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Abstract: The constant application of manure-based fertilizers in vegetable farms leads to antibiotic
residue accumulation in soils, which has become a major stressor affecting agroecosystem stability.
The present study investigated the adaptation profiles of rhizosphere microbial communities in dif-
ferent vegetable farms to multiple residual antibiotics. Multiple antibiotics, including trimethoprim,
sulfonamides, quinolones, tetracyclines, macrolides, lincomycins, and chloramphenicols, were de-
tected in the vegetable farms; the dominant antibiotic (trimethoprim) had a maximum concentration
of 36.7 ng/g. Quinolones and tetracyclines were the most prevalent antibiotics in the vegetable
farms. The five most abundant phyla in soil samples were Proteobacteria, Actinobacteria, Acidobacteria,
Chloroflexi and Firmicutes, while the five most abundant phyla in root samples were Proteobacteria,
Actinobacteria, Bacteroidetes, Firmicutes and Myxococcota. Macrolides were significantly correlated with
microbial community composition changes in soil samples, while sulfonamides were significantly cor-
related with microbial community composition changes in root samples. Soil properties (total carbon
and nitrogen contents and pH) influenced the shifts in microbial communities in rhizosphere soils
and roots. This study provides evidence that low residual antibiotic levels in vegetable farms can shift
microbial community structures, potentially affecting agroecosystem stability. However, the degree to
which the shift occurs could be regulated by environmental factors, such as soil nutrient conditions.

Keywords: vegetable farms; antibiotics; rhizosphere; microbial community; organic fertilizers;
canonical-correlation analyses

1. Introduction

Fertilization using livestock and poultry manure is considered a primary method
through which antibiotics enter the soil environment [1,2]. Continuous application of
manure or manure-based fertilizers leads to the frequent detection of antibiotics and their
resistant genes in farmland ecosystems, which has become an environmental health and
food chain safety concern [3,4]. The use of manure on farmland considerably increases the
levels of antibiotic residues and expression of antibiotic resistant genes, thereby posing a
public health risk through the migration and diffusion of antibiotics and their resistance
genes in the soil environment [5–8]. Antibiotics can affect microbial communities by
altering the dominant flora, community composition and structure, as well as microbial
diversity and richness; however, the magnitude of the effects is substantially moderated
by various environmental factors [9–12]. Soil physiochemical properties, such as organic
matter, nutrient availability, and pH, play a key role in shaping microbial communities,
and consequently, affect the ability of agroecosystems to adapt to antibiotic residues [13,14];
therefore, the shifts in microbial communities exposed to antibiotics are the result of the
interaction between antibiotics and environmental factors.
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Laboratory experiments have shown that the antibiotic activity of a microbial commu-
nity is influenced by the concentration, exposure time, and type of antibiotic [15]. Antibiotic
effects can be attributed to single species such as Aeromonashydrophila, Aeromonassalmonicida,
and Ediwardsiellatarda, as well as larger microbial communities such as fungi and bacte-
ria [15,16]. Observations have shown that the percentages of some classes, including Bacilli,
Bacteroidia and Gammaproteobacteria, have significantly grown in experiments involving
veterinary antibiotics exposure, which are known to contain bacteria with tolerance and
degradation capabilities [16–18]. Proteobacteria and Bacteroidetes, both of which are known to
contain antibiotic resistance genes, are often seen to be forming communities that are resis-
tant to antibiotics after a prolonged period of antibiotic usage [19,20]. However, agricultural
farms receive multiple antibiotics during fertilization, and their residual concentrations
in soils are much lower than those used in laboratory experiments. Low concentrations
of antibiotics originating from external sources may not necessarily promote microbial
diversity and functional stability in actual environments, especially over the long term for
microbes that have already developed antibiotic resistance [9,21]. Co-resistance profiles
between antibiotics and environmental stressors, such as heavy metals, may mask the ef-
fects of antibiotic residues on microbial communities because metals and metalloids existed
earlier and their concentrations may be above the permissible limits for soil microorganisms
causing significant anthropogenic emissions [13,22,23]. Environmental conditions, such as
temperature, pH, redox potential, metals, and nutrients, can regulate microbial abundance
and population structure, thereby promoting the effects of antibiotics on microbial commu-
nities. Therefore, microbial community (structure and function) responses to exposure to
residual antibiotics at levels that are detected in the actual environment are complex and
require further exploration.

The rhizosphere is a sensitive soil area that is susceptible to exogenous chemicals,
where roots interact with physical, chemical, and biological soil properties [24]. Several
studies have shown that manure application substantially increases the antibiotic resistance
profiles of microbial communities in the rhizosphere, root endophytes and phyllosphere
of crops, such as corn, wheat, rice, and vegetables [25–27]. However, microbiomes with
antibiotic resistance profiles are determined by a combination of indigenous microbes
and antibiotic residuals, and are regulated by a variety of environmental factors [28,29].
Therefore, evaluation of microbial community responses to exposure to residual antibiotics
must comprehensively consider the interrelationships among antibiotics, environmental
factors, and indigenous microbes. In this study, we characterized the microbial community
(diversity and dominant microbes) in the vegetable rhizosphere of a suburban vegetable
growing area in Jinjing City, Fujian Province, China, where manure-based fertilizer has been
used for several years. Our objective was to characterize in situ changes in the microbial
community in the rhizosphere microenvironment comprising soils and roots, which are
caused by exposure to multiple antibiotic compounds at actual residual concentrations. We
hypothesized that there would be a shift in the microbial community between rhizosphere
soil and roots due to the residual antibiotics (type and dosage) associated with various
farming practices.

2. Materials and Methods
2.1. Chemicals and Standards

All standard chemicals used for analyses were purchased from Dr. Ehrenstorfer GmbH
(Augsburg, Germany), except for the internal standards (erythromycin-13C-d3, lincomycin-
d3, sulfamethoxazole-d4, ciprofloxacin-d8, doxycycline-d3, and chloramphenicol-d5),
which were purchased from Sigma-Aldrich (St. Louis, MO, USA). High performance
liquid chromatography (HPLC)-grade solvents, including methanol, formic acid, and ace-
tonitrile, were provided by Merck & Co., Inc. (Kenilworth, NJ, USA). Guaranteed reagents,
including ammonium acetate, hydrochloric acid, sodium hydroxide, dipotassium hydrogen
phosphate, and disodium ethylenediaminetetraacetic acid (EDTA), were purchased from
Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). Ultrapure water was prepared
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using a water purification system. The internal standards were dissolved in acetonitrile
as stock solutions and stored in a freezer at −40 ◦C. Working standard solutions were
prepared immediately before measurements were taken by diluting the stock solutions
with a mixture of menthol and water (9:1, v/v). For solid-phase extraction (SPE), Oasis HLB
cartridges (6 mL/500 mg) were purchased from Water Oasis Co., Ltd. (Milford, MA, USA),
glass microfiber filters (Whatman GF/F) were obtained from Sigma-Aldrich (St. Louis, MO,
USA), and syringe-driven filters (PTFE) from Millipore Corp. (Bedford, MA, USA).

2.2. Site Selection and Rhizosphere Sample Collection

Rhizosphere samples were collected in December 2021 from vegetable farms in the
city of Jinjiang, Fujian Province, China. The suburban vegetable fields are vegetable basket
projects that have been in operation for nearly 10 years. Livestock or poultry manure is
often used as a basal fertilizer in each growing season before planting vegetables. Eleven
types of vegetable farms, including Brassica chinensis (V1), Spinacia oleracea (V2), Lactuca
sativa var. ramosa Hort. (V3), Brassica juncea (V4), Brassica narinosa L. (V5), Brassica campestris
(V6), Brassica pekinensis (V7), Lactuca sativa var. angustana (V8), Capsella bursa-pastoris (V9),
Coriandrum sativum (V10), and Apium graveolens (V11) were selected for rhizosphere samples
of soils and plants. Rhizosphere soils from ten sites, randomly distributed in each vegetable
farm, were gathered employing the method described by Gremion et al. [30] and then
blended completely to generate a composite sample. Briefly, the plants and soil from the
fields were taken away, and each plant was gently shaken to remove the major part of
the soil. The soil still attached to the roots was then referred to as rhizosphere soil. The
sample was divided from the roots by stirring it in 50 mL of sterile 0.9% NaCl solution for
5 min, followed by centrifugation at 8000× g for 10 min. Whole plants collected from the
10 sampled sites in each vegetable farm were immediately placed in fresh-keeping boxes
maintained at 4 ◦C and transported to the laboratory for processing.

The soil samples were stored in a freezer at −40 ◦C for a week prior to lyophilization
using a freeze-dryer (FD-1C-50; Boyikang Laboratory Instruments Co., Ltd., Beijing, China).
The dried samples were ground and sieved, with 0.15 mm being used for analyses of
antibiotics and heavy metals, and 2.00 mm for analyses of pH and soil nutrient conditions.

The vegetable roots were treated as follows: roots were rinsed under running water
for 3 min and excess water was removed with sterile absorbent papers. Root materials
were then sterilized by immersion in 30% hydrogen peroxide for 30 min, followed by
rinsing in sterile Milli-Q water (Millipore Corp., Bedford, MA, USA), and washed with 70%
ethanol for 1 min. The treated roots were then stored in a freezer at −40 ◦C for subsequent
DNA extraction.

2.3. DNA Extraction, PCR Amplification, and Illumina High-Throughput Sequencing

Genomic DNA of the rhizosphere soil and the disinfected leaves and roots were ex-
tracted using the E.Z.N.A. soil DNA extraction kit (Omega Bio-tek, Norcross, GA, USA),
according to the manufacturer’s protocols. The V4–V5 region of the bacterial 16S ribo-
somal RNA gene was amplified by polymerase chain reaction (PCR) (95 ◦C for 2 min,
followed by 25 cycles at 95 ◦C for 30 s, 55 ◦C for 30 s, and 72 ◦C for 30 s, and a fi-
nal extension at 72 ◦C for 5 min) using 515F (5′-barcode- GTGCCAGCMGCCGCGG)-3′

and 907R (5′-CCGTCAATTCMTTTRAGTTT-3′) primers for soil samples and 799F (5′-A-
ACMGGATTAGATACCCKG-3′) and 1193R (5′-ACGTCATCCCCACCTTCC-3′) primers for
root samples, where the barcode used was an eight-base sequence unique to each sample.
The PCR reactions were performed in triplicate in a 20 µL mixture containing 4 µL of
5 × FastPfu Buffer, 2 µL of 2.5 mmol/L dNTPs, 0.8 µL of each primer (5 µmol/L), 0.4 µL of
FastPfu Polymerase, and 10 ng of template DNA. The PCR products were detected on 2%
agarose gels and purified using an AxyPrep DNA gel extraction kit (Axygen Biosciences,
Union City, CA, USA), according to the manufacturer’s instructions.

Purified PCR products were quantified using a Qubit 3.0 fluorometer (Life Technolo-
gies, Carlsbad, CA, USA) and every 24 amplicons with different barcodes were mixed
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equally. The pooled DNA product was used to construct the Illumina paired-end library
following the Illumina genomic DNA library preparation procedure. The amplicon li-
brary was paired-end sequenced (2 × 250 bp) on an Illumina MiSeq platform (Illumina,
San Diego, CA, USA), according to standard protocols. The quality of the reads was
verified using QIIME (version 1.17), and chimeric reads were removed using UCHIME
(http://www.drive5.com/usearch/manual/uchime_algo.html, accessed on 7 September
2022). Finally, the sequences were clustered into operational taxonomic units (OTUs) based
on the 97% similarity cutoff using UPARSE (version 7.1, http://drive5.com/uparse/, ac-
cessed on 7 September 2022), matched with the 16S rRNA sequence database, and used for
further analyses.

2.4. Soil Antibiotics Extraction and Quantification

Soil samples were subjected to ultrasonic-assisted extraction (USE) coupled with SPE,
as described by Huang et al. (2013) [31]. Briefly, a mixture of 5 g soil sample in 25 mL
extraction solvent consisting of an (EDTA-SPB with acetonitrile: Mg(NO3)2-NH3·H2O, v/v,
3:1) was transferred into a 50-mL glass centrifuge tube and kept in the dark overnight.
Afterward, the mixture was extracted by USE for 30 min, centrifuged, and the supernatant
was collected. The soil pellets were resuspended in 25 mL of extraction solvent, subjected to
30 min of ultrasonic extraction, and the supernatant was again collected by centrifugation.
The extraction procedure was repeated one more time, and then three supernatants were
combined and filtered through a glass microfiber filter (0.7 µm). The filtrates were further
diluted to 500 mL using ultrapure water prior to hydrophilic–lipophilic balanced (HLB)-
SPE. After the soil extract diluents were passed through the pre-conditioned SPE column at
a flow rate of 3.0 mL/min, the extracted antibiotics were eluted with methanol and then
concentrated to 1.0 mL by nitrogen gas prior to high performance liquid chromatography-
tandem mass spectrometry.

Chromatographic separation was achieved using an HPLC system (Agilent 1290;
Agilent Technologies, Santa Clara, CA, USA), which was equipped with a Waters Acquity
UPLC HSS T3 column (2.1 mm × 100 mm, 1.8 µm) maintained at a constant temperature of
40 ◦C. Mobile phase A was 5 mM ammonium acetate and B was acetonitrile. The gradient
elution program for the separation of antibiotics was as follows: 0 min, 10% B; 5 min, 15% B;
7 min, 20% B; 11 min, 40% B; 15 min, 60% B; and held at 90% B for 5 min. The total flow rate
was 0.4 mL/min and the sample injection volume was 5 µL. A mass spectrometer (QTRAP
6500 PLUS System; AB SCIEX, Framingham, MA, USA) was used to detect and identify the
targeted antibiotics. The precursor and product ions of each compound were analyzed in
a multiple reaction monitoring system in the positive ion mode for target antibiotics (see
Table S1 in the Supplementary Material).

2.5. Determination of Soil Physiochemical Properties

The soil pH was measured in a soil/deionized water slurry at a ratio of 1:2.5 using a pH-
EC meter (Accumet Excel XL60; Fisher Scientific Inc., Hampton, NH, USA). The available
phosphorus in soil samples was extracted using hydrochloric acid in ammonium fluoride
and its content determined using molybdenum–antimony anti-colorimetry. Soil nitrate-
nitrogen (NO3

−-N) and ammonium-nitrogen (NH4
+-N) were extracted using 0.01 mol/L

anhydrous calcium chloride and quantified using a flow injection autoanalyzer. The
soil total carbon content (TC), total nitrogen content (TN), and total sulfur content were
measured using an elemental analyzer (Vario MAX CNS; Elementar Analysensysteme
GmbH, Berlin, Germany). Heavy metals such as lead (Pb), chromium (Cr), zinc (Zn),
nickel (Ni), copper (Cu), Cadmium (Cd) and arsenic (As) were digested by microwave-
assisted acid digestion using trace-pure nitric acid (2.5 mL), hydrofluoric acid (1.5 mL),
and a closed-vessel high-pressure microwave digester–Multiwave GO (Anton Paar, Graz,
Austria), according to Chen et al. [32]. Finally, the metal concentrations were determined by
inductively coupled plasma optical emission spectrometry (Optima 7000DV; PerkinElmer,
Waltham, MA, USA). Physiochemical properties of sampled soils are presented in Table 1.

http://www.drive5.com/usearch/manual/uchime_algo.html
http://drive5.com/uparse/
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Table 1. Basic physical and chemical properties of rhizosphere soil.

pH EC AP TC TN NH4
+ NO3

−

6.9 ± 0.4 553.4 ± 461.2 79.5 ± 39.6 16,990 ± 6210 3360 ± 1650 4.4 ± 0.6 80.6 ± 82.3

As Zn Cr Cu Pb Cd Ni
16.17 ± 4.0 330.8 ± 190.9 41.22 ± 13.07 20.3 ± 16.0 56.6 ± 21.5 0.4 ± 0.2 9.1 ± 3.5

EC is electrical conductivity, µS/cm; AP is available phosphorus; TC is total carbon content; TN is total nitrogen
content; except EC/pH, all units in the table are mg/kg.

2.6. Statistical Analysis

Canonical correlation analysis (CCA) and redundancy analysis (RDA) were performed
to explore the relationships between basic soil properties and residual antibiotics or mi-
crobial communities. Statistical analyses were conducted using SAS for Windows (ver-
sion 9.2; SAS Institute Inc., Cary, NC, USA). The RDA was conducted using CANOCO
(version 5.0; Microcomputer Power, Ithaca, NY, USA), and principal coordinate analy-
sis (PCoA), heatmap, and correlation analyses were performed using R (version 3.4.1,
https://cran.r-project.org/bin/windows/base/, accessed on 2 March 2023).

3. Results
3.1. Occurrence of Antibiotics in Rhizosphere Soil

Quinolone and tetracycline antibiotics were the dominant contaminants in the samples
analyzed, with high concentrations and detection frequencies being observed (Figure 1).
Six of the seven quinolone antibiotics identified were present in the vegetable farms, with
ofloxacin having the highest concentration of 27.1 ng/g in B. pekinensis farm; however,
difloxacin was not detected in the samples. Chlortetracycline and doxycycline were present
in all vegetable farms, with doxycycline having the highest concentration of 5.3 ng/g in the
rhizosphere soil of B. chinensis. Five of the eight sulfonamide antibiotics were detected in all
vegetable farms, with sulfacetamide having the highest concentration of 14.4 ng/g in the
rhizosphere soil of B. juncea, whereas sulfamonomethoxine, sulfadiazine, and sulfathiazole
were not detected in the samples. Roxithromycin and tylosin were detected in all samples,
with roxithromycin having the highest concentration of 4.4 ng/g in the rhizosphere soil
of S. oleracea. Based on individual compounds, trimethoprim was the most dominant
antibiotic with the highest concentration (36.7 ng/g), followed by ofloxacin (27.1 ng/g),
enrofloxacin (21.9 ng/g), and sulfacetamide (14.4 ng/g). The rhizosphere soil of B. chinensis
had the highest concentration of the 26 targeted antibiotics (86.8 ng/g), followed by that of
S. oleracea (54.7 ng/g), B. pekinensis (47.0 ng/g), and then B. juncea (28.1 ng/g).

3.2. Bacterial Community Structure in the Rhizosphere

The variability in microbial communities in the rhizospheres of different vegetables
was assessed by high-throughput sequencing of 16S rDNA amplicons. A total of 3590 and
7532 unique OTUs were identified in root tissue and soil samples, respectively. The
complexity of the bacterial community in both microenvironments was evaluated using
the alpha components of species richness (Chao1) and diversity (Shannon index). The
Shannon index revealed that the rhizosphere soil samples had higher bacterial richness than
rhizosphere root samples, although the difference was much smaller than that of Chao1
(Figure 2). The rhizospheres of B. chinensis and L. sativa var. angustana tended to have greater
bacterial richness than those of the other vegetable farms. Proteobacteria, Actinobacteria,
Acidobacteria, Chloroflexi and Firmicutes were the five most abundant phyla in soil samples,
accounting for approximately 80% of the total OTUs (Figure 3). Proteobacteria, Actinobacteria,
Bacteroidetes, Firmicutes and Myxococcota were the five most abundant phyla in the root
samples, accounting for approximately 98% of the total OTUs (Figure 3). Proteobacteria were
the most dominant bacteria in all samples, accounting for 36.6 ± 8.0% and 78.1 ± 10.9% of
the bacterial community in soil and root samples, respectively.

https://cran.r-project.org/bin/windows/base/
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Figure 2. Microbial diversity in rhizosphere samples from different vegetable farms. (a) Chao 1
index; (b) Shannon index. Brassica chinensis (V1), Spinacia oleracea (V2), Lactuca sativa var. ramosa Hort.
(V3), Brassica juncea (V4), Brassica narinosa L. (V5), Brassica campestris (V6), Brassica pekinensis (V7),
Lactuca sativa var. angustana (V8), Capsella bursa-pastoris (V9), Coriandrum sativum (V10), and Apium
graveolens (V11).

Based on individual phyla in the rhizosphere soil, Proteobacteria was the most abundant
phyla in soil samples from the S. oleracea farm, accounting for 53.7% of the total relative
abundance, followed by that in soil samples from C. bursa-pastoris (45.6%) and L. sativa var.
angustana (41.2%) farms. The abundance of Actinobacteria was the highest in soil samples
from the C. sativum farm (24.6% of the total relative abundance), followed by that in soil
samples from the B. juncea farm (21.6%), and then the A. graveolens farm (20.9%). The
abundance of Acidobacteria was the highest in soil samples from the L. sativa var. ramosa
Hort. farm (24.9% of the total relative abundance), followed by that in soil samples from
the A. graveolens farm (16.4%), and then the B. narinosa (14.2%) farm. The abundance of
Chloroflexi was the highest in soil samples from the L. sativa var. ramosa Hort. farm (14.0%
of the total relative abundance), followed by that in soil samples from the C. bursa-pastoris
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(13.9%) and B. juncea (12.4%) farms. The abundance of Firmicutes was the highest in soil
samples from the B. juncea farm (12.9% of the total relative abundance), followed by that
in soil samples from the B. campestris (7.2%) farm, and then the L. sativa var. angustana
(6.3%) farm.
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Figure 3. Relative abundances of bacterial phyla in rhizosphere samples from different vegetable
farms. (a) soil samples; (b) root samples. Brassica chinensis (V1), Spinacia oleracea (V2), Lactuca sativa
var. ramosa Hort. (V3), Brassica juncea (V4), Brassica narinosa L. (V5), Brassica campestris (V6), Brassica
pekinensis (V7), Lactuca sativa var. angustana (V8), Capsella bursa-pastoris (V9), Coriandrum sativum
(V10), and Apium graveolens (V11).

With regard to individual phyla in rhizosphere roots, Proteobacteria was the most
abundant in the rhizosphere roots of L. sativa var. angustana (89.6% of the total relative
abundance), followed by that in B. chinensis (86.5%) and B. pekinensis (85.9%) roots. The
abundance of Actinobacteria was the highest in S. oleracea roots (38.9% of the total relative
abundance), followed by that in C. bursa-pastoris (23.8%) roots, and then A. graveolens roots
(21.6%). The abundance of Bacteroidetes was the highest in B. juncea roots (6.3% of the total
relative abundance), followed by that in C. bursa-pastoris roots (5.5%), and then S. oleracea
roots (4.5%). The abundance of Firmicutes was the highest in B. campestris roots (2.1% of
the total relative abundance), followed by that in B. chinensis roots (1.9%), and then C.
bursa-pastoris roots (1.3%). The abundance of Myxococcota was the highest in A. graveolens
roots (2.4% of the total relative abundance), followed by that in C. bursa-pastoris (1.2%) and
B. juncea (0.6%) roots.

3.3. Responses of Microbial Communities in the Rhizosphere to Antibiotics

According to the PCoA, soil samples from different vegetable farms exhibited dis-
tinct microbial community structures when compared to the root samples (Figure 4). The
top 10 dominant phyla in soil samples, including Proteobacteria, Actinobacteria, Acidobacte-
ria, Chloroflexi, Firmicutes, Bacteroidetes, Gemmatimonadota, Cyanobacteria, Myxococcota and
Patescibacteria, explained 51.7% of the total variation in the first two principal compo-
nents (Figure 4). The top 10 dominant phyla in root samples (Proteobacteria, Actinobacteria,
Bacteroidetes, Firmicutes, Myxococcota, Bdellovibrionota, Acidobacteria, Chloroflexi, Gemmatimon-
adota and Verrucomicrobiota) explained 58.6% of the total variation in the first two principal
components (Figure 4). Macrolides in soil samples made the most significant contribution
to the results of the study, accounting for 45.5% of the total data variance (p < 0.05) and had
a positive correlation (R2 = 0.655–0.722, p < 0.05) with Proteobacteria, Bacteroidetes and Patesi-
cibateria. However, macrolides had a negative correlation with Chloroflexi (R2 = −0.659,
p < 0.05). Sulfonamides in root samples made the most significant contribution to the
results of the study, accounting for 43.0% of the total data variance (p < 0.05), and had a
positive correlation (R2 = 0.957, p < 0.01) with Firmicutes, but a negative correlation with
Actinobacteria (R2 = −0.659, p < 0.05).
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The CCA results showed that residual antibiotics explained 36.7% of the variation in
microbial community structure, while microbial community structure explained 2.9% of the
variation in residual antibiotics (Table S2 in the Supplementary Material). Gemmatimonadota
was the most sensitive phylum to antibiotic residuals, with a correlation coefficient of
8.9%, followed by Actinobacteria, Bacteroidetes, Patescibacteria, Firmicutes, Cyanobacteria, Myx-
ococcota, and Acidobacteria, which had correlation coefficients greater than 1.0% (Table S2).
Macrolide antibiotics were a key factor driving the shifts in the microbial community
structure in the soil and had a correlation coefficient of 79.3%. Sulfonamides (42.5%), tetra-
cyclines (40.3%), and trimethoprim (19.8%) were also important factors, while quinolones
did not significantly influence microbial community shifts and their correlation coefficients
were less than 2.0% (Table S2). The canonical correlation between root microbial com-
munity structure and residual antibiotics was relatively low; root microbial community
structure explained 17.0% of the variation in residual antibiotics and residual antibiotics
explained 5.8% of the variation in root microbial community structure (Table S3 in the
Supplementary Material). Acidobacteria were the most sensitive phylum to antibiotic resid-
uals, with a correlation coefficient of 38.0%, followed by Gemmatimonadota, Myxococcota,
Verrucomicrobiota, Chloroflexi, and Bdellovibrionota, which had correlation coefficients greater
than 10.0% (Table S3). Macrolide antibiotics were the major factor driving the shifts in
the microbial community structure in root tissues, with a correlation coefficient of 14.3%,
which was followed by quinolones (11.6%), and then trimethoprim (2.8%). Tetracyclines
and sulfonamides did not significantly influence microbial community shifts, and their
correlation coefficients were less than 1.0%.

Another key factor that contributed to the variations in microbial communities be-
tween rhizosphere soil and roots in the studied vegetable farms was the physicochemical
properties of the soil (Figure 5). Soil properties, especially nutrients (e.g., TC and TN) were
strongly correlated with the proportions of microbial groups in the soil samples. Out of the
various physicochemical parameters combined with antibiotic groups, TC was the most sig-
nificant in determining microbial community structure in soils, with a correlation coefficient
of 13.4% (p = 0.078). Subsequently, TN (12.8%, p = 0.08), NH4

+-N (7.0%, p = 0.208), pH (5.9%,
p = 0.208) and NO3

−-N (3.4%, p = 0.50) were also found to be important (Figure 5a). In root
samples, pH values were the most significant soil physicochemical parameters influencing
microbial communities, with a correlation coefficient of 16.3% (p = 0.102), followed by PI
(15.4%, p = 0.132), NO3

−-N (8.0%, p = 0.186), TN (5.1%, p = 0.204), TC (3.6%, p = 0.32) and
AP (3.0%, p = 0.316) (Figure 5b). However, other environmental factors, such as pH and
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heavy metals, were more strongly correlated with the proportions of microbial groups in
the root samples (Figure 5).
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4. Discussion

Numerous antibiotics produced globally are used to prevent diseases or promote
growth in livestock and poultry, resulting in substantial amounts of residues in manure
and excrement [1,2]. The application of animal and poultry manure to agricultural soils has
resulted in the continual entry of antibiotics and antibiotic resistance genes into farmland
ecosystems, which has become one of the hotspots of ecological risks posed to agricul-
tural environments [34,35]. The levels of antibiotics, such as tetracyclines, quinolones,
sulfonamides, and macrolides in agricultural soils near feedlots, generally range from
10 to 1000 µg/kg, with considerably high concentrations being observed in soils treated
with manure-based fertilizers [36–39]. In the present study, quinolone and tetracycline
antibiotics were the dominant contaminants in the soil and root samples analyzed, with
high concentrations and detection frequencies being observed. A similar trend of antibi-
otic residue occurrence was observed in vegetable farms fertilized with manure in the
north [34,40], south [41], west [42], and east China [43,44]. The level of antibiotic contami-
nation in soil samples analyzed in this study is equivalent to the median concentrations
of residual antibiotics detected in soils fertilized with antibiotic-contaminated manures
based on studies conducted in various countries, such as in China, Brazil, the Netherlands,
the USA, and Turkey [45]. The concentrations of tetracycline antibiotics (ND-5.3 ng/g)
were lower than those reported for organic vegetable farms in China [40,46], Malaysia [46],
and Spain [47], and the main compounds detected were chlortetracycline and doxycycline.
The concentrations of quinolone antibiotics (ND-27.1 ng/g) were similar to those reported
in China [34,45], Brazil [48], and Kenya [49], and the main compounds detected were
ofloxacin and enrofloxacin. The concentrations of the remaining sulfonamides, except for
sulfamonomethoxine, sulfadiazine, and sulfathiazole, were not detected in either root or
soil samples; sulfacetamide had a maximum concentration of 14.4 ng/g. Trimethoprim had
a maximum concentration of 36.7 ng/g, which is comparable to the median concentration
of 27.93 ng/g reported in meta-analyzed results of studies conducted globally [45]. The
levels of macrolides were equivalent to those reported for soils from China, Malaysia,
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and Brazil [46,48,50]. The concentrations of other antibiotics, such as lincomycin and
thiamphenicol, were lower than those in the manure-amended soils [45]. The antibiotic
residual patterns of the vegetable soils were consistent with the manure-fertilizers applied
in this studied area, implying that the release of antibiotics from manure used as fertilizers
is primarily associated with the widespread distribution and persistence of antibiotics
in agricultural soils [51]. Consequently, the concentrations of antibiotics vary consider-
ably in soils in different areas, which could be associated with the methods of tillage and
fertilization [38,52].

According to the results of this study, the consistent bacterial phyla in the rhizosphere
soils were dominated by Proteobacteria, Acidobacteria, Actinobacteria, Chloroflexi and Firmi-
cutes, which were also frequently observed in other vegetable soils [53,54]. The variations
in the dominant bacteria (i.e., relative abundance) in the sampled vegetable fields suggest
that Proteobacteria, Acidobacteria, Actinobacteria, Chloroflexi and Firmicutes are likely to be the
functionally active soil microbiomes in these planting systems. It has been demonstrated
in prior studies that the same type of bacteria can be observed in different plant species,
suggesting that the functional capabilities of these microbiomes can significantly affect
the structural and functional diversity of the microbial community [53,54]. Based on the
remaining microbial sequences in the rhizosphere microenvironment, the diversity of mi-
crobial communities in the roots was lower than that in the soil. Observations similar to
this have been made in other plants, including Populus, Arabidopsis and Lactuca [55,56],
because only a limited number of microbial species can overcome the plant immune sys-
tem and establish themselves in the plant [57,58]. The two most abundant phyla in the
vegetable roots were Proteobacteria and Actinobacteria, which can promote plant growth and
produce secondary metabolites with antimicrobial properties [56]. The dominant bacterial
phyla in vegetable roots were observed to be significantly grown in experiments involving
veterinary antibiotics exposure, which are known to contain bacteria with tolerance and
degradation capabilities [16–18]. In addition, Bacteroidetes were abundant in the vegetable
roots, which facilitates the degradation of macromolecules, such as starch, cellulose, or
proteins [55,56]. Bacteroidetes are known to possess antibiotic resistance genes, and are
often observed to be forming communities that are resistant to antibiotics after a prolonged
period of antibiotic treatment [19,20].

Numerous studies have shown that antibiotics can modify the dominant microbial
community in terms of composition, diversity, and richness after being introduced into
the soil environment [59,60]. The significant correlations observed between macrolide
antibiotics and the dominant phyla in rhizosphere soils, as well as sulfonamide antibiotics in
rhizosphere roots demonstrated the considerable impact of antibiotic residues on microbial
communities in the present study. The results showed that macrolide and sulfonamide
antibiotics significantly influenced the microbial community structure, although their
residual concentrations in the vegetable soils were substantially low, which is consistent
with the results of previous studies conducted on aquaculture sediment and farmland soils
in natural settings [9,10,61]. Macrolide antibiotics, which have broad-spectrum activity
against many Gram-positive bacteria, can significantly decrease microbial diversity [62].
The strong correlation observed between the presence of macrolide antibiotics and certain
bacterial phyla (e.g., Proteobacteria, Acidobacteria, Actinobacteria, Firmicutes, and Chloroflexi)
in this study may be due to potential macrolide-resistant bacteria using macrolides as
carbon and energy sources. Sulfonamides are known to inhibit bacterial growth by altering
the microbial production of folic acid, which can in turn, alter the microbial community
structure and diversity at concentrations currently present in the environment [63]. No
significant correlation was observed between the dominant occurrence of quinolone and
tetracycline antibiotics and microbial community composition in this study. The adsorption
of these antibiotic groups onto the mineral phase of soil is a key factor influencing their
mobility, stabilization, bioavailability, and bioaccessibility to microorganisms [64,65]. A
bacterial community may develop antibiotic tolerance, which could also account for the
lack of observed effects [66,67].



Int. J. Environ. Res. Public Health 2023, 20, 3137 11 of 15

The interaction between antibiotics and soil matrices, such as organic matter, may
reduce biological activities of antibacterial molecules before they reach bacteria [68,69]. The
observed lack of effect of antibiotic residues, such as quinolone and tetracycline antibiotics
on microbial community composition in this study may be due to the physicochemical
properties of the antibiotics, such as sequestration and low bioavailability [63]. The po-
tent antimicrobial effects of antibiotics in soils can differentially inhibit the growth of soil
microorganisms, and consequently, influence the soil microbial community composition,
which may result from the inhibition of microbial growth by different soil properties to a
greater or lesser extent [70,71]. Soil properties are key factors shaping the composition of
microbial communities [9,10,61]. According to previous findings, soil properties tend to
shape microbial diversity in environments where antibiotic residues are present. In particu-
lar, TC and pH have a negative correlation with Sulfurovum, Sulfurimonas, and Desulfobulbus,
but a positive correlation with Methylophaga in aquaculture farms with long-term antibiotic
application [15]. The interactions between plant-associated microbial communities can
be affected by several environmental factors, such as nutrient availability, bulk density,
and soil pore size [56,58]. The structure of microbial communities in soils surrounding
the roots is shaped by the soil characteristics, and the composition and abundance of the
root exudates [56,58]. Therefore, soil physicochemical properties play a key role in shaping
microbial communities in the rhizosphere (Figure 6). Because microbes in the roots are
largely recruited from the rhizosphere, it is expected that factors affecting the microbial
community in the rhizosphere will also affect the microbial community in the roots, and the
increased level of antibiotic residues in agricultural soils due to the use of manure-based
fertilizers poses a health risk through the migration and diffusion of antibiotics in agri-
cultural ecosystems [5–8]. However, the mechanisms underlying the effect of antibiotic
residues on microbial communities surrounding and in the roots of food crops remain
unclear. Therefore, information regarding the effects of antibiotic residues on microbial
communities is essential for their effective management; however, antibiotic residues pose
a major challenge due to the interactions between antibiotics and environmental factors.
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5. Conclusions

Our study revealed that antibiotic residues considerably shifted the microbial com-
munity composition in rhizosphere soils and roots in various vegetable farms. The most
prevalent antibiotics were quinolones and tetracyclines, with individual compounds having
a maximum concentration of 27.1 ng/g. Macrolides and sulfonamides were less prevalent
and had low detection frequencies. The five most abundant phyla in soil samples were
Proteobacteria, Actinobacteria, Acidobacteria, Chloroflexi, and Firmicutes, while the five most
abundant phyla in root samples were Proteobacteria, Actinobacteria, Bacteroidetes, Firmicutes,
and Myxococcota. Macrolides and sulfonamides significantly contributed to the variations
in microbial community composition, in addition to soil properties, such as TC, TN, and
pH. However, TC and TN were more closely associated with the proportions of microbial
communities in soil samples, while other environmental factors, such as pH and heavy
metal levels, were more closely associated with the microbial communities in root samples.
Therefore, this study provides essential information regarding the effects of antibiotic
residues on microbial communities and their interactions with environmental factors.

Supplementary Materials: The following Supplementary Materials can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijerph20043137/s1, Table S1. Multiple reaction monitoring pa-
rameters of the antibiotics analyzed; Table S2. Canonical correlation-redundancy analysis between
microbial community structure (dominant phyla) and residual antibiotics in rhizosphere soil samples
from different vegetable farms; Table S3. Canonical correlation-redundancy analysis between micro-
bial community structure (dominant phyla) in root tissues and residual antibiotics in rhizosphere soil
samples from different vegetable farms.
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