median of said score in the test data set. The
quantitative nature of both Score 1 and its corresponding Score 2 must be taken into account,
defined in the case of logistic regression as (1—Score 1) and its correspondence with the
binary classifier through an exchange value selected, in this case, by the logistic regression
algorithm itself. Similarly, the use of the value called ‘deviation from Score 1′ obeys, on the
one hand, to diversify the set of inputs and, on the other, to try to capture the statistical
significance that the Score 1 value may have in its input data set. Obviously, factor analyses
or other dimensional reduction strategies could be performed to obtain correlational data on
the input data. Any other approach could increase, and even improve, the results, leaving
these possibilities for future system improvements. The strategy followed to determine
the ANFIS parameters was based on applying grid partition and a combined optimization
method, based on the use of least-squares and backpropagation gradient descent methods
over 10 epochs.
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Table 7. Implementation of the first ANFIS for AHI = 10.

ANFIS 1

Input Data Range Output Data

Score 1 (µ1) 0–1 Prediction
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The output of the first level of the correcting block, i.e., the output of the first ANFIS,
is expressed as a continuous value after the defuzzification process. This value actually rep-
resents membership to the ‘suffering from apnea’ set. Said membership will be conditioned
to the choice of a point in the interval of values derived from the ANFIS that indicates
the transition between suffering from apnea or not suffering from it, in this case, being
assigned to an AHI threshold value of 10. In any case, the first ANFIS determines what
could be understood as an apnea risk metric. Said risk, called the ANFIS 1 Score, will be
one of the input variables of the second correcting level.

Second Level of the Correcting Block—Second ANFIS with Heuristic Algorithm

Starting from the ANFIS 1 Score, the deviation from that ANFIS 1 Score was deter-
mined for each case, understood as the value of the ANFIS 1 Score minus the median value
of ANFIS 1 in the test data set. This new score, its deviation, as well as the variables that
were provided at the input of the first ANFIS (Score 1, Score 2, Predicted Label and the
deviation from Score 1) were provided to the second level of the correction block together
with a correction factor calculated through the proposed heuristic algorithm. The reasons
for choosing the derived scores have already been argued before, making it evident that
any other statistical representation variables could be used from the initial data. Regarding
the correcting factor, it was based on the calculation of a heuristic algorithm developed for
this work and adapted to the prediction data set. Equation (2) shows the mathematical
expression of said algorithm.

Correction f actor = Predicted Label
IF log10(deviation Score ANFIS 1) ∈ [−1,−0.645] AND |deviation Score 1− deviation score ANFIS 1|

∈ [0, 0.8] ⇒ correction f actor = |correction f actor− 1|
(2)

The definition of the heuristic algorithm is not trivial. It starts with the analysis of
the behavior of the data against the registered real and predicted labels, specifying in
those variables derived from the behavior with respect to the median for both Score 1
and ANFIS Score 1. Both the distribution of the data and their possible correlations with
the labels were exhaustively analyzed and the algorithm expressed in Equation (2) was
determined after a search and comparison process. It should be understood that both
Score 1 and ANFIS Score 1 actually represent a probability of belonging to the ‘suffering
from apnea’ set, exemplifying a metric of a probable risk of a patient suffering from the
disease. Therefore, when considering the behavior of these scores based on their median,
this is intended to capture that value which represents in a more usual and typical way
the relationship between the scores and the real and predicted labels. Taking this as a
foundation, it is feasible to then trust in finding a stochastic description of the relationship
of the score deviations with the real apnea/non-apnea labels and, with this, to model
a factor that adequately corrects the incorrect predicted labels. Now, this presents an
immediate limitation associated with the very concept of median. By characterizing a data
set in a general way, identifying the value that separates the set into halves and avoiding
the bias of the extremes, the correcting factor will improve its operation in the central values
of the set, being ineffective in extreme values or with behaviors far from the median. Hence
the numerical values that appear in Equation (2) and that fit within closed intervals the
deviation of scores.

Once the input variables were established, we moved on to the definition and use
of the second ANFIS, the one that works after the application of the heuristic algorithm.
Said algorithm, as just mentioned, is provided, as inputs, with the values of: Score 1,
Score 2, Predicted Label, Score 1 deviation, Score ANFIS 1, Score ANFIS 1 deviation and
Correction Factor.
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Table 8 shows the configuration of the second ANFIS for the AHI = 10 threshold. The
strategy followed to adjust it is similar to the one followed in the first ANFIS, applying
grid partition and a hybrid optimization method, based on the use of least-squares and
backpropagation gradient descent methods over 10 epochs.

Table 8. Implementation of the second ANFIS for AHI = 10.

ANFIS 2

Input Data Range Output Data

Score 1 (µ1) 0–1 Subset of 128 output mf’s
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Table 8. Cont.

ANFIS 2

Input Data Range Output Data

Score ANFIS 1 (µ5) 0–1 Subset of the 128 fuzzy rules
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The process continues, in this case for a threshold value of 0.01, obtaining a coefficient 

value of 0.2121. Thus, with threshold steps of 0.01 until reaching one. The graph that in-

cludes this optimization can be reviewed in Figure 4, where it can be seen that the thresh-

old value that optimizes the correlation coefficient is 0.55. This process, in reality, has no 

inferential or predictive value, but corrects and, in a way, delimits the influence of a deci-

sion on the accuracy of the binary classifier. Choosing one threshold or another, since this 

choice is not conditioned or automated based on a confusion matrix, as is the case, intro-

duces an uncertainty bias in the classifier’s own evaluation. When going through all the 

options, we could not identify the best one of them because, in reality, the scores derived 

from ANFIS 2 do not change, but rather we identified that point that allowed us to trans-

form the scores into binary labels of apnea and non-apnea more efficiently. 

the implications and relations of the variables that make up the database may be 

capable to carry out classifications that are certain and truthful, consistent, and in a way, 

permanent and explainable.  

In addition to the advantages in terms of data processing and the reduction of the 

uncertainty associated with the use of intelligent systems, in this case there are obvious 
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Once the second ANFIS was obtained, as in the first case, a new score was obtained
at its output, the so-called ANFIS 2 score. As already mentioned, the interpretation of
the classification derived from this value is subject to establishing a threshold value that
marks the separation between scores labeled as ‘apnea’ and those labeled as ‘non-apnea’.
To do this, one must start from the set of scores obtained and find, based on the selected
threshold value, which of these scores (remember that the ANFIS 2 score will lie between 0
and 1, as the threshold also does) maximizes the results of the binary classifier. With this
objective, an iterative optimization process was carried out that calculates, once the final
scores derived from ANFIS 2 are obtained, the value of the Matthews correlation coefficient
considering different threshold values. That is, for example: a threshold value of 0 is taken
and the ANFIS 2 scores are labeled with it. In this case, all the labels would be of ‘apnea’.
The Matthews correlation coefficient was calculated for that case according to Equation (3),
obtaining a value of 0.1961. The acronyms in Equation (3) were previously explained in
Section 1: TN refers to True Negatives, FN refers to False Negatives, TP to True positive
and FP to False Positives.

Mcc =
TN·TP− FN·FP√

(TP + FP)·(TP + FN)·(TN + FP)·(TN + FN)
(3)

The process continues, in this case for a threshold value of 0.01, obtaining a coefficient
value of 0.2121. Thus, with threshold steps of 0.01 until reaching one. The graph that



Int. J. Environ. Res. Public Health 2023, 20, 3627 18 of 31

includes this optimization can be reviewed in Figure 4, where it can be seen that the
threshold value that optimizes the correlation coefficient is 0.55. This process, in reality,
has no inferential or predictive value, but corrects and, in a way, delimits the influence
of a decision on the accuracy of the binary classifier. Choosing one threshold or another,
since this choice is not conditioned or automated based on a confusion matrix, as is the
case, introduces an uncertainty bias in the classifier’s own evaluation. When going through
all the options, we could not identify the best one of them because, in reality, the scores
derived from ANFIS 2 do not change, but rather we identified that point that allowed us to
transform the scores into binary labels of apnea and non-apnea more efficiently.
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Once the correcting levels were completed and the optimal threshold was identified, 
it was possible to study the results of the system’s proof test. Figure 5 shows the ROC 
curves on the test data set for the Logistic Regression model, as well as the ROC curves 
associated with the two levels of the correcting block (at the output of ANFIS 1 and ANFIS 
2, respectively), highlighting the clear and considerable associated improvement 

Figure 4. Determination of the optimal threshold for the second ANFIS for AHI = 10.

Once the correcting levels were completed and the optimal threshold was identified,
it was possible to study the results of the system’s proof test. Figure 5 shows the ROC
curves on the test data set for the Logistic Regression model, as well as the ROC curves
associated with the two levels of the correcting block (at the output of ANFIS 1 and ANFIS 2,
respectively), highlighting the clear and considerable associated improvement achieved,
moving from an AUC value of 0.79 to 0.83 in the first correcting level, and from 0.83 to 0.88
after the application of the second correcting level.
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Proof test results 
The procedure for determining and calculating the rest of the correcting blocks cor-

responding to the other AHI levels is similar to that commented for AHI = 10. Tables 9–13 
below show a summary of the results obtained on the test data set for the different AHI 
levels in terms of AUC and MCC. In the proof test, the binary classifier, after passing 
through the sequential cycle of the ANFIS and the heuristic algorithm, AUC of the ROC 
curves close to 0.9 were obtained in each of the diagnostic levels with Matthews correla-
tion coefficients close to 0.6. It must be taken into account that the test data were not pre-
viously analyzed, so there is a conviction that many of them introduced an epistemologi-
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Table 9. Test results for AHI 10. 

Models Metrics Model Validation Model Testing First ANFIS Second ANFIS 

Bagged Trees 
AUC 0.87 0.76 0.79 0.84 
MCC - 0.35 0.43 0.52 

Logistic Regression 
AUC 0.75 0.79 0.83 0.88 
MCC - 0.42 0.50 0.57 
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Proof test results

The procedure for determining and calculating the rest of the correcting blocks corre-
sponding to the other AHI levels is similar to that commented for AHI = 10. Tables 9–13
below show a summary of the results obtained on the test data set for the different AHI lev-
els in terms of AUC and MCC. In the proof test, the binary classifier, after passing through
the sequential cycle of the ANFIS and the heuristic algorithm, AUC of the ROC curves close
to 0.9 were obtained in each of the diagnostic levels with Matthews correlation coefficients
close to 0.6. It must be taken into account that the test data were not previously analyzed,
so there is a conviction that many of them introduced an epistemological uncertainty in the
prediction, forming labeled lines that respond more to pure chance than to logical behavior.
Considering this, the results obtained in the proof test were truly significant.

Table 9. Test results for AHI 10.

Models Metrics Model Validation Model Testing First ANFIS Second ANFIS

Bagged Trees AUC 0.87 0.76 0.79 0.84
MCC - 0.35 0.43 0.52

Logistic Regression AUC 0.75 0.79 0.83 0.88
MCC - 0.42 0.50 0.57

Coarse Gaussian SVM
AUC 0.75 0.81 0.82 0.86
MCC - 0.45 0.48 0.56

Linear SVM
AUC 0.75 0.80 0.82 0.86
MCC - 0.45 0.49 0.55

Gaussian Naïve Bayes AUC 0.73 0.78 0.81 0.86
MCC - 0.34 0.49 0.54

Table 10. Test results for AHI 15.

Models Metrics Model Validation Model Testing First ANFIS Second ANFIS

Bagged Trees AUC 0.85 0.76 0.78 0.85
MCC - 0.40 0.45 0.54

Logistic Regression AUC 0.75 0.76 0.80 0.86
MCC - 0.35 0.47 0.59

Medium Gaussian SVM
AUC 0.76 0.78 0.80 0.88
MCC - 0.41 0.47 0.62

Linear SVM
AUC 0.75 0.76 0.78 0.84
MCC - 0.37 0.44 0.56

Gaussian Naïve Bayes AUC 0.72 0.75 0.77 0.84
MCC - 0.35 0.42 0.56

Table 11. Test results for AHI 20.

Models Metrics Model Validation Model Testing First ANFIS Second ANFIS

Bagged Trees AUC 0.83 0.74 0.77 0.85
MCC - 0.30 0.41 0.54

Logistic Regression AUC 0.73 0.76 0.79 0.85
MCC - 0.39 0.47 0.55

Medium Gaussian SVM
AUC 0.74 0.77 0.79 0.83
MCC - 0.39 0.46 0.54

Linear SVM
AUC 0.73 0.76 0.77 0.84
MCC - 0.40 0.47 0.54

Gaussian Naïve Bayes AUC 0.71 0.73 0.78 0.84
MCC - 0.34 0.46 0.57
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Table 12. Test results for AHI 25.

Models Metrics Model Validation Model Testing First ANFIS Second ANFIS

Bagged Trees AUC 0.82 0.74 0.76 0.81
MCC - 0.33 0.41 0.51

Logistic Regression AUC 0.73 0.75 0.76 0.82
MCC - 0.37 0.41 0.47

Medium Gaussian SVM AUC 0.74 0.77 0.78 0.83
MCC - 0.42 0.44 0.51

Linear SVM AUC 0.73 0.75 0.75 0.81
MCC - 0.35 0.43 0.49

Narrow Neural
Network

AUC 0.73 0.72 0.74 0.81
MCC - 0.29 0.38 0.47

Table 13. Test results for AHI 30.

Models Metrics Model Validation Model Testing First ANFIS Second ANFIS

Bagged Trees AUC 0.84 0.73 0.75 0.81
MCC - 0.30 0.39 0.49

Logistic Regression AUC 0.74 0.77 0.79 0.83
MCC - 0.37 0.43 0.50

Coarse Gaussian SVM AUC 0.74 0.77 0.79 0.86
MCC - 0.39 0.44 0.55

Linear SVM AUC 0.74 0.77 0.78 0.84
MCC - 0.35 0.43 0.51

Two-layer
NeuralNetwork

AUC 0.74 0.73 0.76 0.84
MCC - 0.33 0.39 0.52

The results described in previous Tables 9–13 show, on the one hand, that the correcting
approach was appropriate and fit for the prediction of apnea and, on the other, that the
intelligent decision support system achieved performance levels significantly above those
of other more common approaches already discussed in Section 1. One can also observe
the robustness of the heuristic algorithm developed, since the precision percentage clearly
increased at all AHI levels.

Having clarified this, the last step in testing the system involved only selecting the best
prediction algorithm once results were obtained for all of them, applying the correcting
approach and taking into account the different AHI levels that this system introduces.
Thus, once the results obtained in the test set have been analyzed, for each AHI level the
classifier that presents the best and most appropriate results in terms of AUC and MCC at
the output of the correcting block must be selected. After analyzing the data corresponding
to the proof test, it was determined that the Logistic Regression for AHI = 10, the Medium
Gaussian SVM for AHI = 15, 20 and 25, and the Coarse Gaussian SVM for AHI = 30
were the most accurate algorithms. Table 14 presents a summary of the sensitivity and
specificity values obtained by the IDSS at the output of the correcting block for each of the
selected algorithms.

Table 14. Sensitivity and specificity for each AHI level at the output of the correcting block for the
operation set point established from the MCC value.

Threshold Level Sensitivity Specificity
AHI 10 0.89 0.67
AHI 15 0.87 0.74
AHI 20 0.87 0.65
AHI 25 0.70 0.81
AHI 30 0.76 0.80
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2.2.3. Generation of Alerts and Decision Making

Once the entire process has been completed, the system returns a label (‘apnea’ or
‘non-apnea’) for each AHI level.

The medical team will then be able to decide whether or not to apply the correction,
and will establish an AHI level above which the system will generate alerts.

The results obtained in this block are shown in Region (3) of Figure 2, highlighted with
an orange box.

3. Case study

This section presents a case study for the intelligent clinical decision support system
proposed in Section 2, aiming to illustrate its operation in detail. Although this article is
presented as a proof of concept, a test data set was reserved to visualize the usefulness and
validity of the model in a data set unrelated to that one used for model training. Thus, the
data included in the example belongs to the new test data set and was neither used for
training nor validation.

As can be seen, this case study is aimed to exemplify its potential use as a diagnostic
tool in sleep-related respiratory disease diagnostic units and serve, incidentally, as a proof
of concept.

3.1. Compilation of Patient Information

Table 15 summarizes the data about the patient to be studied, who, after performing
sleep studies, was diagnosed with an AHI of 3.70. The patient was referred from primary
care due to a suspected OSA case because her husband indicated that she had sleep apnea.
In addition, they indicated that she was a high-intensity snorer and felt tired on a daily basis.
The patient’s data was not included in the data set used for the training and validation of
the inferential statistical part of the system.

Table 15. Data on the patient to be studied.

Data Values

Gender Woman
Age 54

Weight 68 kg
Size 152 cm

Neck circumference length 34 cm
Habits -

Drug treatments Benzodiazepines and relaxing/hypnotic drugs
Illnesses Depression

The objective of this example was to verify that the system is mainly capable first, of
determining if a patient suffers from apnea, and second, if that is the case, of identifying to
which possible AHI level they can be assigned.

Once the data was entered into the application, it was processed by the intelligent
clinical decision support system.

3.2. Data Processing

After entering the data into the application, it was processed by the different previously
mentioned statistical classifiers, as well as by the correcting block, linked to different
AHI levels.

Figure 6 shows a screenshot of the application in which the AHI levels obtained can
be observed. In the box related to the statistical inference, a colored in red light indicator is
shown for an AHI level of 10; that is, a priori the patient would present an AHI ε [10, 15).
Below that box, another box related to the model corrections is shown in which, in this case,
the model prediction is corrected, as can be seen in the colored in green indicator light; that
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is, the patient would present an AHI ε [0, 10), or in other words, the patient does not suffer
from OSA.
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In this case, the patient was referred to the hospital where she underwent a polygraph
that determined an AHI level of 3.70, which corresponds to the threshold assigned by
the system.

3.3. Generation of Alerts and Decision-Making

Once the calculation of the AHI levels has been carried out, the medical team must
establish the limit AHI level to evaluate the patient, and from this, consider whether
confirmatory sleep tests should be performed. In this example case, the system determined
that the patient did not suffer from apnea, thus recommending the medical team to not
subject her to further diagnostic tests. Even so, the system only supports the final decision,
which is always the exclusive responsibility of the medical team. In the actual case, the
patient was referred to polygraphic diagnostic tests that confirmed the results predicted by
the system.

The aim is not to identify the specific AHI value, a measure derived from subsequent
diagnostic and confirmatory studies, but rather to point out in advance and non-invasively
the patient’s risk of the disease. With this test, supported by the intelligent system, symp-
toms of apnea in patients could be predicted preventively, its severity classified according
to the previously established AHI thresholds and, all in all, optimizing the costs and
inconvenience of subsequent unnecessary tests.

3.4. Expansion of the Results

With the aim of expanding the case study, new examples were carried out following
a process similar to that discussed in Section 3, as can be seen in Table 16. All the cases
presented were referred from primary care due to a suspicion of being potential OSA cases,
and were accompanied by the AHI value obtained after carrying out the corresponding
sleep test.
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Table 16. Diagnostic proposed by the system for 20 cases. Background colors are related with the
color of the light indicators associated to the different AHI levels. Red color shows the patient would
present the corresponding AHI level. Otherwise, the color is green.

No. Gender Age BMI NCL Habits Drug
Treatments Illnesses AHI Results

1 Woman 70 26.40 34 cm - - Hypertension 9.70

Statistical inference
10 15 20 25 30

Correcting block
- Former smoker
- 30 packs-per-year

10 15 20 25 30

2 Man 71 38.20 41 cm - 38

Statistical inference
10 15 20 25 30

Correcting block
- Former smoker
- 32 packs-per-year

- Hypertension
- Ischemic heart

disease
10 15 20 25 30

3 Man 48 38.93 47 cm - - Hypertension 80

Statistical inference
10 15 20 25 30

Correcting block

- Former smoker
- 36 packs-per-year
- Drinking habit:

daily, 120g of alcohol 10 15 20 25 30

4 Woman 34 44.29 40 cm -
-

- 4.50

Statistical inference
10 15 20 25 30

Correcting block
10 15 20 25 30

5 Man 41 28.09 36 cm - Depression 23.40

Statistical inference
10 15 20 25 30

Correcting block

- Smoker
- 10 packs-per-year
- Drinking habit:

occasionally

- Relaxing/hypnotic
drugs-

Antidepressants
10 15 20 25 30

6 Man 39 30.16 41 cm - - 8

Statistical inference
10 15 20 25 30

Correcting block
- Drinking habit:

occasionally
10 15 20 25 30

7 Man 68 30.12 41 cm - - - 26.70

Statistical inference
10 15 20 25 30

Correcting block
10 15 20 25 30

8 Woman 66 30.70 34 cm - - 19.70

Statistical inference
10 15 20 25 30

Correcting block
- Hypertension
- Diabetes

10 15 20 25 30

9 Man 62 30.49 46 cm - - 24.30

Statistical inference
10 15 20 25 30

Correcting block

- Smoker
- 104 packs-per-year
- Drinking habit:

daily, 50g of alcohol 10 15 20 25 30

10 Man 32 32.98 41 cm - - 26.10

Statistical inference
10 15 20 25 30

Correcting block
- Drinking habit:

daily, 50g of alcohol
10 15 20 25 30

11 Man 74 29.36 42 cm - - - Hypertension 37.70

Statistical inference
10 15 20 25 30

Correcting block
10 15 20 25 30

12 Woman 48 21.93 33 cm - - 0.90

Statistical inference
10 15 20 25 30

Correcting block
- Former smoker
- 10 packs-per-year

10 15 20 25 30

13 Man 59 52.81 39 cm - - 24.60

Statistical inference
10 15 20 25 30

Correcting block
- Drinking habit:

occasionally
10 15 20 25 30

14 Woman 69 32.07 36 cm - - - Hypertension 27.70

Statistical inference
10 15 20 25 30

Correcting block
10 15 20 25 30

15 Man 44 29.76 37 cm - - - 4.90

Statistical inference
10 15 20 25 30

Correcting block
10 15 20 25 30

16 Woman 73 24.35 34 cm - - 17.60

Statistical inference
10 15 20 25 30

Correcting block

- Relaxings/
hypnotic drugs

- Benzodiazepines
- Antihistamines 10 15 20 25 30
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Table 16. Cont.

No. Gender Age BMI NCL Habits Drug
Treatments Illnesses AHI Results

17 Man 39 28.73 42 cm - 0

Statistical inference
10 15 20 25 30

Correcting block

- Smoker
- 17 packs-per-year
- Drinking habit:

occasionally

- Relaxings/
hypnotic drugs

10 15 20 25 30

18 Man 48 29.03 43 cm - - 61.90

Statistical inference
10 15 20 25 30

Correcting block

- Smoker
- 22.5 packs-per-year
- Drinking habit:

daily, 30g of alcohol 10 15 20 25 30

19 Woman 52 33.33 37 cm - - - 3.40

Statistical inference
10 15 20 25 30

Correcting block
10 15 20 25 30

20 Man 29 41.40 37 cm - - 6

Statistical inference
10 15 20 25 30

Correcting block

- Smoker
- 0.5 packs-per-year
- Drinking habit:

occasionally 10 15 20 25 30

From a direct analysis of the 20 cases listed in Table 16, all of them corresponding to the
proof test and included in this case study, the system’s prediction was verified correct in all
cases and, in addition, the correcting approach corrected and improved predictions derived
from simple statistical inference. All of this suggests that the system significantly benefits
from the inclusion of the correcting approach, which not only improves the data quanti-
tatively, but also provides the predictive system, as is discussed below in the Discussion,
with better performance and better logical functionality.

4. Discussion

The OSA is a pathology that has a high impact on the health and well-being of patients.
The usual approach for its diagnosis is based on sleep tests, cardiorespiratory polygraphies
or polysomnographies. These are laborious and expensive tests that are not suitable for
mass screening of the general population. For these reasons, at this time, and considering
the degree of development of predictive and classification algorithms within the field of
artificial intelligence, the need and possibility of developing intelligent tools that support
decision-making, while improving diagnostic processes, are being contemplated more
than ever.

This work proposed a novel intelligent decision-support system applied to the di-
agnosis of OSA that deploys a series of statistical classifiers for different threshold AHI
levels, complemented by a correcting approach based on the joint and sequential use of
two ANFIS, with a particular heuristic model used in the second ANFIS. Analysis of the
results at each level allows the medical team to establish a metric for the patient’s risk of
suffering from apnea, including making an estimation for the AHI value.

The presented intelligent system can, and should, be understood as a binary classifier
having predictive capabilities through the representation of a complex inferential process,
followed first by the statistical algorithms and then by the two ANFIS and the heuristic
algorithm. In this correcting block, the model incorporates an approach that combines
neural networks with fuzzy logic, which makes it possible to incorporate, albeit indirectly,
the benefits of symbolic inference, especially in relation to the formalization of knowledge,
together with the development of a heuristic algorithm that allows to optimize the problem
and to increase the success in the prediction. This increased capacity for reasoning and
information extrapolation allows the system to be given a primordial inferential capability
supported by its inherent capability for optimization and representativeness of the data.
That is, the intelligent system can establish inherent, and perhaps—a priori—difficult to
explain reasonings about the relationships between the data and the presence of apnea,
thus reducing the large dimensionality of the problem. Of course, in medical applications,
especially diagnostic ones, the traceability and explanation of automatic reasoning processes
become even more important. Statistical inferences are not always obvious and may even
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lead to false conclusions. However, in cases such as the diagnosis of apnea, it is not
always possible to have an argued, coherent and truthful database on which to base logical
symbolic inferences. Thus, in this conceptualization of the system, and because of the
absence of a complete formalization of the knowledge required to make the prediction,
priority is given to its capability for representing this data; that is, for combining these
relationships and providing an objective and graphic metric on which the medical team
can support its final decision. In this way, the medical team will be able to use the system,
integrating it into a larger clinical decision support system, also incidentally delimiting
part of the uncertainty that is inherent to the decision to be made.

In this sense, a diagnosis process can be considered as a decision under uncertainty
conditions; this uncertainty can, in turn, be expressed in different ways: lack of knowledge,
multiplicity and multivariety of data, ambiguity, inaccuracy, etc. To delimit uncertainty,
probabilistic and non-probabilistic approaches are used in which the inferential results
indicate probabilities or degrees of belonging to a specific diagnostic label. Controlling
all uncertainty sources is a very complex task that is beyond the objectives of this work,
but of course, its presence must be acknowledged and contemplated in this system. In the
system presented, uncertainty is reduced through an approach that combines, on the one
hand, a reduction in the imprecision and vagueness of the starting data, obtained from the
answers to a specificly elaborated diagnostic questionnaire and, on the other, using several
classification algorithms together with neuro-symbolic models and heuristic approaches
which, as a whole and using different inference mechanisms, are capable of establishing
percentages of belonging to different AHI diagnostic levels.

The consistency of the inferential union, or what it is, the justification of joining and
defining a sequential architecture of classification algorithms, is a non-trivial process that
should, in our opinion, be diverted towards the analysis of data formalization and the
guarantee that no relevant information is lost in the chain of causality by using unexplained
formalizations such as those used in purely statistical inferential models. When formalizing,
the information of a problem is expressed by usual logical entities, for example IF . . .
THEN rules or, in any case, through numbers with no apparent explanation. This is where
the real challenge lies: knowing which numbers contain the necessary information to
make the prediction without being able to express this information symbolically. For this
reason, formalization based on numerical data must be as general as possible, avoiding
spurious modifications and sources of uncertainty added by means of non-recommended
statistical operations.

In addition, the use of large data sets and class-balancing algorithms in binary classi-
fiers such as the one described guarantees, on the one hand, an increase in the represen-
tativeness of all possible casuistries and, on the other, a trend towards normality in case
distributions, always a favorable matter in inferential statistical approaches. If we also
add to this the suggestion of developing different classifiers based on different AHI levels,
together with a correcting approach that significantly increases the success of the classifi-
cation, a trend is achieved towards—a partial, that is true—formalization on the part of
knowledge, which constitutes the foundation—together with the diversification—of expert
systems whose formal analogy with learning algorithms makes it possible to guarantee the
reduction in epistemological uncertainty, which is without a doubt the most difficult type
to control.

Thus, considering the conceptualization of the intelligent system, its performance
must be evaluated, not only from the point of view of the results, whose comparison will
be discussed later, but fundamentally its coherence in the ability to represent knowledge
must be analyzed. It has already been shown that the system is capable of making a first
statistical inference that, although indefinite and little known, allows plausible predictions
to be made. Likewise, it incorporates a corrective approach made up of two sequential
ANFIS and a heuristic algorithm that work together with the second of them. Could
it be said that the data set, the symbolic rules of ANFIS and the heuristics themselves
make up an argumentative and ontological knowledge base? In reality, this would not
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be the case, since the knowledge base must be structured, defined, explained and related
in such a way that it constitutes a set of validated and permanent statements. Lacking
this knowledge, inferential models inevitably tend towards statistics, since it is no longer
possible to infer from knowledge, but only from data, that is, unstructured, indefinite,
confused, unrelated and ephemeral information. Machine learning algorithms take this
data and build mathematical fantasies that relate that data to some labels, but being
fantasies, they are often ideal constructs whose coherence does not transcend beyond the
scope of action of the algorithm itself. How then to act in the absence of a knowledge
base? In this work, a strategy was followed that tried to capture knowledge in a deferred
way, enriching the data. Although the first statistical classifiers behave in the traditional
way, the ANFIS already works it in a different way. By introducing a data set into these
neuro-symbolic models, namely the outputs of the previous algorithms and the labels, the
numerical data is fuzzified and acquires additional value, starting to behave as a symbol.
The data no longer only represents a metric or a value, but also represents a prediction
and, in a way, a relationship, certainly stochastic, but a relationship nonetheless that allows,
together with all those data, to represent a true fact without the need for syllogisms. If,
in addition, the ANFIS are linked, then the second one is capable of partially formalizing
a very basic and heterogeneous knowledge base that helps to improve reasoning. The
heuristics used contribute to this, yes, in a determined way. This, by definition, is the
ability to generate knowledge and increase it, so identifying an algorithm that is capable of
modeling the underlying knowledge as a series of numbers is an ideal complement to a
fuzzy inferential model such as ANFIS. Therefore, it is possible to affirm that a prediction
problem treated from the absence of a complete formalization of knowledge and of the
implications and relations of the variables that make up the database may be capable to
carry out classifications that are certain and truthful, consistent, and in a way, permanent
and explainable.

In addition to the advantages in terms of data processing and the reduction of the
uncertainty associated with the use of intelligent systems, in this case there are obvious
and clear improvements to diagnosis and healthcare processes. The determination of
suffering from apnea associated to different AHI thresholds is a very valuable metric when
comparing different patients suspected of suffering OSA, since it facilitates the subsequent
prioritization and generation of waiting lists for confirmatory diagnostic tests, therefore
reducing the inherent subjectivity associated with the assessment carried out by the medical
team.

On the other hand, the choice for using part of the information that is present in the
electronic health records, which is valid in itself, could be an important advantage. This
would facilitate the making of predictions based on the information available in those,
without the need for in-person meetings with the patients in long questioning sessions,
reducing the uncertainty from interaction, as well as potential falsehoods, omissions or
errors in data collection. This opens a path for future development and research since, if
the necessary updated information were available, OSA population screening campaigns
could be deployed gradually and progressively, thus alerting those patients who present
potential risk cases.

Additionally, this tool could be very useful for physicians who are not specialized
in apnea diagnosis, such as those dedicated to primary care. Through this system, they
could initially analyze the risk level that a patient suspected of suffering from obstructive
sleep apnea may have, assessing, based on the results obtained, whether they should be
referred to specialized consultations for study. Of course, this is made possible thanks
to the system’s ability to formalize knowledge, as argued before, which makes it in part
possible to compensate for the lack of specific knowledge of the non-specialist doctor with
the formalization that the system itself proposes.

Of course, taking into account that the formalization is incomplete, in no case should
the medical opinion and decision be ignored. In the same way, and for similar reasons,
the tool also has its place in hospital units specialized in sleep-disordered breathing, since
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it can help determine the severity of the pathology by the interpretation of the different
AHI threshold levels. It could also be extremely useful in the detection and identification
of undiagnosed cases in a group of patients. The presented binary classifier can not
only determine apnea cases, but also guess undiagnosed cases by analyzing accessible
data records.

All of the uses previously mentioned are of great help to medical teams and, without
a doubt, could have a very relevant impact on the management of hospital resources. The
number of patients referred to specialized sleep units could be reduced by discarding those
who do not really present a diagnosis compatible with OSA, with consequent saving of
resources and time. The quality of the services provided could also be improved, focusing
only on those suspected patients, and prioritizing tests and treatment of the most serious
cases from the outset.

Relevance in the Field of Study

The results obtained in the proof test are truly significant, with AUC values lying
between 0.8 and 0.9, and MCC close to 0.6. In general, it is reasonable to claim that these
results are an improvement over similar works in the diagnosis of OSA. In addition to this,
the results obtained are superior to those of the questionnaires traditionally used in this
field (Berlin Questionnaire, STOP-Bang, STOP, which usually present a high sensitivity at
the cost of a low specificity), as well as, in general, the rest of the approaches reviewed in
Section 1 that apply artificial intelligence techniques.

On the other hand, the strategy followed in the design of the system that involves using
different inference models concurrently determining a membership to different thresholds
of AHI [49–52] is also a novelty in the field of study, since in the previous works analyzed it
is observed that the authors establish a fixed AHI threshold level (usually 5 or 10) [16,17,19]
only, which could mean recommending a sleep test to patients who do not need it, thus
overdiagnosing them. An exception to that is the work by Wen-Chi et al. [20], in which
different models are analyzed for AHI threshold levels equal to 5, 15 and 30.

After discussing the benefits of the proposed system, and demonstrating its predictive
capabilities in the diagnosis of OSA, its relevance is analyzed in Table 17 below from a
technical point of view in comparison with other proposals, considering for this purpose
a series of criteria that are usual in the field of design and development of intelligent
systems [52,53,68]:

• Internal architecture: aiming to analyze the reliability of the model from the point of
view of its ability to manage uncertainty.

• Scalability: aiming to determine the model’s ability to add or remove blocks from the
system.

• Inference: aiming to analyze the system’s ability to use symbolic reasoning supported
by the complete formalization of a knowledge base.

• Learning: aiming to assess the system’s ability to incorporate learning approaches that
are common in the field of Machine Learning.

After analyzing the contents of Table 17, in general terms, it can be concluded that the
approaches commonly used in the field of OSA detection are simple, and mainly apply
statistical inferential approaches through the use of algorithms commonly used in the field
of Machine Learning. The proposed system, in its first layer of action, also uses inferential
statistical approaches that are later enriched and improved by adding the correcting block,
which, through the use of ANFIS and a specific heuristic algorithm, allows carrying out
a better and more efficient management of knowledge and information, reducing and
delimiting the associated uncertainty. This undoubtedly represents a clear novelty in
the field of study of the OSA. All that has resulted in clearly remarkable test results that
corroborate the assumptions made in the conceptual development of the system.
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Table 17. Benchmarking.

Methods/Systems Internal Architecutre Scalability Inference Learning

Corrado Mencar et al.
[16], Ramesh et al. [19]
and Wen-Chi
Huang et al. [20]

The authors’ proposals are
based on the use of Machine
Learning techniques,
highlighting the use of Support
Vector Machines in all of them.
A probabilistic management of
uncertainty is carried out.

The systems are
not scalable.

The systems use
statistical inference
instead of symbolic
reasoning.

The proposed system
incorporates new
knowledge in the
process of training
the architecture.

Berk Ustun et al. [17]

The authors’ proposal is based
on the use of Machine
Learning techniques. They
highlight the use of
Supersparse Linear Integer
Models. A probabilistic
management of uncertainty
is performed.

The system is
not scalable.

The system uses
statistical inference
instead of symbolic
reasoning.

The system
incorporates new
knowledge in the
process of training
the architecture.

Our proposal

The proposed system manages
uncertainty both from a
probabilistic and a
non-probabilistic point of view.

The proposed
system is scalable,
since it is possible
to modify the
calculation engines.

The system uses
statistical as well as
symbolic inferential
approaches, although
it does not fully
formalize a
knowledge base.

The system can
incorporate new
knowledge as it is
being used.

5. Conclusions

In this work, a new intelligent system applied to the preventive and early diagnosis of
patients presenting potential sleep apnea symptoms was presented. It follows an approach
based on the combined use of Machine Learning algorithms together with ANFIS and
heuristic models to determine if a certain patient suffers from apnea, associating such
prediction to a series of AHI threshold levels. The incorporation of the corrective approach
allows to improve the predictive accuracy of the system as it is being used. Its main novelty,
therefore, from the clinical point of view, lies in determining the presence of the disease
based on an initial data set, which allows the medical team to carry out a prior assessment
of the patient, speeding up the diagnostic processes and reducing the need for confirmatory
tests. Likewise, it reduces the dimensionality of the problem and allows, through the
second ANFIS, to have certain logical values that explain the diagnostic reasoning. From a
technical point of view, the intelligent system possesses an indirect capacity to formalize
knowledge, which is unusual in pure statistical approaches, thus allowing to improve its
predictive capacity, as its proof tests certify.

The performance of the proposed system was analyzed using a test data set with
400 patients, unrelated to those used in the construction of the model, yielding AUC values
in the range 0.8–0.9, as well as Matthews correlation coefficients close to 0.6. Despite the
results obtained and their associated clinical relevance, in the future it will be necessary to
carry out more new tests using data from other hospitals, which will allow confirmation of
the results obtained in the tests carried out, thus consolidating the proposed system.

Likewise, evident improvements, such as the presence of a complete formalization
of the diagnostic problem, contemplating the symptoms evidenced by the patient, the
incorporation of expert systems, the modeling of symbolic knowledge bases and the use of
hybrid approaches, could improve not so much the results as the reliability of the system.
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