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Abstract: The pre-diagnosis of cancer has been approached from various perspectives, so it is
imperative to continue improving classification algorithms to achieve early diagnosis of the disease
and improve patient survival. In the medical field, there are data that, for various reasons, are lost.
There are also datasets that mix numerical and categorical values. Very few algorithms classify
datasets with such characteristics. Therefore, this study proposes the modification of an existing
algorithm for the classification of cancer. The said algorithm showed excellent results compared
with classical classification algorithms. The AISAC-MMD (Mixed and Missing Data) is based on
the AISAC and was modified to work with datasets with missing and mixed values. It showed
significantly better performance than bio-inspired or classical classification algorithms. Statistical
analysis established that the AISAC-MMD significantly outperformed the Nearest Neighbor, C4.5,
Naïve Bayes, ALVOT, Naïve Associative Classifier, AIRS1, Immunos1, and CLONALG algorithms in
conducting breast cancer classification.

Keywords: breast cancer; bio-inspired algorithms; machine learning; artificial intelligence

1. Introduction

Cancer is a global problem that causes one in four deaths [1]. In men, the three most
common cancers are lung, colon, and prostate, while in women, the most common cancers
are breast and colorectal.

There are more than 27 different types of cancer [2], which is alarming as it is the
second leading cause of death worldwide. The development of this disease is based on
various criteria, such as gender, genetics, and race, among others [3]. Using non-invasive
techniques allows medics and researchers to identify cancer early, allowing better treatment
for patients, thereby saving lives.

For breast cancer, the pre-diagnosis process may vary according to the type and stage
of cancer. However, some non-invasive studies are based on obtaining a digital image
through a study (magnetic resonance, mammography, etc.) and then segmenting the region
of interest (lesion). The characteristics of the lesion are obtained, and finally, the image
is classified.

Several algorithms have been used for cancer classification. Due to the “No free lunch
theorem” [4], there is no perfect classification algorithm; therefore, research on breast cancer
classification continues to be an area of interest [5–11].

In this study, we use a metaheuristic based on the human immune system; this is an
algorithm that imitates the behavior of fauna or a biological system to solve computational
problems [12]. Due to their behavior, these algorithms are commonly used to solve non-
deterministic problems since they are based on guiding a random solution in a defined
search space [13,14].
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It is important to emphasize that in medical datasets, mixed data are common; that is,
data consisting of categorical and numerical values. Values may also be missing due to vari-
ous factors. This is relevant given that most clinical data require pre-classification treatment.

In this study, we will work on the classification task, for which we propose a classifi-
cation algorithm based on the human immune system. Currently, some classifiers work
with mixed data. To the best of our knowledge, none of these algorithms is bio-inspired.
However, bio-inspired models have been beneficial and widely used in medical diagnosis.
For this reason, we propose a bio-inspired classification algorithm that can handle mixed
and incomplete data.

This paper makes several contributions. We designed an Artificial Immune System
for Associative Classification of Mixed and Missing Data (AISAC-MMD). This is a novel,
immune-based classification algorithm that allows native dealing with multiclass, mixed,
and incomplete data. This algorithm has low computational complexity.

The statistical analysis carried out established that the AISAC-MMD significantly out-
performed the Nearest Neighbor, C4.5, Naïve Bayes, ALVOT, Naïve Associative Classifier,
AIRS1, Immunos1, and CLONALG algorithms in classifying breast cancer.

The paper is structured as follows: Section 2 briefly addresses some of the previous
works on computationally assisted breast cancer classification and pre-diagnosis. Section 3
explains the materials and methods used. Section 4 presents the results, detailing the newly
proposed classification algorithm, while Section 5 discusses the numerical performance of
the AISAC-MMD with respect to state-of-the-art classification algorithms. The paper ends
with the conclusions and directions for future study.

2. Related Works

Over the last 5 years, research has been published on breast cancer pre-diagnosis using
classification algorithms, such as the work of Amrane et al. [5], which tested KNN and Naïve
Bayes algorithms applied to breast cancer classification for binary datasets. The results
revealed that KNN yielded better accuracy than Naïve Bayes for breast cancer classification.

In 2019, Saritas and Yasar [6] analyzed classification algorithms (Artificial Neural
Networks and Naïve Bayes) applied to the classification of breast cancer using biomarkers.
The results showed excellent performance of these two algorithms, with Artificial Neural
Networks obtaining the greatest accuracy. In the same year, Ting et al. [7] proposed
Convolutional Neural Networks for breast cancer classification using medical images. The
results revealed high classification accuracy. Their work was tested on a real dataset of
221 patients classified into three groups (malignant, benign, and healthy).

Numerous studies have examined the classification of breast cancer; however, this is
not only cancer to be pre-diagnosis. For example, some papers, such as the recent work of
Yuan et al. in 2019, used a classification method based on a magnetic resonance model to
classify a dataset of patients with prostate cancer [8]. The model yielded good results in
treating and classifying magnetic resonance images for prostate cancer.

In early 2020, Acharya et al. [9] proposed a combination of enhancing image pre-
processing and deep learning algorithms to improve the classification of algorithms applied
to breast cancer datasets. This modification showed better accuracy for the classification
algorithms tested. A similar approach was proposed by Arif et al. (2020) [10], who reviewed
deep learning approaches for classifying prostate cancer using magnetic resonance images.
They concluded that new validations and clinical studies should be conducted to obtain
better decision-making algorithms.

In 2020, Devarriya et al. [11] proposed two fitness functions for Genetic Programming.
These were used for breast cancer classification, and showed good performance with imbal-
anced datasets. The first approach was based on learning about the minority class, while
the second approach was based on according the same importance to both classes. Based
on reviews conducted in our previous works, there are opportunities for improvement.
This study proposes modifying a classification algorithm based on the human immune
system, demonstrating promising results.



Int. J. Environ. Res. Public Health 2023, 20, 3240 3 of 13

An interesting proposal based on bio-inspired algorithms is put forward by González-
Patiño et al. [15], yielding promising results for breast cancer classification. Recently, deep
learning has been analyzed, and has been reported as a useful tool for this task [16–18]. In
addition, there has been an increase over the past year in the use of bio-inspired techniques
for automatic breast cancer detection [19–21].

However, the above-mentioned proposals only deal with numeric and complete data.
Therefore, these methods need to take the additional step of data pre-processing to impute
(or even delete) missing records, and to change categorical values into numeric ones. Such
procedures alter the nature of the data and can lead to poor performance. This study aims
to overcome these drawbacks by designing a novel algorithm that is able to natively deal
with mixed and missing data.

3. Materials and Methods

This section describes the datasets, performance measures, and algorithms that were
compared. Nine algorithms were tested for the classification of ten datasets.

3.1. Datasets

In this study, we used ten datasets related to different types of cancer. It is important
to note that the datasets contained missing and mixed values, which is quite common in
medical datasets.

1. Breast Cancer Digital Repository (BCDR) [22]. This dataset is composed of data ex-
tracted from Portuguese women after being tested with biopsies to identify breast
lesions. As stated in [22], “BCDR-F01 has a total of 362 segmentations from which 187
are from benign findings and the remainder 175 from malignant findings. In addition
to the patient age and breast density, the data set includes a set of selected binary
attributes for indicating abnormalities observed by radiologists, namely masses, mi-
crocalcifications, calcifications (other than microcalcifications), axillary adenopathies,
architectural distortions, and stroma distortions. Thus, the clinical data for each
instance of the BCDR-F01 data set include a total of eight attributes per instance: six
binary attributes related to observed abnormalities, an ordinal attribute for breast den-
sity, and a numerical attribute that contains the patient age at the time of the study.”

2. Breast Cancer Wisconsin (Original) Data Set (BCWO) [23]. This dataset was provided
by the UCI repository [24] and is available at http://archive.ics.uci.edu/ml/datasets/
Breast+Cancer+Wisconsin+%28Original%29, accessed on 11 January 2021. It consists
of patients treated by Dr. Wolberg, offering valuable information on clinical cases
of breast cancer. BCWO contains 699 records of tissue samples, with each record
characterized by the following attributes: Clump Thickness, Uniformity of Cell Size,
Uniformity of Cell Shape, Marginal Adhesion, Single Epithelial Cell Size, Bare Nu-
clei, Bland Chromatin, Normal Nucleoli, and Mitoses. All attributes were manually
measured on a scale of 1 to 10.

3. Breast Cancer SEER (BCSEER) [25]. The National Cancer Institute provides this
dataset, which consists of real patients from 1973 to 2013 who underwent breast
cancer-related studies. The institute provides the surveillance, epidemiology, and end
results (SEER) database. The SEER database classifies cancer histology and topography
information based on the third edition of the International Classifications of Diseases
for Oncology (ICD-O-3). In our study, we used the version of the dataset available on
the Kaggle website (https://www.kaggle.com/code/jnegrini/breast-cancer-dataset,
accessed on 11 January 2021).

4. Breast Cancer Wisconsin (Diagnostic) Data Set (BCWD) [26]. This binary dataset,
provided by Dr. Wolberg in 1995, consists of data obtained from breast analysis and
subsequently confirmed by biopsy. Features are computed from a digitized image
of a fine needle aspirate (FNA) of a breast mass. They describe the characteristics of
the cell nuclei present in the image. These features include radius (mean of distances
from center to points on the perimeter), texture (standard deviation of gray-scale

http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Original%29
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values), perimeter, area, smoothness (local variation in radius lengths), compactness
(perimeterˆ2/area − 1.0), concavity (severity of concave portions of the contour),
concave points (number of concave portions of the contour), symmetry, and fractal
dimension (“coastline approximation” − 1). The dataset is available at http://archive.
ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29, accessed on
11 January 2021.

5. Breast Cancer Wisconsin (Prognostic) Data Set (BCWP) [27]. This dataset was pro-
vided by Dr. Wolberg and contained data on breast cancer patients with invasive
breast cancer. This dataset was donated in the same year as the BCWD. Each record
represents follow-up data on one breast cancer case. These are consecutive patients
seen by Dr. Wolberg since 1984 and include only those cases exhibiting invasive breast
cancer and no evidence of distant metastases at the time of diagnosis. The dataset
has 32 predictive attributes, with the first 30 computed from a digitized image of
a fine needle aspirate (FNA) of a breast mass. They describe the characteristics of
the cell nuclei present in the image. The other two attributes are recurrence time (in
case of recurrence) and disease-free time (in case of non-recurrence). This dataset is
available at http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%2
8Prognostic%29, accessed on 11 January 2021.

6. Lung Cancer Data Set (LCDS) [18]. This dataset was chosen as it contains information
on patients who had surgeries. The dataset, which was donated in 1999, focuses
on the survival of these patients after surgery. It is an interesting dataset due to the
scarcity of the data (only 32 subjects) and the large amount of predictive features (55).
It is available at http://archive.ics.uci.edu/ml/datasets/Lung+Cancer, accessed on
11 January 2021.

7. Mammographic Mass Data Set (MMDS) [28]. Donated in 2007, this dataset contains
patterns of mammography studies carried out on 961 German patients. It contains a
BI-RADS assessment, the patient’s age, and three BI-RADS attributes. It also contains
the ground truth (severity field) for 516 benign and 445 malignant masses identified
on full-field digital mammograms, collected at the Institute of Radiology of the Uni-
versity Erlangen-Nuremberg between 2003 and 2006. Each instance has an associated
BI-RADS assessment ranging from 1 (definitely benign) to 5 (highly suggestive of
malignancy) assigned in a double-review process by physicians. The dataset is avail-
able at http://archive.ics.uci.edu/ml/datasets/Mammographic+Mass, accessed on
11 January 2021.

8. Breast Cancer Data Set (BCDS) [29]. This dataset, which contains data on patients
with recurrent breast cancer, was provided by Milan Soklic and Matjaz Zwitter at
the Institute of Oncology in Yugoslavia. The dataset contains eight attributes: age,
menopause, premenopausal, tumor size, inv-nodes, node-caps (yes, no), degree of
malignancy (1, 2, 3), breast (left, right), breast quad (left-up, left-low, right-up, right-
low, central), and irradiation (yes, no). The dataset is available at http://archive.ics.
uci.edu/ml/datasets/Breast+Cancer, accessed on 11 January 2021.

9. Haberman’s Survival Data Set (HSDS) [30]. This dataset was donated in 1999 to the
Machine Learning repository of the University of California [18]. It contains data on
the survival of patients with breast cancer who had surgical removal of lesions. It
has only four predictive features: age of patient at the time of operation (numerical),
patient’s year of operation, and number of positive axillary nodes detected. The
decision attribute is survival status (1 if the patient survived 5 years or longer or 2 if
the patient died within 5 years). The dataset is available at http://archive.ics.uci.edu/
ml/datasets/Haberman%27s+Survival, accessed on 11 January 2021.

10. Thoracic Surgery Data Set (TSDS) [31]. The data was collected retrospectively at
the Wrocław Thoracic Surgery Centre for patients who underwent major lung re-
sections for primary lung cancer in the years 2007–2011. The Centre is associated
with the Department of Thoracic Surgery of the Medical University of Wrocław and
the Lower-Silesian Centre for Pulmonary Diseases, Poland. The research database

http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29
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http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Prognostic%29
http://archive.ics.uci.edu/ml/datasets/Lung+Cancer
http://archive.ics.uci.edu/ml/datasets/Mammographic+Mass
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer
http://archive.ics.uci.edu/ml/datasets/Haberman%27s+Survival
http://archive.ics.uci.edu/ml/datasets/Haberman%27s+Survival
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constitutes a part of the National Lung Cancer Registry, administered by the Insti-
tute of Tuberculosis and Pulmonary Diseases in Warsaw, Poland. The goal of the
dataset is to predict whether the patient will or will not survive surgery. The dataset
has 16 predictive attributes: forced vital capacity; volume that has been exhaled at
the end of the first second of forced expiration; performance status (Zubrod scale);
pain before surgery; hemoptysis before surgery; dyspnea before surgery; cough
before surgery; weakness before surgery; size of the original tumor, from OC11
(smallest) to OC14 (largest); type 2 DM—diabetes mellitus; MI up to 6 months; pe-
ripheral arterial diseases; smoking; asthma; and age at surgery. The dataset can be
found at http://archive.ics.uci.edu/ml/datasets/Thoracic+Surgery+Data, accessed
on 11 January 2021.

Table 1 summarizes the most relevant characteristics of each dataset.

Table 1. Summary of the characteristics of the datasets.

Dataset Attributes Instances Imbalance Ratio Missing Values

BCDR 38 362 1.06 Yes
BCWO 9 699 1.90 Yes

BCSEER 5 1405 5.41 No
BCWD 30 569 1.60 No
BCWP 33 198 3.21 Yes
LCDS 56 32 1.44 Yes

MMDS 5 961 1.15 Yes
BCDS 9 286 2.36 Yes
HSDS 3 306 2.77 No
TSDS 14 470 5.71 No

We considered the existence of missing values, the number of instances and attributes,
and the imbalance ratio (IR). A dataset is considered imbalanced if the IR measure exceeds
1.5 [32]. All datasets had two classes except for the LCDS dataset, which had three.

3.2. Algorithms

Eight algorithms were selected. The first five algorithms were chosen since they work
with mixed and missing data, which is one of the main contributions of the proposed
model in this study. The following three algorithms were based on the same principle as
the proposed model; that is, they on an Artificial Immune System. This is why they were
selected for comparison against other algorithms of the same type.

1. K-Nearest Neighbors (NN) was proposed by Cover and Hart in 1967 [33]. This
algorithm is based on assigning a class according to the k nearest pattern. If the
pattern belongs to different classes, a majority voting process will be carried out to
obtain a single class.

2. C4.5 [34] was developed as a modification of ID3 [35]. It is a decision tree for making
decisions based on relevant information provided by each attribute.

3. Naïve Bayes [36] is a classifier based on probability and the independence of each
attribute. It is derived from Bayes’ theorem.

4. ALVOT is a general purpose classification model that uses different views of infor-
mation based on a Support Set System [37]. This model uses a voting schema based
on aggregation procedures. The model has a high computational cost when using all
typical testors, but it can obtain good results with mixed and incomplete data.

5. NAC was proposed in 2017 by Villuendas-Rey et al. [38] as a learning model for
classifying mixed and incomplete data. It is based on a similarity operator named
MIDSO, and is a particular case of both the ALVOT and NN classifiers. It has low
computational complexity and yields good results when applied to financial data.

http://archive.ics.uci.edu/ml/datasets/Thoracic+Surgery+Data
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6. AIRS1 is a classification algorithm based on the Artificial Immune System, The al-
gorithm was proposed in 2001 [39], based on the principle of clonal selection and
affinity maturation.

7. Immunos1 is another algorithm that reduces information in one training iteration. It
was proposed in 2005 [40].

8. CLONALG is an algorithm based on the principle of clonal selection for classification.
Each prototype improves the recognition of patterns in each iteration due to the
affinity function. This algorithm was proposed in 2002 [41].

It should be noted that these last three algorithms do not operate with missing or
mixed values, which is why an imputation was necessary. Table 2 shows the parame-
ters of the compared algorithms; we used the default parameters, as proposed in the
original implementations.

Table 2. Parameters of the algorithms.

Algorithm Parameters

NN K: 1; Dissimilarity: HEOM

C4.5
BinarySplits: False; collapseTree: True; confidenceFactor: 0.25;

minNumObj: 2; numFolds: 3; unpruned: False; useLaplace: False;
useMDLcorrection: True;

Naïve Bayes -
ALVOT Dissimilarity: HEOM, Support Set System: All attributes

NAC Dissimilarity: HEOM

AIRS1

seed = 1; affinityThresholdScalar = 0.2; mutationRate = 0.1; totalResources
= 150; stimulationValue = 0.9; clonalRate = 10; hypermutationRate = 2.0;

numInstancesAffinityThreshold = −1; arbInitialPoolSize = 1;
memInitialPoolSize = 1; knn = 3;

Immunos1 -

CLONALG
clonalFactor = 0.1; antibodyPoolSize = 30; selectionPoolSize = 20;

totalReplacement = 0; numGenerations = 10; seed = 1;
remainderPoolRatio = 0.1

3.3. Performance Measure

Due to data imbalances, we used the Balanced Accuracy measure, also known as macro
average accuracy [42]. Balanced Accuracy is based on calculating each class’s accuracy and
subsequently averaging that accuracy.

This measure can be easily calculated if we use the Confusion matrix, which presents
correctly classified patterns for each class. Figure 1 shows an example of a Confusion matrix
for three classes.
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The general formula for Balance Accuracy is presented in Equation (1), where Si is the
Recall of the class i, and k is the number of classes.

Balanced Accuracy =
(
∑k

i=1 Si

)
/k (1)
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4. Results

Our proposal is based on the recently introduced Artificial Immune System for Asso-
ciative Classification (AISAC) [15]. Our aim was to address AISAC’s main drawback of
not working with missing or mixed data (MMD), given that several medical datasets have
these characteristics. Based on the AISAC, we proposed modifications that yielded better
performance. Thus, we offered a solution to problems associated with the AISAC through
a novel algorithm named the Artificial Immune System for Associative Classification in
Mixed and Missing Data (AISAC-MMD).

The proposed algorithm incorporates several modifications of MMD, as shown in
Figure 2.
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Figure 2. Immune response in the AISAC-MMD model.

To explain the variants and modifications introduced in the proposed AISAC-MMD,
we use the pseudocode presented in Figure 2 to better explain the changes in each phase.

In Figure 3, we present the modification of the Adaptive Immune Response, which
uses missing and mixed data. With regard to data structures, we stored the training set
as a list of instances, and consider that each instance has a decision class. We required
a dissimilarity function to compare two instances (user-defined), a fitness function to
assess the quality of the created prototype set, and the associated performance measure
(used-defined).

We start by dividing the training set by Hold-Out. Then, we will create several clusters
(bags) to initially structure the data (Phase 1). In Phase 2, we merge the instances in the bags,
thereby obtaining the initial prototype set to represent the data. After that, the algorithm
undergoes an iterative process (Phases 3 and 4). Phase 3 “moves” the instances in such a
way that the performance measure is optimized. After that, to avoid overfitting, Phase 4
creates clones and obtains a new set of prototypes. At the end of the iterative process, the
algorithm stores the final prototype set in memory.

For the distance calculation, we set a parameter for the Dissimilarity function. In
our experiments, we use the HEOM dissimilarity. Similarly, we modified the Adjusting
function (Adapt), as presented in Figure 4, in which we changed the dissimilarity function.
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In cases of patterns with missing values, which are selected as the closest elements for
a specific pattern in any part of the algorithm, for the computation process of the prototype,
the missing values are substituted by the mean value for numeric attributes or by the mode
for categorical attributes. This allows us to update the prototypes without modifying the
original patterns.

This is the first bio-inspired classifier that works with mixed and missing information
without transforming the data. In other words, the AISAC-MMD maintains the missing
and mixed values without imputing the attributes and including artificial values. It will be
beneficial in the medical field since most datasets have these characteristics.

The following section discusses the comparison between the proposed AISAC-MMD
and existing classifiers.
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5. Discussion

We used the 10 datasets described in Section 3.1 to assess the performance of the
AISAC-MMD. The experiments were conducted on a desktop computer with a 64 bit
Windows 10 Enterprise operating system, an Intel i5-6500 processor at 3.20 GH, and 16 GB
of RAM. As this was a work computer, all experiments were carried out under low priority.

We compared the datasets with the nine classification algorithms for breast cancer-
related prediction. First, we compared the AISAC-MMD against classical classification
algorithms that work with mixed data and missing values. The results are presented in
Table 3. We used a Balanced Accuracy measure (Equation (1)) due to the high degree of
imbalance present in the datasets (Table 1). In this way, we managed to avoid bias toward
the majority classes. The AISAC-MMD obtained the best performance for seven out of ten
datasets, compared with other algorithms that work with missing and mixed values. The
best performance for each dataset is highlighted in bold.

Table 3. Balanced accuracy results for classifiers dealing with mixed and incomplete data.

Dataset ALVOT C4.5 NAC Naïve Bayes NN AISAC-MMD

BCDR 0.770 0.749 0.678 0.727 0.729 0.784
BCWO 0.941 0.951 0.975 0.960 0.953 0.969

BCSEER 0.834 1.000 0.908 0.972 0.984 1.000
BCWD 0.934 0.931 0.894 0.930 0.960 0.965
BCWP 0.563 0.727 0.699 0.667 0.707 0.767
LCDS 0.542 0.469 0.450 0.594 0.531 0.688

MMDS 0.789 0.823 0.806 0.778 0.752 0.797
BCDS 0.728 0.741 0.731 0.727 0.682 0.731
HSDS 0.748 0.703 0.733 0.748 0.660 0.765
TSDS 0.728 0.845 0.774 0.745 0.760 0.845

The second comparison was performed on algorithms based on artificial immune
systems (Table 4). Again, the best results for each dataset are indicated in bold.
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Table 4. Balanced accuracy results for classifiers based on artificial immune systems.

Dataset AIRS1 CLONALG Immunos1 AISAC-MMD

BCDR 0.732 0.577 0.561 0.784
BCWO 0.967 0.941 0.847 0.969

BCSEER 0.945 0.965 0.954 1.000
BCWD 0.938 0.889 0.905 0.965
BCWP 0.641 0.742 0.566 0.767
LCDS 0.531 0.469 0.563 0.688

MMDS 0.634 0.700 0.743 0.797
BCDS 0.675 0.671 0.734 0.731
HSDS 0.637 0.732 0.568 0.765
TSDS 0.774 0.745 0.760 0.845

Regarding algorithms based on the same principle, the AISAC-MMD obtained the best
performance for nine datasets. With these results, we proceeded to perform a statistical test.

We conducted the Wilcoxon test, which identifies the presence or absence of differences
in performance between various algorithms. This test is based on selecting an algorithm
and comparing it with another. In this case, we compared the new AISAC-MMD model
with other algorithms.

The statistical test (Wilcoxon test) to compare the algorithms in the same datasets is
presented in the next section. This test is widely used to identify differences in performances
comparing several algorithms [43].

The Wilcoxon signed-rank was used in this study. The comparison is presented in
Table 5, considering α = 0.05, which means values lower than that represent the rejection
of the null hypothesis H0. Hypothesis H0 states that there are no differences in the
performance of the compared algorithms. We set a confidence level of 95%. We first
performed the test to compare the AISAC-MMD against the classical algorithms that work
with missing and mixed data (Table 5).

Table 5. Results of the Wilcoxon test.

AISAC-MMD vs. R+ R− p-Value Decision

NN 55 0 0.004317 Reject H0
C4.5 49 6 0.024932 Reject H0

Naïve Bayes 55 0 0.004317 Reject H0
ALVOT 39 6 0.044011 Reject H0

NAC 55 0 0.004317 Reject H0
AIRS1 55 0 0.004317 Reject H0

Immunos1 54 1 0.005922 Reject H0
CLONALG 55 0 0.004317 Reject H0

Concerning the literature algorithms, the null hypothesis H0 was rejected in all algo-
rithms. Therefore, the AISAC-MMD outperformed these algorithms. These algorithms
are based on the same principle as the Artificial Immune System, and the AISAC-MMD
performed better, as demonstrated by the statistical test.

In summary, the AISAC-MMD outperformed all eight classification algorithms. Com-
paring the new modification with its previous version, the AISAC-MMD performed well,
in addition to working with mixed data and missing values.

6. Conclusions

In this study, we introduced the first bio-inspired classification algorithm that is able
to natively deal with missing and mixed data. The advantages of this algorithm are:

Its ability to handle missing and mixed data without any pre-processing; this is useful
since most datasets present missing values and mixed attributes.



Int. J. Environ. Res. Public Health 2023, 20, 3240 11 of 13

1. Its creation of a reduced prototype set; this decreases storage complexity, making
it suitable for hardware implementation in devices associated with other medical
devices, such as mammographs, etc.

2. Its ease of use and good performance, which allows doctors to make decisions when
there is high demand in the analysis of mammographic studies.

3. The main limitation of the proposal is that, as with most metaheuristics, it has several
parameters. This helps to improve the algorithm’s performance by varying the values
of the parameters.

In this study, no parameter adjustment was performed nor were different configura-
tions tested. This aspect can be examined in future research to improve the performance of
the algorithm. Finally, the use of other strategies can be examined to further explore this
research area.
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31. Zięba, M.; Tomczak, J.M.; Lubicz, M.; Świątek, J. Boosted SVM for extracting rules from imbalanced data in application to
prediction of the post-operative life expectancy in the lung cancer patients. Appl. Soft Comput. 2014, 14, 99–108. [CrossRef]

32. Alcalá-Fdez, J.; Sánchez, L.; Garcia, S.; del Jesus, M.J.; Ventura, S.; Garrell, J.M.; Otero, J.; Romero, C.; Bacardit, J.; Rivas, V.M.
KEEL: A software tool to assess evolutionary algorithms for data mining problems. Soft Comput. 2009, 13, 307–318. [CrossRef]

33. Cover, T.; Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [CrossRef]
34. Quinlan, J.R. C4.5: Programs for Machine Learning; Morgan Kaufmann Publishers: San Mateo, CA, USA, 1993.
35. Quinlan, J.R. Induction of decision trees. Mach. Learn. 1986, 1, 81–106. [CrossRef]
36. John, G.H.; Langley, P. Estimating Continuous Distributions in Bayesian Classifiers. In Proceedings of the Eleventh Conference on

Uncertainty in Artificial Intelligence, Quebec, QC, Canada, 18–19 August 1995.
37. Ruiz-Shulcloper, J. Pattern recognition with mixed and incomplete data. Pattern Recognit. Image Anal. 2008, 18, 563–576. [CrossRef]
38. Villuendas-Rey, Y.; Rey-Benguría, C.F.; Ferreira-Santiago, Á.; Camacho-Nieto, O.; Yáñez-Márquez, C. The Naïve Associative

Classifier (NAC): A novel, simple, transparent, and accurate classification model evaluated on financial data. Neurocomputing
2017, 265, 105–115. [CrossRef]

39. Watkins, A.B. AIRS: A Resource Limited Artificial Immune Classifier. Master’s Thesis, Mississippi State University, Mississippi,
MS, USA, 2001.

40. Brownlee, J. Immunos-81, the Misunderstood Artificial Immune System; Technical Report 1-02; Faculty of Information & Communica-
tion Technologies (ICT), Swinburne University of Technology (SUT): Melbourne, Australia, 2005.

41. De Castro, L.N.; Von Zuben, F.J. Learning and optimization using the clonal selection principle. IEEE Trans. Evol. Comput. 2002,
6, 239–251. [CrossRef]

http://doi.org/10.1007/s10732-015-9281-6
http://doi.org/10.3390/app10020515
http://doi.org/10.3390/cancers14215334
http://www.ncbi.nlm.nih.gov/pubmed/36358753
http://doi.org/10.3390/electronics11172767
http://doi.org/10.1016/j.cmpb.2022.106951
http://doi.org/10.1016/j.compbiomed.2021.105027
http://doi.org/10.1007/s11548-013-0838-2
http://doi.org/10.1073/pnas.87.23.9193
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://doi.org/10.1287/opre.43.4.570
http://doi.org/10.1118/1.2786864
http://www.ncbi.nlm.nih.gov/pubmed/18072480
http://doi.org/10.1016/j.asoc.2013.07.016
http://doi.org/10.1007/s00500-008-0323-y
http://doi.org/10.1109/TIT.1967.1053964
http://doi.org/10.1007/BF00116251
http://doi.org/10.1134/S1054661808040044
http://doi.org/10.1016/j.neucom.2017.03.085
http://doi.org/10.1109/TEVC.2002.1011539


Int. J. Environ. Res. Public Health 2023, 20, 3240 13 of 13

42. Ferri, C.; Hernández-Orallo, J.; Modroiu, R. An experimental comparison of performance measures for classification. Pattern
Recognit. Lett. 2009, 30, 27–38. [CrossRef]

43. Demšar, J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 2006, 7, 1–30.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.patrec.2008.08.010

	Introduction 
	Related Works 
	Materials and Methods 
	Datasets 
	Algorithms 
	Performance Measure 

	Results 
	Discussion 
	Conclusions 
	References

