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Abstract: Early detection of rapidly progressive kidney disease is key to improving the renal outcome
and reducing complications in adult patients with type 2 diabetes mellitus (T2DM). We aimed to
construct a 6-month machine learning (ML) predictive model for the risk of rapidly progressive kidney
disease and the need for nephrology referral in adult patients with T2DM and an initial estimated
glomerular filtration rate (eGFR) ≥ 60 mL/min/1.73 m2. We extracted patients and medical features
from the electronic medical records (EMR), and the cohort was divided into a training/validation
and testing data set to develop and validate the models on the basis of three algorithms: logistic
regression (LR), random forest (RF), and extreme gradient boosting (XGBoost). We also applied an
ensemble approach using soft voting classifier to classify the referral group. We used the area under
the receiver operating characteristic curve (AUROC), precision, recall, and accuracy as the metrics
to evaluate the performance. Shapley additive explanations (SHAP) values were used to evaluate
the feature importance. The XGB model had higher accuracy and relatively higher precision in the
referral group as compared with the LR and RF models, but LR and RF models had higher recall in
the referral group. In general, the ensemble voting classifier had relatively higher accuracy, higher
AUROC, and higher recall in the referral group as compared with the other three models. In addition,
we found a more specific definition of the target improved the model performance in our study.
In conclusion, we built a 6-month ML predictive model for the risk of rapidly progressive kidney
disease. Early detection and then nephrology referral may facilitate appropriate management.

Keywords: machine learning; type 2 diabetes; diabetic kidney disease; nephrology referral

1. Introduction

Diabetes mellitus (DM) is a major cause of life expectancy reduction and premature
death [1–3]. The mortality in diabetic patients is significantly increased when the renal
function is impaired [4]. With the improvement in treatment, trends in the rates of some
diabetic complications have decreased, such as stroke or acute myocardial infarction,
although the burden of diabetes is continuously increasing. However, diabetic kidney
disease is still the leading cause of end-stage kidney disease (ESKD) [5,6]. According to the
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report by the United States Renal Data System (USRDS) in 2020 [7], Taiwan has persistently
reported the highest incidence and prevalence of end-stage kidney disease worldwide. In
the 2020 annual report on kidney disease in Taiwan, Lai et al. [8] reported the percentage of
diabetes among incident dialysis patients increased from 45.3% in 2010 to 46.2% in 2018,
and the percentage of diabetes among prevalent dialysis patients increased from 39.7% in
2010 to 47.8% in 2018. Early detection of rapidly progressive kidney disease and nephrology
referral is an important point to decrease complications and mortality [9]. Albuminuria
is an important marker of diabetic kidney disease (DKD) and is associated with a poor
outcome, but some type 2 diabetes mellitus (T2DM) patients have a GFR decline before the
onset of albuminuria [10]. In addition, nondiabetic kidney diseases are also the possible
cause of rapidly progressive kidney disease [11], and these patients should be promptly
referred to an experienced nephrologist for further surveying and management. With the
heterogeneous phenotype of type 2 diabetic renal disease, novel tools are required for the
early detection of rapidly progressive kidney disease and the need for nephrology referral
in T2DM patients.

Artificial intelligence (AI) has been widely applied in medical fields for diagnostic
assistance, outcome prediction, and guiding treatment. Machine learning (ML) is a subset of
AI. ML models are algorithms that teach a computer to learn from data [12,13]. There have
been some studies of AI applications in DKD [14–18], but only a few studies have focused
on the prediction of diabetic nephropathy and renal function decline [15,17]. The aim of our
study was to construct a 6-month ML predictive model for the risk of rapidly progressive
kidney disease and the need for nephrology referral in adult patients with T2DM.

2. Materials and Methods
2.1. Study Subjects

We retrospectively extracted the electronic medical records (EMR) in our hospital from
January 2008 to June 2021. Among them, we found 62,360 patients with a diagnosis of type
2 diabetes mellitus (T2DM) according to the International Classification of Diseases codes,
and the inclusion criteria of our study were as follows: (1) hospitalized at least once with
ICD-9 or ICD10 coding for T2DM, (2) at least two outpatient ICD-9 or ICD10 codings for
T2DM, and (3) age at diagnosis of T2DM ≥ 20 years. The exclusion criteria were (1) patients
who underwent dialysis before the diagnosis of T2DM and (2) renal transplant patients.
Our study was approved by the institutional review board of Taichung Veterans General
Hospital (IRB TCVGH No: SE22064A). Patient informed consent was waived because all
protected health information was deidentified and the retrospective data analysis nature of
this study. This research was funded by grants from the Ministry of Science and Technology
of Taiwan (MOST 108-2314-B-005-005-MY3).

2.2. Data Extraction

All the extracted personal information of the patients was deidentified. The de-
mographic features used for the machine learning models included age, sex, height,
weight, and body mass index (BMI). The laboratory features include serum creatinine
(Cr), blood urea nitrogen (BUN), fasting glucose, random glucose, glycated hemoglobin
(HbA1c), spot urine protein to creatinine ratio (UPCR), spot urine albumin to creatinine
ratio (UACR), hemoglobin (HGB), hematocrit (HCT), albumin, total protein, aspartate
aminotransferase (AST), alanine transaminase (ALT), creatine phosphokinase (CPK), high-
sensitivity C-reactive protein (hsCRP), serum sodium (Na), serum potassium (K), red blood
count (RBC), white blood count (WBC), platelet, total bilirubin (Bil-T), uric acid (UA), total
cholesterol (CHO), low-density lipoprotein (LDL), and triglyceride (TG). The comorbidities
were extracted according to the ICD-9 or ICD-10 codes and included diabetic retinopathy,
hypertension, coronary arterial disease (CAD), stroke, peripheral arterial disease (PAD),
congestive heart failure (CHF), acute kidney injury (AKI), liver cirrhosis, cancer, bacteremia,
sepsis, shock, peritonitis, ascites, and bleeding esophageal varices.
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2.3. Study Design and Label Definition

In this study, we aimed to construct multiple machine learning models to predict
the risk of rapidly progressive kidney disease and the need for nephrology referral in
diabetes patients. We compared two different prediction outcomes of renal function deterio-
ration and the need for nephrology referral in diabetes patients (Figure 1): (1) the estimated
glomerular filtration rate (eGFR) falling below 30 mL/min/1.73 m2 and (2) the eGFR falling
below 45 mL/min/1.73 m2. Clinical guidelines [19,20] recommend the referral of DM pa-
tients to nephrology when the eGFR falls below 30 mL/min/1.73 m2. However, a previous
study showed a GFR < 45 mL/min/1.73 m2 at the time of referral is also a significant risk
factor for mortality [21]. Hence, the outcomes of our predictive models were aggravated
renal function from eGFR ≥ 60 mL/min/1.73 m2 to (1) GFR < 30 mL/min/1.73 m2 and
(2) to <45 mL/min/1.73 m2.
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Figure 1. Time frame of our study design and label definition.

We selected adult T2DM patients with pair eGFR records of a 180-day period between
the reference point and prediction target point. We first determined the target point for
each individual patient and then went back to determine the reference point to select
patients who fitted the criteria for the reference point. We labeled patients as being in
the “referral” group if the eGFR was persistently lower than our outcomes (eGFR < 45 or
<30 mL/min/1.73 m2) at the target point and 90 days after the target point. We confirmed
chronic kidney disease if the eGFR did not recover 90 days after the target point in the
“referral” group. On the other hand, we labeled patients as being in the “non-referral”
group if (1) the eGFR was persistently ≥ 30 mL/min/1.73 m2 at the target point and
90 days after the target point or (2) the eGFR was persistently ≥ 45 mL/min/1.73 m2 at the
target point and 90 days after the target point. We further enrolled patients according to the
criteria for the reference point as follows: (1) eGFR ≥ 60 mL/min/1.73 m2 at the reference
point, (2) 180-day average eGFR ≥ 60 mL/min/1.73 m2 prior to the reference point, and
(3) T2DM diagnosis before the reference point.
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2.4. Data Preprocessing and Machine Learning Models

We discussed with the domain experts for outliers of laboratory features. We excluded
outliers of laboratory features on the basis of medical knowledge, wherein the error values
were obviously inconsistent with the actual situation. Patients in the non-referral group had
a more stable condition than patients in the referral group, which resulted in less laboratory
examinations among patients in the non-referral group. There were a few patients with
more than 12 missing features in the referral group. We excluded patients with more
than 12 missing features to deal with the missing data in the non-referral group and the
imbalance of the data set. After that, features with more than 40% missing values were
excluded, and the mean of this feature was used to interpolate the remaining missing
data [22,23]. We chose the “last” and “average” values of each feature in the 180-day period
before the reference point as input data (Figure 1). We treated our prediction of referral
need as a binary classification problem.

The architecture of our prediction models is shown in Figure 2. The study cohort was
divided into the following two parts: (1) the data from January 2008 to December 2019 as
the training/validation data set, and (2) the data from January 2020 to June 2021 as the
testing data set. Then, the training/validation data set was randomly divided, with 80%
used for training and 20% for validation. We performed fivefold cross-validation within the
training/validation data set to identify the optimal classifier [24–28]. The optimal classifier
was then used to predict our outcome for each patient in the testing data set. The testing
data set was independent of the training/validation data set. It provided an unbiased final
model performance metric.
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Figure 2. The architecture of our prediction models.

We compared the performance of three classical machine learning algorithms: logistic
regression (LR), random forest (RF), and extreme gradient boosting (XGBoost) to develop
the predictive models. We further applied an ensemble approach using soft voting classifier
to classify the referral group [29,30]. In the ensemble model, LR, RF, and XGBoost classifier
were ensembled. We used the soft voting calculated on the predicted probability of the
output class. All analyses were performed using Python (version 3.8) [31]. We used the area
under the receiver operating characteristic curve (AUROC), precision, recall, and accuracy
as the metrics to evaluate the performance between different models. We also calculated



Int. J. Environ. Res. Public Health 2023, 20, 3396 5 of 16

the Shapley additive explanations (SHAP) values to evaluate the feature importance that
explored the relationship between the outcome and the feature [32,33].

The assessment of normality was conducted using the Kolmogorov–Smirnov test. The
continuous variables with normal distribution are shown as mean ± standard deviation,
whereas the continuous variables with non-normal distribution are presented as the median
(first quartile, third quartile). The categorical variables are reported as numbers (percentage).
Tests for the statistical significance were conducted using the chi-squared test for categorical
variables and the Mann–Whitney test for non-parametric continuous variables. The level
of significance was set at p < 0.05. Statistical analyses were performed using MedCalc for
Windows, version 20.210 (MedCalc Software, Ostend, Belgium).

Medical data are usually unbalanced. Because the imbalance of data were found,
we performed a pilot experiment with a new target of outcome (persistent
eGFR ≥ 60 mL/min/1.73 m2) to find the optimal method for this problem (see Appendix A).
We applied Downsample, the Synthetic Minority Oversampling Technique (SMOTE) al-
gorithm, and Tomek Link [34] to cope with the imbalance of data [35,36]. However, the
result (see Table A1 in Appendix A) showed no obvious improvement of performance.
Finally, we input the original data set into our machine learning models without any of the
abovementioned methods.

3. Results

A total of 19,892 adult T2DM patients were enrolled in “experiment 1” to predict the
rapid renal function decline and nephrology referral when the eGFR was persistently lower
than 30 mL/min/1.73 m2. Among these, there were 19,244 adult T2DM patients in the
“non-referral” group and 648 adult T2DM patients in the “referral” group.

In addition, a total of 16,145 adult T2DM patients were enrolled in “experiment 2”
to predict the rapid renal function decline and nephrology referral when the eGFR was
persistently lower than 45 mL/min/1.73 m2. Among these, there were 15,159 adult T2DM
patients in the “non-referral” group and 986 adult T2DM patients in the “referral” group.

3.1. Experiment 1: Predict Rapidly Progressive Kidney Disease and Nephrology Referral When the
eGFR Was Persistently Lower than 30 mL/min/1.73 m2

Table 1 reveals the baseline demographic and clinical characteristics of the included
patients in experiment 1. The age of the patients was significantly older in the referral
group. Patients in the referral group had significantly more comorbidities, higher creatinine,
higher BUN, higher HbA1c, lower HGB, lower albumin, higher hsCRP, higher uric acid,
higher TG, higher UPCR, and higher UACR. The missing data for each variable in the
experiment 1 are shown in Appendix B Table A2.

Table 1. Baseline demographic and clinical characteristics of the included patients in experiment 1.

Overall
(n = 19,892)

Referral Group
(n = 648)

Non-Referral Group
(n = 19,244) p-Value

Age (years) 64.21 (55.85–72.55) 68.75 (59.92–76.80) 64.04 (55.70–72.30) <0.001
Male sex 11,765 (59.14%) 391 (60.34%) 11,374 (59.10%) 0.529
Weight (kg) 66.50 (58.0–76.0) 66.0 (59.0–75.0) 66.5 (58.0–76.0) 0.904
Height (cm) 162.0 (155.5–168.0) 161.50 (155.9–168.0) 162.00 (155.5–168.0) 0.188
Hypertension 10,273 (51.64%) 464 (71.60%) 9809 (50.97%) <0.001
CAD 3196 (16.07%) 139 (21.45%) 3057 (15.89%) <0.001
Stroke 2962 (14.89%) 133 (20.52%) 2829 (14.70%) <0.001
PAD 351 (1.76%) 36 (5.56%) 315 (1.64%) <0.001
CHF 1147 (5.77%) 94 (14.51%) 1053 (5.47%) <0.001
AKI 454 (2.28%) 103 (15.9%) 351 (1.82%) <0.001
Liver cirrhosis 966 (4.86%) 42 (6.48%) 924 (4.80%) 0.050
Cancer 5480 (27.55%) 138 (21.30%) 5342 (27.76%) <0.001
Bacteremia 644 (3.24%) 39 (6.02%) 605 (3.14%) <0.001
Shock 289 (1.45%) 15 (2.31%) 274 (1.42%) 0.060
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Table 1. Cont.

Overall
(n = 19,892)

Referral Group
(n = 648)

Non-Referral Group
(n = 19,244) p-Value

Peritonitis 282 (1.42%) 8 (1.23%) 274 (1.42%) 0.689
Ascites 167 (0.84%) 10 (1.54%) 157 (0.82%) 0.046
EV bleeding 44 (0.22%) 1 (0.15%) 43 (0.22%) 0.713
Creatinine (mg/dl) 0.89 (0.72–1.10) 1.75 (1.48–2.05) 0.88 (0.71–1.07) <0.001
BUN (mg/dl) 16.0 (13.0–21.0) 28.0 (22.0–35.0) 16.0 (12.5–20.0) <0.001
Fasting glucose (mg/dl) 123.0 (105.0–147.0) 123.0 (103.0–161.0) 123.0 (105.0–146.0) <0.001
Random glucose (mg/dl) 136.0 (111.0–180.0) 143.0 (113.0–197.0) 135.5 (111.0–180.0) 0.019
HbA1c (%) 6.8 (6.2–7.7) 7.1 (6.3–8.0) 6.8 (6.2–6.7) <0.001
HGB (g/dL) 13.3 (11.8–14.6) 11.4 (10.0–12.8) 13.4 (11.9–14.7) <0.001
HCT (%) 39.29 (34.80–43.00) 34.50 (30.33–38.50) 39.45 (35.10–43.10) <0.001
Albumin (g/dL) 4.10 (3.60–4.40) 3.80 (3.40–4.10) 4.10 (3.60–4.40) <0.001
AST (U/L) 25.0 (19.0–36.0) 23.3 (17.0–33.0) 25.0 (19.0–36.0) <0.001
ALT (U/L) 24.0 (17.0–37.0) 20.0 (13.0–28.0) 24.0 (17.0–37.0) <0.001
CPK (U/L) 87.0 (54.0–144.0) 88.0 (54.3–165.8) 87.0 (53.6–143.0) 0.1415
hsCRP (mg/dl) 0.66 (0.15–3.80) 1.29 (0.23–4.69) 0.64 (0.15–3.77) <0.001
K (mEq/L) 4.10 (3.80–4.40) 4.30 (3.90–4.61) 4.10 (3.80–4.40) <0.001
RBC (×106/µL) 4.32 (3.83–4.78) 3.81 (3.28–4.32) 4.33 (3.85–4.79) <0.001
WBC (/µL) 7320 (5808–9350) 7310 (5800–9350) 7510 (6015–9376) 0.282
Bil-T (mg/dl) 0.60 (0.40–0.80) 0.50 (0.30–0.70) 0.60 (0.40–0.80) <0.001
Uric acid (mg/dl) 5.9 (4.9–7.9) 6.8 (5.4–8.2) 5.9 (4.9–7.0) <0.001
CHO (mg/dl) 163.0 (140.0–190.9) 160.0 (130.0–191.8) 163.0 (140.0–190.0) 0.568
LDL (mg/dl) 93.0 (74.0–117.0) 93.0 (74.0–115.0) 93.0 (74.0–117.0) 0.9311
TG (mg/dl) 122.0 (86.0–174.0) 139.0 (98.5–201.3) 121.0 (86.0–173.0) <0.001
UPCR (mg/g) 140.0 (79.5–380.0) 1180.0 (317.5–3318.0) 120.0 (71.0–270.0) <0.001
UACR (mg/g) 16.1 (6.9–61.8) 696.9 (118.5–2106.0) 14.9 (6.7–51.3) <0.001

Values are expressed as median (interquartile range) or number (percentage). Non-normally distributed contin-
uous variables were compared using the Mann–Whitney test. Categorical variables were compared using the
chi-squared test. The p-value represents the comparison between the referral group and the non-referral group.
CAD, coronary arterial disease; PAD, peripheral arterial disease; CHF, congestive heart failure; AKI, acute kidney
injury; EV, esophageal varices; BUN, blood urea nitrogen; HbA1c, glycated hemoglobin; HGB, hemoglobin; HCT,
hematocrit; AST, aspartate amino transferase; ALT, alanine transaminase; CPK, creatine phosphokinase; hsCRP,
high-sensitivity C-reactive protein; K, serum potassium; RBC, red blood count; WBC, white blood count; Bil-T,
total bilirubin; CHO, total cholesterol; LDL, low-density lipoprotein; TG, triglyceride; UPCR, spot urine protein to
creatinine ratio; UACR, spot urine albumin to creatinine ratio.

Table 2 demonstrates the three models to predict rapidly progressive kidney disease
and nephrology referral when the eGFR was persistently < 30 mL/min/1.73 m2. All three
models achieved an accuracy of more than 0.91 and an AUROC of more than 0.96. The XGB
model had higher accuracy and relatively higher precision in the referral group as compared
with the LR and RF models. However, LR and RF models had higher recall in the referral
group. In general, the ensemble voting classifier had relatively higher accuracy, higher
AUROC, and higher recall in the referral group as compared with the other three models.

Table 2. Performance metrics for the three models to predict rapidly progressive kidney disease and
nephrology referral when the eGFR was persistently <30 mL/min/1.73 m2.

Models Data Sets Accuracy
Referral Group

(n = 648)
Non-Referral Group

(n = 19,244) AUROC
Recall Precision Recall Precision

XGB
Validation 0.96 ± 0.01 0.87 ± 0.04 0.42 ± 0.02 0.96 ± 0.00 1.00 ± 0.00 0.97 ± 0.01

Test 0.95 ± 0.00 0.80 ± 0.02 0.37 ± 0.01 0.95 ± 0.00 0.99 ± 0.00 0.96 ± 0.00

LR
Validation 0.94 ± 0.00 0.91 ± 0.03 0.34 ± 0.02 0.94 ± 0.01 1.00 ± 0.00 0.97 ± 0.01

Test 0.93 ± 0.00 0.87 ± 0.01 0.30 ± 0.01 0.93 ± 0.00 1.00 ± 0.00 0.97 ± 0.00

RF
Validation 0.91 ± 0.01 0.91 ± 0.02 0.26 ± 0.02 0.91 ± 0.01 1.00 ± 0.00 0.97 ± 0.01

Test 0.91 ± 0.00 0.91 ± 0.01 0.26 ± 0.00 0.91 ± 0.00 1.00 ± 0.00 0.96 ± 0.00

Voting Validation 0.95 ± 0.00 0.91 ± 0.03 0.37 ± 0.02 0.95 ± 0.00 1.00 ± 0.00 0.98 ± 0.01
Test 0.94 ± 0.00 0.86 ± 0.01 0.33 ± 0.01 0.94 ± 0.00 1.00 ± 0.00 0.97 ± 0.00

AUROC, area under the receiver operating characteristic curve; XGBoost, extreme gradient boosting; LR, logistic
regression; RF, random forest; Voting, ensemble voting classifier.
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Figure 3 shows the confusion matrix and predictive probabilities of the XGBoost
model in experiment 1. The plot of the predictive probabilities in Figure 3 revealed this
model could distinguish the “referral” from the “non-referral” group in both the train-
ing/validation data set (Figure 3A) and testing data set (Figure 3B).
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3.2. Experiment 2: Predict Rapidly Progressive Kidney Disease and Nephrology Referral When the
eGFR Was Persistently Lower than 45 mL/min/1.73 m2

Table 3 shows the baseline demographic and clinical characteristics of the included
patients in experiment 2. The age of the patients was significantly older in the referral
group. Patients in the referral group had significantly more comorbidities, higher creatinine,
higher BUN, lower HGB, lower albumin, higher hsCRP, higher uric acid, higher TG, higher
UPCR, and higher UACR. The missing data for each variable in experiment 2 is shown in
Appendix B Table A3.

Table 3. Baseline demographic and clinical characteristics of the included patients in experiment 2.

Overall
(n = 16,145)

Referral Group
(n = 986)

Non-Referral Group
(n = 15,159) p-Value

Age (years) 63.88 (55.62–72.05) 69.84 (61.79–78.05) 62.46 (54.37–70.13) <0.001
Male sex 9425 (58.38%) 563 (57.10%) 8862 (58.46%) 0.401
Weight (kg) 66.3 (58.0–75.9) 64.5 (57.0–73.1) 67.0 (58.3–76.5) <0.001
Height (cm) 162.0 (155.5–168.0) 161.0 (154.0–166.7) 162.1 (156.0–168.5) <0.001
Hypertension 8066 (49.96%) 662 (67.14%) 7404 (48.84%) <0.001
CAD 2565 (15.89%) 207 (20.99%) 2358 (15.56%) <0.001
Stroke 2256 (13.97%) 202 (20.49%) 2054 (13.55%) <0.001
PAD 248 (1.54%) 32 (3.25%) 216 (1.42%) <0.001
CHF 786 (4.87%) 132 (13.39%) 654 (4.31%) <0.001
AKI 165 (1.02%) 79 (8.01%) 86 (0.57%) <0.001
Liver cirrhosis 748 (4.63%) 62 (6.29%) 686 (4.53%) 0.011
Cancer 4345 (26.91%) 279 (28.30%) 4066 (26.82%) 0.312
Bacteremia 426 (2.64%) 52 (5.27%) 374 (2.47%) <0.001
Shock 179 (1.11%) 23 (2.33%) 156 (1.03%) <0.001
Peritonitis 211 (1.31%) 22 (2.23%) 189 (1.25%) 0.008
Ascites 114 (0.71%) 17 (1.72%) 97 (0.64%) <0.001
EV bleeding 37 (0.23%) 4 (0.41%) 33 (0.22%) 0.232
Creatinine (mg/dl) 0.88 (0.71–1.07) 1.14 (0.94–1.38) 0.83 (0.70–0.99) <0.001
BUN (mg/dl) 16.0 (12.3–20.0) 19.5 (15.0–25.0) 15.0 (12.0–18.5) <0.001
Fasting glucose (mg/dl) 123.0 (106.0–147.0) 124.0 (104.6–153.0) 123.0 (106.0–146.0) 0.277
Random glucose (mg/dl) 136.0 (111.0–180.6) 142.0 (112.0–192.0) 134.0 (111.0–177.0) <0.001
HbA1c (%) 6.8 (6.2–7.7) 6.9 (6.2–7.8) 6.8 (6.3–7.7) 0.632
HGB (g/dL) 13.4 (11.9–14.6) 12.1 (10.7–13.5) 13.6 (12.2–14.8) <0.001
HCT (%) 39.20 (34.70–42.90) 35.90 (31.60–40.00) 40.00 (35.90–43.45) <0.001
Albumin (g/dL) 4.10 (3.55–4.40) 3.90 (3.37–4.20) 4.10 (3.65–4.40) <0.001
AST (U/L) 25.0 (19.0–37.0) 25.0 (19.0–39.0) 25.0 (19.0–36.0) 0.017
ALT (U/L) 24.0 (17.0–37.0) 21.0 (15.0–34.0) 25.0 (17.0–38.0) <0.001
CPK (U/L) 86.0 (52.0–141.0) 79.7 (47.0–138.0) 89.0 (55.0–142.0) <0.001
hsCRP (mg/dl) 0.65 (0.15–3.74) 1.28 (0.26–5.46) 0.51 (0.12–3.16) <0.001
K (mEq/L) 4.10 (3.80–4.40) 4.20 (3.81–4.50) 4.10 (3.80–4.40) <0.001
RBC (×106/µL) 4.31 (3.82–4.77) 3.94 (3.46–4.44) 4.41 (3.96–4.84) <0.001
WBC (/µL) 7250 (5760–9260) 7300 (5700–9307) 7240 (5780–9250) 0.797
Bil-T (mg/dl) 0.60 (0.40–0.80) 0.54 (0.40–0.80) 0.60 (0.40–0.80) <0.001
Uric acid (mg/dl) 5.9 (4.9–7.1) 6.4 (5.2–7.6) 5.8 (4.8–6.9) <0.001
CHO (mg/dl) 163.0 (140.0–190.0) 157.0 (133.0–185.0) 165.0 (142.0–192.0) <0.001
LDL (mg/dl) 93.0 (74.0–116.0) 90.0 (70.0–113.0) 94.0 (75.0–117.0) <0.001
TG (mg/dl) 121.0 (86.0–174.0) 124.0 (88.0–179.0) 120.0 (85.0–172.0) 0.003
UPCR (mg/g) 141.0 (80.0–370.0) 200.0 (98.8–572.3) 115.0 (70.0–240.0) <0.001
UACR (mg/g) 15.9 (6.8–60.5) 57.7 (14.7–334.5) 12.6 (6.2–38.1) <0.001

Values are expressed as median (interquartile range) or number (percentage). Non-normally distributed contin-
uous variables were compared using the Mann–Whitney test. Categorical variables were compared using the
chi-squared test. The p-value represents the comparison between the referral group and the non-referral group.
CAD, coronary arterial disease; PAD, peripheral arterial disease; CHF, congestive heart failure; AKI, acute kidney
injury; EV, esophageal varices; BUN, blood urea nitrogen; HbA1c, glycated hemoglobin; HGB, hemoglobin; HCT,
hematocrit; AST, aspartate amino transferase; ALT, alanine transaminase; CPK, creatine phosphokinase; hsCRP,
high-sensitivity C-reactive protein; K, serum potassium; RBC, red blood count; WBC, white blood count; Bil-T,
total bilirubin; CHO, total cholesterol; LDL, low-density lipoprotein; TG, triglyceride; UPCR, spot urine protein to
creatinine ratio; UACR, spot urine albumin to creatinine ratio.

Table 4 reveals the three models to predict rapidly progressive kidney disease and
nephrology referral when the eGFR was persistently < 45 mL/min/1.73 m2. All three
models achieved an accuracy of more than 0.88 and an AUROC more than 0.93. The
XGB model had higher accuracy and relatively higher precision in the referral group as
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compared with the LR and RF models. However, LR and RF models had higher recall in
the referral group. In general, the ensemble voting classifier had relatively higher accuracy,
higher AUROC, and higher recall in the referral group as compared with the other models.

Table 4. Performance metrics for the three models to predict rapidly progressive kidney disease and
nephrology referral when the eGFR was persistently < 45 mL/min/1.73 m2.

Models Data Sets Accuracy
Referral Group

(n = 986)
Non-Referral Group

(n = 15,159) AUROC
Recall Precision Recall Precision

XGB
Validation 0.93 ± 0.01 0.84 ± 0.03 0.44 ± 0.02 0.93 ± 0.01 0.99 ± 0.00 0.95 ± 0.01

Test 0.92 ± 0.00 0.84 ± 0.01 0.42 ± 0.01 0.93 ± 0.00 0.99 ± 0.00 0.93 ± 0.01

LR
Validation 0.90 ± 0.01 0.88 ± 0.04 0.37 ± 0.02 0.90 ± 0.01 0.99 ± 0.00 0.95 ± 0.01

Test 0.90 ± 0.00 0.87 ± 0.03 0.35 ± 0.01 0.90 ± 0.00 0.99 ± 0.00 0.94 ± 0.01

RF
Validation 0.89 ± 0.01 0.89 ± 0.03 0.33 ± 0.01 0.89 ± 0.00 0.99 ± 0.00 0.95 ± 0.01

Test 0.88 ± 0.00 0.86 ± 0.03 0.32 ± 0.01 0.88 ± 0.00 0.99 ± 0.00 0.93 ± 0.00

Voting Validation 0.91 ± 0.00 0.88 ± 0.02 0.40 ± 0.01 0.91 ± 0.01 0.99 ± 0.00 0.95 ± 0.01
Test 0.91 ± 0.00 0.87 ± 0.02 0.39 ± 0.01 0.91 ± 0.00 0.99 ± 0.00 0.94 ± 0.00

AUROC, area under the receiver operating characteristic curve; XGBoost, extreme gradient boosting; LR, logistic
regression; RF, random forest; Voting, ensemble voting classifier.

Figure 5 shows the confusion matrix and predictive probabilities of the XGBoost
model in experiment 2. The plot of the predictive probabilities of Figure 5 revealed this
model could distinguish the “referral” from the “non-referral” group in both the train-
ing/validation data set (Figure 5A) and the testing data set (Figure 5B).
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Figure 6 demonstrates the SHAP summary plot of the top 15 features for the XGBoost
model in experiment 2. The first three features were the same in both experiment 1 and
experiment 2, and the importance of proteinuria increased in experiment 2 (eGFR was
persistently < 45 mL/min/1.73 m2) as compared with experiment 1 (eGFR was persistently
< 30 mL/min/1.73 m2). Proteinuria (UPCR or UACR) is also an important predictor for the
risk of rapidly progressive kidney disease and the need for nephrology referral.
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3.3. Additional Experiment with Loose Inclusion and Labeling Criteria for Both Experiments 1 and 2

We conducted an additional experiment with loose inclusion and labeling criteria
for both experiments 1 and 2. In this additional experiment, we included T2DM patients
with one laboratory result showing an eGFR ≥ 60 mL/min/1.73 m2 at the reference point
and a T2DM diagnosis before the reference point. We also labeled patients with only
one laboratory result, showing an eGFR < 30 mL/min/1.73 m2 for experiment 1 and an
eGFR < 45 mL/min/1.73 m2 for experiment 2 in this additional experiment. We did not
confirm patients with a 180-day average eGFR ≥ 60 mL/min/1.73 m2 prior reference point
and a persistently lower eGFR 90 days after the target point in this additional experiment.
Table 5 reveals that the accuracy and AUROC decreased in all of the three ML models for
the additional experiment with loose inclusion and labeling criteria.

Table 5. Performance metrics for the three models with loose inclusion and labeling criteria compared
with experiment 1 and experiment 2.

Loose Inclusion and Labeling Criteria Compared with Experiment 1

Models Data Sets Accuracy
Referral Group

(n = 2541)
Non-Referral Group

(n = 19,244) AUROC
Recall Precision Recall Precision

XGB
Validation 0.87 ± 0.00 0.78 ± 0.02 0.46 ± 0.01 0.88 ± 0.01 0.97 ± 0.00 0.92 ± 0.00

Test 0.87 ± 0.00 0.80 ± 0.01 0.47 ± 0.00 0.88 ± 0.00 0.97 ± 0.00 0.92 ± 0.00

LR
Validation 0.85 ± 0.01 0.81 ± 0.01 0.42 ± 0.01 0.85 ± 0.01 0.97 ± 0.00 0.91 ± 0.01

Test 0.84 ± 0.00 0.80 ± 0.01 0.41 ± 0.00 0.85 ± 0.00 0.97 ± 0.00 0.90 ± 0.00

RF
Validation 0.83 ± 0.00 0.83 ± 0.03 0.40 ± 0.01 0.83 ± 0.01 0.97 ± 0.00 0.92 ± 0.01

Test 0.84 ± 0.00 0.84 ± 0.01 0.41 ± 0.01 0.84 ± 0.00 0.98 ± 0.00 0.92 ± 0.00
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Table 5. Cont.

Loose Inclusion and Labeling Criteria Compared with Experiment 2

Models Data Sets Accuracy
Referral Group

(n = 3836)
Non-Referral Group

(n = 15,159) AUROC
Recall Precision Recall Precision

XGB
Validation 0.84 ± 0.01 0.81 ± 0.01 0.58 ± 0.01 0.85 ± 0.00 0.95 ± 0.00 0.91 ± 0.00

Test 0.84 ± 0.00 0.79 ± 0.00 0.57 ± 0.01 0.85 ± 0.00 0.94 ± 0.00 0.90 ± 0.00

LR
Validation 0.83 ± 0.00 0.81 ± 0.01 0.55 ± 0.01 0.83 ± 0.00 0.95 ± 0.00 0.90 ± 0.01

Test 0.83 ± 0.00 0.82 ± 0.00 0.55 ± 0.00 0.83 ± 0.00 0.95 ± 0.00 0.89 ± 0.00

RF
Validation 0.82 ± 0.01 0.83 ± 0.01 0.53 ± 0.01 0.81 ± 0.01 0.95 ± 0.00 0.90 ± 0.01

Test 0.82 ± 0.00 0.81 ± 0.01 0.54 ± 0.01 0.83 ± 0.00 0.95 ± 0.00 0.89 ± 0.00

AUROC, area under the receiver operating characteristic curve; XGBoost, extreme gradient boosting; LR, logistic
regression; RF, random forest.

4. Discussion

Due to the heterogeneous phenotype of type 2 diabetic renal disease, the optimal
time for the nephrology referral of T2DM patients is still challenging [6]. The American
Diabetes Association (ADA) recommends that (1) diabetes patients should be referred
for evaluation for RRT if they have an eGFR < 30 mL/min/1.73 m2, and (2) diabetes
patients should be referred to a physician experienced in the care of kidney disease for
uncertainty about the etiology of kidney disease, difficult management issues, and rapidly
progressive kidney disease [19]. However, Pinier et al. [21] performed a retrospective
survival analysis in DM patients in a 13-year period, and the study showed that both
an eGFR < 30 mL/min/1.73 m2 and <45 mL/min/1.73 m2 at the time of referral were
powerful risk factors for mortality. Therefore, we performed one experiment with a predic-
tive target of an eGFR < 30 mL/min/1.73 m2 and another one with a predictive target of
eGFR < 45 mL/min/1.73 m2. In addition, our study design also predicted rapidly progres-
sive kidney disease in a 6-month period. This is an important indication for nephrology
referral in T2DM as well.

Few studies have focused on the prediction of diabetic nephropathy and renal function
decline [14–18]. Makino et al. [17] constructed a logistic regression ML learning model
based on big data from the electronic medical records (EMR) of diabetes patients. Their
logistic regression model had 3073 features with time series data. The accuracy of their
logistic regression ML model to predict DKD aggravation was 0.71. Dong et al. [15] built
up a 3-year DKD risk predictive model in patients with T2DM and normo-albuminuria,
and their study showed the LightGBM model was the best model with an area under curve
(AUC) of 0.815. Owing to the different study design and predictive target, all models in
our study achieved an accuracy of more than 0.88 and an AUROC more than 0.93. Our
study mainly focused on T2DM patients with rapidly progressive kidney disease in the
6-month period, as this condition is an important indication for nephrology referral. Early
detection of this condition is a key to improving renal outcome and reducing complications.
Additionally, our study design confirmed the target condition with persistent renal function
impairment 90 days after the target point. The more specific and strict definition of the
predictive target could improve the model performance in our study (Table 5).

Our result showed that the XGB model had higher accuracy and relatively higher
precision in the referral group as compared with the LR and RF models, but LR and RF
models had higher recall in the referral group. The lower precision means that the model
had more false alarms, and the false alarms may increase the clinical load of the nephrologist.
However, the higher recall may be more important for patient safety because it means that
less patients who need nephrology referral (adult T2DM patients with rapidly progressive
kidney disease) are neglected. In general, the ensemble voting classifier had relatively
higher accuracy, higher AUROC, and higher recall in the referral group as compared with
the other three models.
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Some potential limitations of this study should be acknowledged. First, the nature
of the retrospective study may cause some unrecognized confounding factors to bias the
findings. Second, we did not analyze the impact of medication in our study, and some
medication may be associated with rapidly progressive kidney disease. Third, our study
included a small sample size and was conducted at a single hospital. The majority of
the population was Taiwanese. Fourth, the data set was highly unbalanced, despite our
attempts to deal with this problem. Models trained on imbalanced data may cause the
accuracy paradox. Precision and recall may be better metrics in such conditions. Fifth, we
excluded patients with more than 12 missing features to deal with the missing data in the
non-referral group and the imbalance of dataset, which may introduce bias in analysis.
Sixth, only internal validation was performed in our study; external validation using a
different data set is needed. Hence, further multicenter and multinational studies are
required to confirm the stability of the performance of our predictive model.

5. Conclusions

In conclusion, we built a 6-month machine learning predictive model for the risk of
rapidly progressive kidney disease and the need for nephrology referral in adult patients
with T2DM and an initial eGFR ≥ 60 mL/min/1.73 m2. Our result showed that the XGB
model had higher accuracy and relatively higher precision in the referral group as compared
with the LR and RF models, but LR and RF models had higher recall in the referral group.
In general, the ensemble voting classifier had relatively higher accuracy, higher AUROC,
and higher recall in the referral group as compared with the other three models. Early
detection of rapidly progressive kidney disease is key to improving the renal outcome and
reducing complications in adult patients with T2DM.
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Appendix A

Because an imbalance of data was found, we performed a pilot experiment with a new
target of outcome (persistent eGFR ≥ 60 mL/min/1.73 m2) to find the optimal method for
this problem. We applied Downsample, the Synthetic Minority Oversampling Technique
(SMOTE) algorithm, and Tomek Link [34] to cope with the imbalance of data [35,36].
Table A1 shows the performance metrics for the original and three other methods to deal
with the imbalance of data. The result revealed no obvious improvement in performance.
Hence, we input the original data set into our machine learning models without any of the
abovementioned methods.
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Table A1. Performance metrics of pilot experiment for the original and other three methods to deal
with the imbalance of data.

Models Data Sets Accuracy
Referral Group

(n = 1314)
Non-Referral Group

(n = 10,328) AUROC
Recall Precision Recall Precision

Original Validation 0.88 ± 0.01 0.80 ± 0.01 0.48 ± 0.02 0.89 ± 0.01 0.97 ± 0.00 0.92 ± 0.01
Test 0.88 ± 0.01 0.84 ± 0.01 0.53 ± 0.01 0.89 ± 0.00 0.97 ± 0.00 0.92 ± 0.00

Downsample Validation 0.86 ± 0.01 0.81 ± 0.02 0.43 ± 0.01 0.86 ± 0.01 0.97 ± 0.00 0.91 ± 0.01
Test 0.87 ± 0.01 0.82 ± 0.01 0.46 ± 0.01 0.88 ± 0.01 0.98 ± 0.00 0.90 ± 0.01

SMOTE
Validation 0.92 ± 0.00 0.68 ± 0.01 0.62 ± 0.01 0.95 ± 0.00 0.96 ± 0.00 0.92 ± 0.01

Test 0.88 ± 0.01 0.74 ± 0.01 0.49 ± 0.02 0.90 ± 0.01 0.96 ± 0.00 0.87 ± 0.00

Tomek Links
Validation 0.88 ± 0.00 0.81 ± 0.02 0.47 ± 0.01 0.88 ± 0.00 0.97 ± 0.00 0.92 ± 0.01

Test 0.86 ± 0.01 0.81 ± 0.01 0.43 ± 0.02 0.86 ± 0.01 0.97 ± 0.00 0.90 ± 0.00

SMOTE, Synthetic Minority Oversampling Technique; AUROC, area under the receiver operating characteristic
curve; XGBoost, extreme gradient boosting; LR, logistic regression; RF, random forest.

Appendix B

Tables A2 and A3 demonstrate the missing data for each variable in experiment 1 and
experiment 2, respectively.

Table A2. Missing data in experiment 1.

Overall
(n = 19,892)

Referral Group
(n = 648)

Non-Referral Group
(n = 19,244) p-Value

Number Percentage Number Percentage Number Percentage

Age 0 0% 0 0% 0 0% -
Sex 0 0% 0 0% 0 0% -

Weight 2310 11.61% 37 5.71% 2273 11.81% <0.001
Height 3381 17.00% 63 9.72% 3318 17.24% <0.001

Hypertension 0 0% 0 0% 0 0% -
CAD 0 0% 0 0% 0 0% -

Stroke 0 0% 0 0% 0 0% -
PAD 0 0% 0 0% 0 0% -
CHF 0 0% 0 0% 0 0% -
AKI 0 0% 0 0% 0 0% -

Liver cirrhosis 0 0% 0 0% 0 0% -
Cancer 0 0% 0 0% 0 0% -

Bacteremia 0 0% 0 0% 0 0% -
Shock 0 0% 0 0% 0 0% -

Peritonitis 0 0% 0 0% 0 0% -
Ascites 0 0% 0 0% 0 0% -

EV bleeding 0 0% 0 0% 0 0% -
Creatinine 0 0% 0 0% 0 0% -

BUN 3612 18.16% 23 3.55% 3589 18.65% <0.001
Fasting glucose 6520 32.78% 128 19.75% 6392 33.22% <0.001

Random glucose 5240 26.34% 74 11.42% 5166 26.84% <0.001
HbA1c 4845 24.36% 83 12.81% 4762 24.75% <0.001
HGB 9557 48.04% 348 53.70% 9209 47.85% 0.003
HCT 8704 43.76% 205 31.64% 8499 44.16% <0.001

Albumin 11,362 57.12% 204 31.48% 11,158 57.98% <0.001
AST 4667 23.46% 118 18.21% 4549 23.64% 0.001
ALT 1866 9.38% 96 14.81% 1770 9.20% <0.001
CPK 12,846 64.58% 261 40.28% 12,585 65.40% <0.001

hsCRP 10,935 54.97% 251 38.73% 10,684 55.52% <0.001
K 2886 14.51% 7 1.08% 2879 14.96% <0.001
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Table A2. Cont.

Overall
(n = 19,892)

Referral Group
(n = 648)

Non-Referral Group
(n = 19,244) p-Value

Number Percentage Number Percentage Number Percentage

RBC 7353 36.96% 168 25.93% 7185 37.34% <0.001
WBC 1764 8.87% 35 5.40% 1729 8.98% 0.002
Bil-T 8844 44.46% 286 44.14% 8558 44.47% 0.866

Uric acid 12,835 64.52% 289 44.60% 12,546 65.19% <0.001
CHO 7093 35.66% 165 25.46% 6928 36.00% <0.001
LDL 7233 36.36% 129 19.91% 7104 36.92% <0.001
TG 6863 34.50% 159 24.54% 6704 34.84% <0.001

UPCR 16,736 84.13% 295 45.52% 16,441 85.43% <0.001
UACR 11,665 58.64% 258 39.81% 11,407 59.28% <0.001

The p-value represents comparison between the referral group and non-referral group. Categorical variables were
compared using the chi-squared test. CAD, coronary arterial disease; PAD, peripheral arterial disease; CHF, con-
gestive heart failure; AKI, acute kidney injury; EV, esophageal varices; BUN, blood urea nitrogen; HbA1c, glycated
hemoglobin; HGB, hemoglobin; HCT, hematocrit; AST, aspartate amino transferase; ALT, alanine transaminase;
CPK, creatine phosphokinase; hsCRP, high-sensitivity C-reactive protein; K, serum potassium; RBC, red blood
count; WBC, white blood count; Bil-T, total bilirubin; CHO, total cholesterol; LDL, low-density lipoprotein;
TG, triglyceride; UPCR, spot urine protein to creatinine ratio; UACR, spot urine albumin to creatinine ratio.

Table A3. Missing data in experiment 2.

Overall
(n = 16,145)

Referral Group
(n = 986)

Non-Referral Group
(n = 15,159) p-Value

Number Percentage Number Percentage Number Percentage

Age 0 0% 0 0% 0 0% -
Sex 0 0% 0 0% 0 0% -

Weight 1898 11.76% 73 7.40% 1825 12.04% <0.001
Height 2694 16.69% 123 12.47% 2571 16.96% <0.001

Hypertension 0 0% 0 0% 0 0% -
CAD 0 0% 0 0% 0 0% -

Stroke 0 0% 0 0% 0 0% -
PAD 0 0% 0 0% 0 0% -
CHF 0 0% 0 0% 0 0% -
AKI 0 0% 0 0% 0 0% -

Liver cirrhosis 0 0% 0 0% 0 0% -
Cancer 0 0% 0 0% 0 0% -

Bacteremia 0 0% 0 0% 0 0% -
Shock 0 0% 0 0% 0 0% -

Peritonitis 0 0% 0 0% 0 0% -
Ascites 0 0% 0 0% 0 0% -

EV bleeding 0 0% 0 0% 0 0% -
Creatinine 0 0% 0 0% 0 0% -

BUN 3312 20.51% 92 9.33% 3220 21.24% <0.001
Fasting glucose 5103 31.61% 225 22.82% 4878 32.18% <0.001

Random glucose 4408 27.30% 129 13.08% 4279 28.23% <0.001
HbA1c 3781 23.42% 135 13.69% 3646 24.05% <0.001
HGB 7723 47.84% 554 56.19% 7169 47.29% <0.001
HCT 7207 44.64% 369 37.42% 6838 45.11% <0.001

Albumin 9668 59.88% 421 42.70% 9247 61.00% <0.001
AST 3879 24.03% 199 20.18% 3680 24.28% 0.004
ALT 1330 8.24% 127 12.88% 1203 7.94% <0.001
CPK 10,836 67.12% 466 47.26% 10,370 68.41% <0.001

hsCRP 9211 57.05% 424 43.00% 8787 57.97% <0.001
K 2663 16.49% 48 4.87% 2615 17.25% <0.001
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Table A3. Cont.

Overall
(n = 16,145)

Referral Group
(n = 986)

Non-Referral Group
(n = 15,159) p-Value

Number Percentage Number Percentage Number Percentage

RBC 6195 38.37% 297 30.12% 5898 38.91% <0.001
WBC 1545 9.57% 65 6.59% 1480 9.76% 0.001
Bil-T 7282 45.10% 404 40.97% 6878 45.37% 0.007

Uric acid 10,478 64.90% 533 54.06% 9945 65.60% <0.001
CHO 5465 33.85% 248 25.15% 5217 34.42% <0.001
LDL 5734 35.52% 188 19.07% 5546 36.59% <0.001
TG 5309 32.88% 250 25.35% 5059 33.37% <0.001

UPCR 14,034 86.92% 509 51.62% 13,525 89.22% <0.001
UACR 9340 57.85% 419 42.49% 8921 58.85% <0.001

The p-value represents comparison between the referral group and non-referral group. Categorical variables were
compared using the chi-squared test. CAD, coronary arterial disease; PAD, peripheral arterial disease; CHF, con-
gestive heart failure; AKI, acute kidney injury; EV, esophageal varices; BUN, blood urea nitrogen; HbA1c, glycated
hemoglobin; HGB, hemoglobin; HCT, hematocrit; AST, aspartate amino transferase; ALT, alanine transaminase;
CPK, creatine phosphokinase; hsCRP, high-sensitivity C-reactive protein; K, serum potassium; RBC, red blood
count; WBC, white blood count; Bil-T, total bilirubin; CHO, total cholesterol; LDL, low-density lipoprotein;
TG, triglyceride; UPCR, spot urine protein to creatinine ratio; UACR, spot urine albumin to creatinine ratio.
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