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Abstract: The economy’s sustainable development has become a national strategic deployment
in China. Research on the difference between the economic sustainable development efficiency
(ESDE) and the spatial network will assist the government with the deployment of sustainable
development strategies and the achievement of the “peak carbon dioxide emissions”. This paper
designs the input–output indicator system of sustainable economic development efficiency and builds
an unexpected output super-EBM-Malmquist model to measure the ESDE of 30 provinces in China
from 2008–2020. According to the ranking of ESDE, the 30 provinces in China are classified into four
groups by applying the quartile method, and the difference in the ESDE in different regions and
the temporal variation of different provinces are studied by using the Dagum Gini coefficient and
Gaussian Kernel density. Moreover, the relationship between ESDE in different provinces is studied
based on the revised gravity model and social network analysis method. The connections between
provinces with related relations constitute the ESDE network. Results show that (1) the average
ESDE in China shows an upward trend, the eastern region is in a leading position, the central and
western regions are trying to catch up with the eastern region, and the development of the northeast
region is lagging behind. (2) The level of ESDE in different provinces is clearly arranged from high to
low, illuminating a distinct pattern. Moreover, provinces with high levels of development are much
higher than provinces with low levels of development, presenting a phenomenon of polarization.
(3) The regional ESDE development imbalance is prominent, and the ESDE in the eastern region
is closely related, while the connection in the western region is lower. (4) Beijing–Tianjin Urban
Agglomeration and the Yangtze River Delta have significant spatial spillover effects in the association
network, while the northeast, northwest, southwest and central regions have significant spatial
benefit relationships. These findings provide important enlightenment for promoting the sustainable
and balanced development of China’s economy.

Keywords: sustainable economic development efficiency; EBM-Malmquist model; social network analysis

1. Introduction

With the growing energy consumption, energy demand and energy use to promote
economic growth at the expense of environmental sustainability [1,2], sustainable economic
development is facing a huge threat. As the world’s second largest economy, China’s energy
consumption structure has long been dominated by fossil energy, its economic model is
characterized by significantly high consumption and high emissions, and its rapid economic
growth is accompanied by environmental pollution and ecological degradation [3].

China’s economic development has been maintaining the characteristics of crude
growth with high input and high consumption and low output, and the energy structure
dominated by coal and high overall carbon emissions is the reality of China’s national
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situation. According to BP statistics, coal will account for 56% of total energy consumption
in 2021, and China has become the world’s largest emitter of carbon dioxide. Obviously,
this energy structure is unsustainable and will cause irreversible damage to the ecological
environment [4]. The high consumption of primary energy, especially the large-scale ex-
ploitation of fossil energy, has led to an excessive amount of carbon dioxide emissions and
increasingly serious environmental impacts, which is contrary to the principles of sustain-
able development [5–7]. Sustainable economic development is becoming a major concern
for governments [8], especially after a significant increase in the exploitation of natural
resources that has led to serious environmental problems [9]. In the 1970s, the economist
Meadows argued in The Limits to Growth that technological progress plays a crucial role in
the harmonization of economic development with resources and the environment. In the
context of tightening resources and environmental constraints, “carbon peaking”, “carbon
neutrality” and “emission reduction”, rapid economic development cannot be achieved at
the expense of resources and the environment. Therefore, the sustainable development of
China’s economy necessarily needs to be discussed within the framework of environmental
protection [10], and the study of economic sustainability under resource and environmental
constraints has gradually become the focus of academic attention.

The Chinese government gives great importance to sustainable economic develop-
ment. How to reconcile economic development with the environment and how to enhance
the level of sustainable economic development in the future are key issues for sustainable
economic development [11,12]. In 2015, China proposed supply-side structural reform,
which aims to restructure the economy, achieve an optimal allocation of factors, improve the
quality of economic growth and promote sustainable economic development. In the report
of the 19th National Congress, General Secretary Xi Jinping emphasized the development
concept of “green water and golden mountains are golden mountains and silver moun-
tains”, highlighting the importance that the government attaches to the organic integration
of economic development and ecological protection. In the 14th Five-Year Plan of China, the
importance of sustainable economic development was re-emphasized. In the framework
of environmental protection and energy constraints, it is therefore of great theoretical and
practical importance to discuss the sustainable development of China’s economy.

This study measures the ESDE in China with the aim of identifying gaps in the ESDE
across different regions and provinces while also examining the spatial network structure
of sustainable economic development to help the government implement environmental
protection, conservation and economic sustainable development strategies, and to raise
China’s level of sustainable development. This study designs a research framework model
of “efficiency measurement—differentiation analysis—network structure”. Gini coefficient
and Kernel density estimation are two tools for the difference measurement of an object
among different individuals, and they also provide a good visualization. In particular, the
Gini coefficient method is able to calculate the development gap among the eastern, western
and central regions of China, and can decompose the existing gap to distinguish that the
difference in the sustainable development level of the national economy mainly comes
from the gap among the three major regions or the gap within the three major regions.
Moreover, Kernel density estimation is also a method to analyze differences and gaps in
economic sustainability and result visualization. The social network analysis method is
a method that can visualize the flow relationship of sustainable economic development
among different provinces. It clarifies the closeness of the level of sustainable economic
development in different regions, thus providing information for governments to take
further actions that are tailored to local conditions and better promote China’s sustainable
economic development. Furthermore, in addition to estimating the ESDE, this study
applies ESDE outcomes to further measure the regional development gap, the regional
development evolution pattern, and the spatial network structure.
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2. Literature Review
2.1. Defining Sustainable Economic Development

Sustainable development is one of the most common words used today and repre-
sents an expression to stop environmental degradation, which can lead to ongoing climate
change and changes in citizens’ lifestyles and habits [13]. The definition, connotation and
characteristics of sustainable development have been defined in the economics literature
for a long time, and although there is no unified and clear theoretical framework, it has had
a significant impact [14]. Stivers [15] defines the sustainability of economic growth as “an
economy in equilibrium with its ecological support system”. The concept of “sustainable
development” was first introduced in 1987 in the report of the United Nations World
Commission on Environment and Development on the Future of Humanity: Our Common
Future. Pointing to the need to change the development paradigm for the benefit of present
and future generations, the report defines sustainable development as development that
meets the needs of the present without compromising the ability of future generations to
meet their needs [16], and this definition is widely used by international organizations
and relevant scholars. Pezzey [17] argues that the core meaning of sustainable develop-
ment is a development path that keeps the welfare of the population from declining, and
Dailami, et al. [18] believes that sustainable economic growth can be an important element
of the pace of economic development; Barro [19] defines sustainable economic growth as
encompassing characteristics such as gross domestic product, the political system, income
distribution, health status and religious beliefs. Brock and Taylor [20] proposes that sus-
tainable economic growth is primarily about economic growth and environmental quality
improvement. In 2005, the World Summit for Social Development adopted the ‘3 E’s’ of
economic, equity and environmental as the core elements of sustainable development.
The UN Sustainable Development Goals (SDGs) aim to address the social, economic and
environmental dimensions of development in an integrated manner between 2015 and 2030,
and to shift towards a sustainable development path. Many other scholars have defined and
discussed various aspects of sustainable development, including its definition, connotation
and applicability, from the perspectives of ecology and environmental economics [21,22].

2.2. Factors Influencing Sustainable Economic Development

Scholars have studied the different influencing factors of economic sustainability
because of its rich connotations. Wang and Huang [23] found through bibliometric research
methods that research on sustainable development in the context of COVID-19 is broad
in scope and covers a wide range of disciplines, but it is lacking in depth overall. While
developed countries are working on the sustainability of education, developing countries
are more concerned with economic sustainability.

Khan, et al. [24] used the Environmental Kuznets Curve (EKC) to explore the non-linear
link between energy intensity, financial development and environmental sustainability,
showing a non-linear inverted ‘U’ shaped relationship between financial development and
environmental sustainability. Bai, et al.’s [25] study of China’s economic sustainability goals
is based on a panel threshold model. The study finds that investing in renewable energy
reduces greenhouse gas emissions, thereby maintaining sustainable economic growth and
contributing to the achievement of the SDGs. Dabbous and Tarhini [26] applied a fixed
effects panel model to find that a sharing economy contributes to sustainable economic
development. Hosan, et al. [27] used a panel model to analyze the links between the
demographic dividend, digital innovation, energy intensity and sustainable economic
growth in 30 emerging economies from 1995 to 2018, finding that the demographic dividend
and digitalization contributed to sustainable economic growth, while energy intensity was
negatively associated with sustainable economic growth.

2.3. Economic Sustainable Development Efficiency (ESDE)

Economic sustainability is a multidisciplinary subject of study in all the countries
of the world, and it is critical to any country’s economic development and environmen-
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tal protection to assess a country’s sustainable economic development performance and
outcomes [28]. In terms of the selection of models for measuring efficiency, a number of
scholars have chosen traditional radial DEA models or non-radial SBM models. Studies
mostly quantify GDP as the desired output and environmental pollutants as the non-
desired output, and establish a system of input–output indicators. DEA (Data Envelopment
Analysis) models that can handle multiple inputs and outputs are the common tools used.
Qu, et al. [29], constructed an improved super-efficient radial network DEA model to assess
China’s regional sustainable development performance from 2009 to 2017; the study shows
that there are significant differences in the level of sustainable development in different
regions, with the eastern region having the highest level of sustainable development and
the central and western regions being in a steady catch-up stage of development. Many
scholars consider undesired output as an output variable and construct a non-radial SBM
model (Slacks-Based Measure), which can handle efficiency measurements with undesired
output variables. In recent years, the SBM model has been widely used in the evaluation of
green economic efficiency [30,31]. Wen, et al. [32] used a three-stage SBM model to measure
the sustainable development efficiency of counties in the Yellow River Basin from 2005 to
2015, and they classified the efficiency of different regions into low, medium-low, medium-
high and high-efficiency through quadratic plots, revealing the spatial clustering pattern
of sustainable development. Swain and Ranganathan (2021) [33] employed a network
perspective to analyze IAEG-SDG data on SDG indicators from the UN Sustainable Devel-
opment dataset for the period 2000–2017, finding that the same criteria cannot be set for
sustainable development goals in different regions and that different priority development
goals should be set for different SDG groups. Wang and Jia [34] applied the DEA-SBM
super efficiency model to characterize sustainable economic growth, demonstrating that
improving the energy consumption mix and controlling CO2 emissions both contribute to
sustainable economic growth.

However, neither the traditional radial DEA model nor the non-radial SBM model
is capable of dealing with the situation where the input and output variables have both
radial and non-radial characteristics, and the information on the ratio between the target
and actual values of inputs or outputs is easily lost, resulting in an overestimation or
underestimation of the efficiency values [35]. EBM has been proposed as a hybrid distance
model to overcome the shortcomings of the DEA and SBM models and to improve the
accuracy of the evaluation results [36]. However, there are not many cases where the EBM
model has been applied to evaluate the ESDE.

2.4. Spatial Variation and Social Network Analysis

In research fields as efficiency evaluation, scholars are concerned not only with overall
efficiency, but also with the analysis of the differences in efficiency and the spatial structure
of networks [37,38]. The analysis of spatial differences is one of the key issues in geographic
studies, allowing for a precise portrayal of the spatial differences in the study popula-
tion, and thus the implementation of policies corresponding to regional differences [39].
Currently, a number of studies have adopted methods such as the Gini coefficient [40,41],
spatial exploratory data analysis [42] and Kernel density functions [43] to analyze spatial
differences under different spaces. With the advancement of China’s coordinated regional
development strategy and sustainable development strategy, the spatial linkages between
regions are increasingly taking the form of complex networks [44]. It is hardly enough
to analyze the ESDE by relying only on the variance analysis of “attribute data”. Eco-
nomic efficiency issues are often characterized by the evolution of spatially linked network
structures, which requires the use of social network analysis [38,44].

Social network analysis is a method based on relational data to study the complexity
of the network structure between unit nodes, effectively overcoming the shortcomings
of “attribute data”, and has been widely used in recent years in the study of complex
correlation networks in the fields of regional energy and environment [45,46]. Scholars have
combined variance analysis and social network analysis to analyze the dynamic evolution
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of spatial differences in efficiency issues. Shen, et al. [47] applied the Theil index and
Moran indices to assess the characteristics of carbon emissions in the Yangtze River Delta
urban agglomeration, the Chengdu-Chongqing urban agglomeration and the Guangdong-
Hong Kong-Macao urban agglomeration, combined with the social network analysis
method to examine the network structure characteristics of the three urban agglomerations
from three perspectives: overall, individual and correlation. Based on the impact of the
spatial correlation of carbon emissions on sustainable economic development, Zhang,
Tai, Cheng, Zhu and Hou [46] constructed a carbon emission efficiency network and
classified carbon emission efficiency into five spatial classes: low efficiency class, low
efficiency class, medium efficiency class, high efficiency class and higher efficiency level
and analyzed their spatial differences and dynamic evolution. However, there is less
literature on the application of the Gini coefficient, Kernel density estimation and social
network analysis as holistic research methods to the research topic of economic sustainable
development efficiency. Although a few studies have also verified and discussed the spatial
agglomeration characteristics and spillover effects of sustainable development based on
geographical proximity or economic proximity, the current research on the structural
characteristics of spatially linked networks of sustainable economic development efficiency
and their spatial dynamic differences still needs to be deepened.

The contribution of this study lies in several areas. Firstly, this research extends
the study of sustainable economic development to cover the level of efficient use. We
take 30 provinces in China as the study objects and classify the sustainable development
efficiency levels into very high efficiency, high efficiency, medium efficiency and low
efficiency in order to reveal the regional spatial and temporal characteristics and the
mechanisms of differences, and to better analyze the spatial evolution characteristics of
China’s sustainable economic development efficiency and help to achieve sustainable
and efficient economic development in China. Secondly, this study provides an accurate
estimate for the measurement of sustainable economic development efficiency by using
an over-efficiency EBM model of non-expected output, which takes into account the non-
expected output of sustainable economic development. Thirdly, this study uses the Gini
coefficient, Kernel density estimation and social network analysis as a framework model for
the study of spatial dynamic differences to analyze the spatial structure and evolutionary
characteristics of the efficiency of sustainable economic development from the perspective
of spatial correlations.

3. Methods and Data
3.1. Index System and Data Sources

The core connotation of sustainable economic development is to organically integrate
the environment, resources and development issues. It not only pays attention to the rapid
economic growth, but also needs to pay attention to the quality of economic development.
We emphasize that sustainable economic development cannot degrade the quality of the
environment or harm natural resources at the cost of being sacrificed. Sustainable economic
development ensures maximum economic development on the premise of maintaining the
quality of natural resources and maintaining environmental stability.

Most of the literature is an economic sustainable growth index system that incorporates
labor, capital, technology and energy consumption into the input indicators of production
factors [48] but does not take into account the input of environmental protection and
social livelihood. However, the ESDE is based on the connotation of sustainable economic
development, which needs to fully consider the comprehensive economic efficiency after the
cost of the environment and resources. This paper draws on the existing evaluation system
based on the principles of system, science and data availability, considering the constraints
of resources and the environment. On this basis, this paper designs six dimensions of
input indicators, including environment, resources, social livelihood, technology, capital
and labor, as well as output indicators such as expected output and undesired output, to
construct an evaluation index system for the ESDE.
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Considering data availability and continuity, this paper selects 30 provincial-level
administrative regions in China (excluding Hong Kong, Macao, Taiwan and Tibet) as the
research unit, and takes 2000–2020 as the research period. The data come from the National
Bureau of Statistics, “China Statistical Yearbook”, “China Population and Employment
Statistical Yearbook”, “China Energy Statistical Yearbook”, “China Environmental Statistical
Yearbook”, “China Science and Technology Statistical Yearbook” and provincial statistical
yearbooks. The specific index system is shown in Table 1. Among them, the capital
input index is represented by the stock of fixed asset investments. Because the EBM
model limits the number of indicators, this paper uses the entropy method to calculate
the weight of multiple secondary indicator variables. The entropy weight method is an
objective weighting method for indicators, which can deeply reflect the distinguishing
ability of indicators. Compared to the subjective weighting method, the outcome of entropy
weighting method is more reliable. Finally, input indicators such as capital, environmental
governance, social security, technology, resources and labor are obtained, with GDP as the
final expected output and COD and SO2 as undesired outputs. The specific indicators are
shown in Table 1.

Table 1. Efficiency Index System of China’s Regional Economic Sustainable Development.

Variables The First Level The Second Level Unit Weight

Input indicators

Capital The stock of fixed asset investment CNY 100 million

Environmental
Governance

Local fiscal expenditure on environmental protection CNY 100 million 0.4091

Complete investment in industrial pollution control CNY ten thousand 0.5909

Social
Security

Local fiscal social security and employment expenditures CNY 100 million 0.3048

local medical expenditure CNY 100 million 0.3660

Local fiscal education expenditure CNY 100 million 0.3292

Technology
Intramural expenditure on R&D CNY ten thousand 0.5608

Local fiscal science and technology expenditure CNY 100 million 0.4392

Resources

Total water supply million tons 0.4456

Urban Green Area million hectares 0.3093

Energy consumption 10,000 tce 0.2451

Labor Number of employees ten thousand

Output indicators

Expected
Output GDP CNY 100 million

Undesired
Output

COD Tons

SO2 Tons

3.2. Super-EBM Model of Unexpected Output
3.2.1. Super-EBM Model

The effective unit efficiency value measured by the EBM model is 1; it is difficult to
further analyze the efficiency difference of the effective evaluation unit, and the efficiency
of different evaluation units cannot be judged. Andersen and Petersen [49] put forward
the idea of super-efficiency planning borrowed from the design idea of Tone’s [50] super-
SBM model, which optimized the constraints of the EBM model with no guidance and
unexpected output, and the efficiency measurement result was equal to 1 unit for secondary
calculation. The formula of the super-efficient EBM model is as follows [51].

The constraints on input variables are

n

∑
j=1,j 6=k

λjxij − s−i ≤ θxik i = 1, 2, · · · , m (1)
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The constraints on the expected output factors are

n

∑
j=1,j 6=k

λjyrj + s+r ≥ ϕyrk r = 1, 2, · · · , s (2)

The constraints on the unexpected output factors are

n

∑
j=1,j 6=k

λjbpj − sb−
p ≤ ϕbpk p = 1, 2, · · · , q (3)

The objective function is

γ∗ = min
θ + εX

m
∑

i=1

w−i s−i
xik

ϕ− εy
s
∑

r=1

w+
r s+r
yrk

+ εb

q
∑

p=1

wb−
p sb−

p
bpk

(4)

The constraints of the super-EBM model are

s.t



n
∑

j=1,j 6=k
λjxij − s−i ≤ θxik i = 1, 2, · · · , m

n
∑

j=1,j 6=k
λjyrj + s+r ≥ ϕyrk r = 1, 2, · · · , s

n
∑

j=1,j 6=k
λjbpj − sb−

p ≤ ϕbpk p = 1, 2, · · · , q

λj ≥ 0, s−i ≥ 0, s+r ≥ 0, sb−
p ≥ 0

(5)

where xij is the data matrix of input factor indicators, and yrj is the data matrix of output
factor indicators. Variable γ∗ is the best efficiency with constant returns; s+r is the slack
variable of expected output of category r; sb−

p is the slack variable of the unexpected output
of type p; w+

r and wb−
p are the weights of expected output r and unexpected output p,

respectively; εy and εb are parameters; ϕ is the output expansion ratio; bpj is the unexpected
output p of the decision-making unit j; bpk is the unexpected output p of the decision-
making unit k; and q is the total number of unexpected output p.

Based on the efficiency index system of ESDE in China, this paper selects 6 types of
input indicators, 1 item of expected output and 2 types of unexpected output in the non-
guided, constant returns and unexpected output super-efficiency EBM model to measure
the efficiency of China ‘s sustainable economic development.

3.2.2. EBM-Malmquist Model

The above super-EBM model can only measure the static efficiency value of China’s
sustainable economic development. In order to more comprehensively reflect the changes
in the efficiency, the Malmquist index can be calculated to reflect the efficiency change
rate of each decision-making unit. The Malmquist index was first proposed by Malmquist,
and the Malmquist index uses the distance function to reflect the rate of change of each
decision-making unit [52]. This paper uses the Malmquist index to reflect the changes in
the ESDE of 30 provinces in China from 2008 to 2020. The mathematical expressions of
the previous period t− 1 and the current period t of the Malmquist index are shown in
Formula (6) [53,54]:

MIt−1,t =

[
Dt−1(xt−1, yt−1)

Dt−1(xt, yt)
× Dt(xt−1, yt−1)

Dt(xt, yt)

] 1
2

(6)
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where xt−1 and yt−1 represent the input vector and output vector of the previous period
t− 1, and xt and yt represent the input vector and output vector of the current period t.
Variable Dt(xt, yt) represents the distance between the decision-making unit in period t
and the production frontier in period t− 1, and the efficiency of a decision-making unit in
period t is measured by constructing the production frontier with all decision-making units
in period t− 1. The value range of the Malmquist index is MIt−1,t ∈ (0,+∞). Efficiency
change of sustainable economic development in China depends on comparison with 1. If
MIt−1,t > 1, it means that the efficiency of the current period is improved. If MIt−1,t < 1, it
means that the efficiency of the current period has declined. If MIt−1,t = 1, it means that
the efficiency of the current period remains unchanged.

3.3. Modified Gravity Model

The theory of economic gravity believes that there is an interactive relationship be-
tween regions within a certain range, and the construction of a spatial correlation matrix
is a prerequisite for network analysis. Many scholars use a revised gravity model to
measure the spatial correlation of research objects [38,55,56]. However, the connection
between economies is different and unidirectional. When calculating the degree of connec-
tion between regional economies, it is necessary to take into account the economic scale,
population and other related factors between economic regions.

The gravity model can be used to calculate the connection strength of the 30 provinces
in China. The purpose of calculating the gravity matrix is to find the spatial correlation
matrix of the ESDE. The gravity model is the basis of social network analysis, and the
spatial correlation matrix in social network analysis can be converted from the correlation
strength calculated by the gravity model. This paper draws on the approach of Zhang and
Lu [57], and uses the following revised gravity model to calculate the spatial correlation
strength among the 30 provinces in China.

Cij = Kij ×
3
√

EiGiPi × 3
√

EjGjPj

D2
ij/(gi − gj)

2 , Kij =
Ei

Ei + Ej
(7)

where Cij represents the gravitational force between province i and province j, which
represents the correlation strength of the ESDE; Kij represents the gravitational coefficient
between province i and province j, representing the contribution of province i to the
connection between province i and province j; Ei and Ej represent the ESDE of province
i and province j; Gi and Gj represent the economic development level of province i and
province j, measured by GDP; Pi and Pj represent the population of province i and province
j; Dij represents the spherical distance between the capital city of province i and province j;
gi and gj represent the per capita GDP of province i and province j; gi − gj represents the
economic distance of province i and province j.

Using the gravity model of Formula (7), the gravity matrix of the sustainable devel-
opment efficiency of an inter-provincial economy can be constructed. The average value
of the row values of the matrix Cij is used as the threshold value. If the gravity value is
greater than the threshold, the value is 1, which means that the province in this row has
an efficiency space overflow for the province in the column. Conversely, if it is lower than
the threshold, the value is 0, indicating that there is no correlation effect between the two
provinces. After the above conversion, the spatial correlation matrix I of ESDE can be
obtained, which is actually a (0, 1)-matrix.

3.4. Social Network Analysis

Social Network Analysis (SNA) is an analysis method based on the perspective of
“relationship”, including sociology, economics, geography and other disciplines [58]. It
is mainly used to analyze the relationship structure and attributes of social networks,
providing an “interactive” perspective and a global analysis by describing the relational
schema with graph theory tools and algebraic modeling techniques [57]. Most multivariate
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statistical methods cannot be used to analyze relational data, and social network analysis
can just make up for this limitation. The advantage of the social network analysis method
is that it can accurately quantify various associations and avoid the limitations of “adjacent”
or “similar” traditional spatial econometric analysis methods, thus providing a basis
for the construction of some middle-level theory, and the test of empirical propositions
provide quantitative tools. It is even possible to build a bridge between “macro and micro”
(Liu and Jia, 2019). Therefore, this is also one of the important reasons why many experts
and scholars apply social network analysis to economics, management and other fields.

Based on the spatial correlation matrix I calculated by the revised gravity model, this
paper constructs a spatial correlation network based on the ESDE. Social network analysis
is used to analyze the overall network and individual network characteristics of China’s
sustainable economic development. Among them, the overall network characteristics
are mainly quantified by four indicators: the network relationship coefficient, network
density, network hierarchy, and network efficiency. Individual network characteristics use
point-in-degree and point-out-degree to analyze the individual spillover effects and benefit
relationship.

Social network analysis is one of the main contents of this paper. Based on the
calculation of ESDE, the social network analysis method is used to analyze the cross-
regional flow relationship of ESDE in 30 provinces in China. The connection of regions
with such connections will form a geospatial network, and social network methods can
visualize the strength of this connection.

4. Result Analysis
4.1. The Economic Sustainable Development Efficiency (ESDE)
4.1.1. Analysis of Overall Efficiency

Based on the MaxDEA8Ultra software, the super-EBM model of unexpected output
was used to calculate ESDE in China from 2008 to 2020 according to Formulas (4) and (5)
(Table 2).

Table 2. The ESDE of China’s 30 provinces from 2008 to 2020.

Region
ESDE

Region
ESDE

2008 2012 2016 2020 Average 2008 2012 2016 2020 Average

Beijing 1.0342 1.0559 1.0706 1.1101 1.0673 Hunan 0.7466 0.8969 1.0019 1.0183 0.9459
Tianjin 0.7585 0.6663 0.8032 0.8278 0.7342 Guangdong 1.0108 1.0147 1.022 1.0044 1.0134
Hebei 0.8444 0.8359 0.8047 0.6948 0.8153 Guangxi 0.6972 0.8851 0.7918 1.0065 0.8180
Shanxi 0.7653 0.8179 0.7092 0.7622 0.7825 Hainan 1.0407 1.0488 1.0499 1.0969 1.0600

Inner Mongolia 1.0074 0.8178 1.0090 1.0106 0.9547 Chongqing 0.7700 1.0143 1.0413 1.0155 0.9700
Liaoning 0.6946 0.696 0.7044 0.6049 0.6743 Sichuan 0.6997 0.9131 0.9215 1.0038 0.9050

Jilin 0.6548 0.7925 0.7883 0.7428 0.7355 Guizhou 0.7070 1.003 1.0055 0.7474 0.8895
Heilongjiang 0.6768 0.7971 0.6414 0.6142 0.6575 Yunnan 1.0038 1.009 0.9103 0.8195 0.9879

Shanghai 1.0165 1.0213 1.0176 1.0333 1.0233 Shaanxi 0.6122 0.7609 0.7556 0.7479 0.7264
Jiangsu 1.0045 1.0052 1.0152 1.0104 1.0111 Gansu 0.6780 0.742 0.6808 0.6944 0.7121

Zhejiang 1.0113 1.0035 1.0104 1.0066 1.0061 Qinghai 0.6516 0.7447 0.7371 1.0053 0.7753
Anhui 0.8191 1.0022 0.9188 1.0005 0.9533 Ningxia 0.6502 0.7141 0.6255 0.6554 0.6587
Fujian 1.0065 1.0169 1.0178 1.0243 1.0189 Xinjiang 1.0032 1.0160 0.6988 1.0368 0.9860
Jiangxi 0.7618 1.0241 1.0082 1.0070 0.9576 Eastern region 0.9474 0.9161 0.9363 0.9256 0.9294

Shandong 1.0000 0.7129 0.7831 0.7682 0.7992 Central region 0.7700 0.9028 0.8659 0.8649 0.8559
Henan 1.0048 1.0025 1.0047 1.0036 0.9708 Western region 0.7709 0.8746 0.8343 0.8857 0.8530
Hubei 0.7307 0.8894 0.8544 0.7704 0.8438 The whole area 0.8354 0.8973 0.8801 0.8948 0.8818

Data source: calculated by the super-EBM model according to the variables in Table 1.

As shown in Table 2, 40% of China’s provinces had a ESDE greater than 1 in 2008; the
proportion reached 56.67% in 2020, indicating that the overall level of sustainable economic
development in China is on the rise.

As shown on the right in Figure 1, the average of China’s ESDE showed an “M”-shaped
fluctuation trend during 2008–2020. However, it showed an overall upward trend, with
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the average efficiency rising from 0.8354 in 2008 to 0.8818 in 2020. As shown on the left in
Figure 1, it can be clearly seen that the ESDE of Beijing, Shanghai, Jiangsu, Zhejiang, Fujian,
Guangdong, and Hainan is at a high level. The ESDE in Liaoning, Jilin, Heilongjiang,
Shaanxi, Gansu, Qinghai, Ningxia and other provinces is at a low level.
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As can be seen from Figure 2, Beijing, Shanghai, Fujian, Guangdong, Hainan, 
Zhejiang, Jiangsu maintain high efficiency. From 2008 to 2020, Henan and Hebei’s ESDE 
declined by two levels, and Guangxi, Qinghai, Hunan’s increased by two levels from 2008 
to 2020. The areas where the efficiency level from 2008 to 2021 increased are Heilongjiang, 
Guangxi, Jiangxi, Sichuan, Guizhou, Chongqing, and Xinjiang. The areas where the effi-
ciency level decreased are Inner Mongolia, Zhejiang, Henan, Hebei, Shandong, and 

Figure 1. (a) The average level of ESDE in China; (b) the average level of ESDE in three regions. Data
source: Table 2.

As can be seen from Figure 2, Beijing, Shanghai, Fujian, Guangdong, Hainan, Zhejiang,
Jiangsu maintain high efficiency. From 2008 to 2020, Henan and Hebei’s ESDE declined
by two levels, and Guangxi, Qinghai, Hunan’s increased by two levels from 2008 to 2020.
The areas where the efficiency level from 2008 to 2021 increased are Heilongjiang, Guangxi,
Jiangxi, Sichuan, Guizhou, Chongqing, and Xinjiang. The areas where the efficiency level
decreased are Inner Mongolia, Zhejiang, Henan, Hebei, Shandong, and Tianjin. The areas
where the efficiency level from 2012 to 2016 increased are Tianjin, Jilin, Shandong, Inner
Mongolia, Hunan, Jiangsu, and Zhejiang. The areas where the efficiency level decreased
are Jiangxi, Xinjiang, Yunnan, Shanxi, Heilongjiang. The areas where the efficiency level
from 2016 to 2020 increased are Shanxi, Qinghai, Xinjiang, Guangxi, Inner Mongolia, and
Hunan. The areas where the efficiency level decreased are Jiangsu, Zhejiang, Guangdong,
Anhui, Henan, Guizhou, Hebei, and Jilin.
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4.1.2. Analysis of Malmquist Index

Based on the efficiency results of the non-oriented, constant returns to scale, and
unexpected output super-efficiency EBM-Malmquist model in the 30 provinces in China
from 2008 to 2020, the MI index is decomposed into the EC index and the TC index.
According to the Malmquist index, this paper analyzes the change trend of the ESDE of the
30 provinces (Table 3).

Table 3. MI index, EC index and TC index of Chinese provinces.

Region
2009 2012 2016 2020

MI EC TC MI EC TC MI EC TC MI EC TC

Beijing 1.0168 0.9989 1.0179 0.7158 0.9829 0.7283 1.0849 1.0151 1.0688 0.9948 0.9951 0.9997
Tianjin 0.9506 0.9612 0.9890 0.9452 0.9938 0.9510 1.2822 1.3115 0.9777 0.9098 0.9681 0.9398
Hebei 0.9704 1.1847 0.8191 0.9540 0.8349 1.1426 1.1507 1.1069 1.0396 0.8469 0.9515 0.8900
Shanxi 0.8627 0.9300 0.9276 0.9617 0.8171 1.1769 1.1124 0.9146 1.2163 0.8484 0.9660 0.8782

Inner Mongolia 0.7404 1.0001 0.7403 0.9989 1.0451 0.9558 1.1429 1.0033 1.1391 0.9906 0.9800 1.0109
Liaoning 0.9342 0.9935 0.9404 0.9879 1.0904 0.9061 1.1237 1.0112 1.1113 0.8059 0.8559 0.9415

Jilin 0.8959 0.9769 0.9171 0.9852 1.0821 0.9105 1.2162 1.1659 1.0432 0.9354 0.9810 0.9535
Heilongjiang 0.8799 0.9460 0.9301 1.0004 1.2143 0.8238 1.1256 1.0827 1.0396 0.9198 0.9539 0.9643

Shanghai 0.9994 1.0009 0.9985 0.9702 0.9967 0.9734 1.0879 0.9961 1.0921 1.0053 1.0028 1.0024
Jiangsu 0.9701 0.9994 0.9706 0.9063 0.9993 0.9070 1.1017 0.9999 1.1018 1.0054 0.9984 1.0070

Zhejiang 0.8935 0.9889 0.9035 0.9484 0.9976 0.9507 1.1537 1.0089 1.1435 1.0031 0.9981 1.0050
Anhui 0.9698 1.0277 0.9436 0.9835 0.9994 0.9841 1.0768 1.0308 1.0446 0.8201 0.9978 0.8219
Fujian 0.9893 1.0029 0.9865 0.8685 0.9986 0.8698 1.1171 0.9986 1.1187 0.9937 0.9984 0.9953
Jiangxi 0.9747 1.0244 0.9514 1.2541 1.0074 1.2449 1.0590 0.9989 1.0602 1.0030 1.0013 1.0017

Shandong 0.9681 1.0006 0.9675 0.9480 0.9991 0.9489 1.1467 1.0990 1.0434 0.8338 0.8723 0.9559
Henan 0.8351 0.9991 0.8359 0.9926 1.1497 0.8633 1.1351 1.0000 1.1351 0.9952 0.9944 1.0009
Hubei 0.9597 1.0192 0.9416 0.9841 1.0309 0.9546 1.0885 0.9791 1.1117 0.8095 0.8365 0.9677
Hunan 0.9500 1.0198 0.9315 0.9681 0.9524 1.0165 1.1034 1.0004 1.1030 1.0066 1.0087 0.9979

Guangdong 0.9941 0.9995 0.9946 0.8557 0.9955 0.8596 1.2144 1.0014 1.2126 0.9991 0.9932 1.0059
Guangxi 0.8808 1.0121 0.8702 0.9767 1.0317 0.9467 1.0630 0.9590 1.1085 0.9426 1.3057 0.7219
Hainan 0.8639 0.9981 0.8655 0.9668 0.9939 0.9727 0.9014 0.9860 0.9142 1.0789 1.0234 1.0542

Chongqing 0.9505 1.0154 0.9360 1.0091 1.0056 1.0035 1.3225 1.0238 1.2918 0.9810 0.9721 1.0091
Sichuan 0.9688 1.0182 0.9515 1.0360 1.1242 0.9215 1.1117 0.9206 1.2076 0.8367 0.9961 0.8400
Guizhou 0.9561 1.0129 0.9439 1.0529 1.2159 0.8660 1.3104 0.9892 1.3247 0.8646 0.9377 0.9220
Yunnan 0.9678 1.0023 0.9656 1.0068 0.9994 1.0073 1.0901 0.9076 1.2010 0.6957 0.8080 0.8611
Shaanxi 0.9358 0.9803 0.9546 1.0684 1.0977 0.9734 1.0999 1.0150 1.0837 0.8681 0.9692 0.8957
Gansu 0.9510 1.0184 0.9338 0.9882 1.0256 0.9635 1.1099 0.9703 1.1439 0.8753 0.9447 0.9266

Qinghai 0.8365 0.9283 0.9011 0.9722 1.0790 0.9010 1.1087 0.9820 1.1290 1.1512 1.1797 0.9758
Ningxia 0.9395 0.9946 0.9446 0.9890 1.0082 0.9809 1.0093 0.9346 1.0799 1.0458 1.1291 0.9262
Xinjiang 0.6847 0.9990 0.6854 0.7248 1.0022 0.7233 1.0198 0.6977 1.4617 1.0036 1.0312 0.9733

The whole area 0.9300 1.0032 0.9283 0.9650 1.0141 0.9583 1.1297 1.0425 1.0874 0.9247 0.9619 0.9609
Eastern region 0.9591 1.0117 0.9503 0.9152 0.9893 0.9282 1.1240 1.0486 1.0749 0.9524 0.9689 0.9815
Central region 0.9111 0.9890 0.9211 1.0231 1.0430 0.9940 1.1162 1.0246 1.0929 0.9045 0.9616 0.9412
Western region 0.8920 0.9983 0.8934 0.9839 1.0577 0.9312 1.1262 0.9457 1.1973 0.9323 1.0230 0.9148

Data source: calculated by the super-EBM-Malmquist model according to the variables in Table 1.

The MI index of each province in China fluctuated in different years. It can be seen
from Table 3 that only Beijing’s ESDE increased in 2009, which is likely due to the impact of
the global financial crisis, which seriously affected China’s economy. In 2010, except for
Inner Mongolia and Shandong, the ESDE increased, but the MI index of Inner Mongolia
and Shandong province increased significantly compared with 2009. In 2011, except for
Beijing, Guangxi and Xinjiang, the ESDE in the other provinces declined. In 2020, the ESDE
of most of the provinces in China declined, which may be due to the impact of COVID-19.
As far as the province is concerned, during the period from 2008 to 2020, the ESDE in Beijing
showed an increasing trend in most years, but declined in 2012, 2015 and 2020. The ESDE of
Hebei Province only increased in 2010, 2016, 2018 and 2019. Anhui Province only increased



Int. J. Environ. Res. Public Health 2023, 20, 2966 12 of 22

in 2010, 2016, 2017 and 2018. According to the annual average MI index of the ESDE, only
five provinces—Hebei, Shanxi, Liaoning, Heilongjiang, and Shandong—have an MI index
less than one, indicating that the ESDE in most provinces in China is on the rise and is
developing well. Provinces such as Hebei, Shanxi, Liaoning, Heilongjiang, and Shandong
need to enhance their environmental governance capabilities and improve their ESDE.

4.2. Analysis of Regional Differences and Dynamic Evolution
4.2.1. Estimation and Decomposition of Regional Differences in ESDE

In order to describe the level of regional differences and sources of regional differences
in ESDE, this paper uses the Gini coefficient and its subgroup decomposition method
proposed by Dagum (1997) to decompose the ESDE from 2008 to 2020. The Gini coefficient
decomposition method solves the problem wherein the traditional Gini coefficient index
does not satisfy the decomposability of subgroups—not only by taking the distribution
of subgroup samples into account, but also by solving the problem of overlapping be-
tween sample data and the source of regional overall differences. The new Gini coefficient
decomposition method can decompose the overall difference, see the source of the differ-
ence more clearly, and overcome the shortcomings of the traditional Gini coefficient and
Theil coefficient (Liu et al., 2012; Li and Zhang, 2018). The formula of the Gini coefficient
decomposition method is as follows:

G =

k
∑

j=1

k
∑

h=1

nj

∑
i=1

nh
∑

r=1

∣∣yji − yhr
∣∣

2n2y
(8)

G = Gw + Gnb + Gt (9)

where k is the number of regions divided by China, k = 3, which are the eastern region,
central region and western region, respectively. Variables j and h are different regions in
k regions, where j = 1, · · · , k, h = 1, · · · , k, j 6= h. Variable n is the number of provinces
in the research sample, n = 30. Variable yji(yhr) is the economic sustainable development
efficiency of province i(r) in j(h) region, and y is the average value of the ESDE. The overall
Gini coefficient can be decomposed into three parts: intra-regional gap contribution Gw,
inter-regional gap contribution Gnb, and hypervariable density Gt. According to Formulas
(8) and (9), the Gini coefficient and decomposition results of China’s ESDE are calculated,
as shown in Table 4.

Table 4. Gini coefficient and its decomposition results from 2008 to 2020.

Year G
Gw Gnb Contribution Rate (%)

East Center West East–Center Center–West Center–West Gnb Gt Gw

2008 0.1000 0.0590 0.0670 0.0990 0.0887 0.1009 0.0891 49.1700 25.2000 25.6300
2009 0.1040 0.0520 0.0770 0.1050 0.0922 0.1019 0.0959 50.8080 24.2030 24.9890
2010 0.1020 0.0690 0.0960 0.1010 0.0897 0.1027 0.1010 42.5430 28.8930 28.5630
2011 0.0910 0.0840 0.0770 0.0820 0.0852 0.0944 0.0841 29.0200 40.5560 30.4240
2012 0.0780 0.0840 0.0560 0.0750 0.0767 0.0833 0.0687 13.8190 53.6090 32.5720
2013 0.0920 0.0950 0.0820 0.0820 0.0961 0.0920 0.0840 16.7100 50.9820 32.3070
2014 0.0920 0.0970 0.0810 0.0830 0.0962 0.0939 0.0830 12.7920 54.6110 32.5970
2015 0.0950 0.0960 0.0960 0.0830 0.0999 0.0913 0.0904 12.8360 54.3850 32.7790
2016 0.0900 0.0700 0.0860 0.0960 0.0808 0.0904 0.0930 29.9030 38.6650 31.4310
2017 0.0760 0.0770 0.0690 0.0710 0.0767 0.0745 0.0733 10.8240 56.3640 32.8130
2018 0.0810 0.0830 0.0710 0.0800 0.0807 0.0825 0.0777 8.4360 58.1750 33.3890
2019 0.0860 0.0740 0.0800 0.0930 0.0789 0.0870 0.0886 22.6990 44.7110 32.5900
2020 0.0940 0.0950 0.0920 0.0870 0.0972 0.0932 0.0902 15.8240 51.0470 33.1290

Data source: calculated according to Formulas (8) and (9) based on the data in Table 2.
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It can be seen from Table 4 and Figure 3 that the overall Gini coefficient of China’s
ESDE increased by 4% in 2009, showed a slight increase, and declined from 2010 to 2012,
with an average annual decline rate of 9%. After that, it rose in 2013, and then fluctuated
slightly. During 2016–2017, it showed a downward trend, with a rate of decline of 10.41%,
and reached its minimum value in 2017, and then showed an upward trend with a growth
rate of 7.35% in 2018–2020, indicating that the overall regional differences in China’s ESDE
fluctuate and have shown an expanding trend in recent years.
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From the perspective of evolution, the differences in the ESDEs of the eastern region
reached the minimum in 2009, and it showed an expanding trend during the period from
2010 to 2014, with an average annual growth rate of 13.93%, and reached the maximum in
2014. After 2015, regional differences showed a “W”-shaped fluctuation. The differences in
the ESDEs of the central region showed a trend of substantial expansion during the period
from 2008 to 2010 with a growth rate of 19.80%, and a decline rate of 23.53% during the
period from 2010 to 2012. It reached the minimum in 2012, and then showed a fluctuating
upward trend. During 2015–2016, there was a relatively large decline, with a decline rate
of 14.47%. Then, the regional differences continued to widen during 2017–2020, with a
growth rate of 12.59%. The trend of differences in the ESDEs of the western region during
2008–2015 is similar to the overall trend, with an average annual growth rate of 6.55% from
2013 to 2016, and fluctuates after 2016. In general, the difference between the whole area
and the central region’s ESDE tends to expand after 2011, while the eastern and western
regions show a fluctuating trend.

As shown on the right in Figure 3, China’s ESDE is uneven among regions, and the
regional differences have shown a tendency to expand after 2017. The regional differences
between the eastern and central regions show periodic characteristics, showing a “V”-
shaped fluctuation trend during 2009–2015 and a weak “W”-shaped fluctuation trend
during 2015–2020. In the sample, there is a “W”-shaped fluctuation trend. After 2009,
the difference between the eastern region and the western region generally showed a
fluctuating trend of “W”, showing a trend of “shrink–expand–shrink–expand”. After 2009,
the regional differences between the central and western regions generally showed a “W”
fluctuation trend, which was similar to the fluctuation trend of the differences between the
eastern and western regions.

Figure 4 reflects the contribution of inter-regional differences, hypervariable density
and intra-regional differences to the overall differences. Prior to 2010, inter-regional dif-
ferences contributed the most, and hypervariable density and intra-regional differences
contributed almost equally to overall differences. After 2010, the contribution of the hy-
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pervariable density is the largest, and the hypervariable density is the main source of the
overall difference. The contribution rate of the intra-regional difference remains basically
unchanged, and the intra-regional contribution rate tends to expand. The contribution
of intra-regional differences is significantly greater than that of inter-regional differences.
Therefore, the key to solving the problem of unbalanced efficiency in China’s ESDE is to
reduce the efficiency difference within the region.
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4.2.2. Dynamic Evolution of ESDE Regional Variation Distribution Based on 3D
Kernel Density

Kernel density estimation is used to fit sample data by a smoothed peak function that
describes the distribution pattern of random variables using a continuous density curve; it
has the properties of robustness and weak model dependence. It has been widely used in
dynamic evolution analysis.

To describe the distributional features and dynamic evolution of the regional ESDE in
China, we use Gaussian Kernel functions to estimate the density distribution pattern of the
ESDE in China and to assess the dynamic evolution of the distribution via time dimension.
Figure 5a–d illustrates the 3D Kernel density curves for China and the three major regions
of eastern, central and western China, respectively.

Figure 5a indicates that between 2008 and 2020, the peak of the national regional ESDE
shifts to the right and to then left, indicating that the overall ESDE shows a trend of a
reversed U shape, which is consistent with the trend of the ESDE mean curve in previous
discussions. During the sampling period, the overall curve shows a bimodal peak with a
low side peak, indicating a weak polarization of ESDE. Years 2016, 2017 and 2018 appear to
have higher peaks, indicating a convergence of ESDE towards high levels of development
in these three years. The Kernel density estimation curves for China have an apparent
bimodal pattern, with the side peaks appearing on the left side, pointing to a gradient effect
and a polarization of ESDE within China.

As shown in Figure 5b, the bimodal pattern of the Kernel density curve of the ESDE
in the eastern region is insignificant in the period from 2008 to 2020 and soon vanishes,
evolving into a single-peaked pattern, indicating a weak polarization in the eastern region.
The main peak of the ESDE in the eastern region shows a trend of “right shift–left shift–
right shift–left shift”, indicative of a trend of “increase–decrease–increase–decrease” in the
overall ESDE. The ESDE in the eastern region presents a fluctuating status and is at an
overall high efficiency level. Meanwhile, the 2D density curve widens, showing a trend of
widening differences between the eastern regions.
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Figure 5. Three-dimensional Kernel density curves for (a) the whole area; (b) eastern region; (c) central
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data in Table 2.

Figure 5c shows that the overall curve of ESDE in the central region shows a single-
peaked pattern during the period from 2008 to 2020, indicating that there is no polarization.
The curve shows a wide variation in the magnitude of the peak, with a trend of “high–low–
high–low” and a trend of “right shift–left shift–right shift–left shift” in the position of the
main peak, yet the variation is greater than in the eastern region, indicating that the overall
ESDE follows an evolutionary trend of “increase–decrease–increase–decrease”. Within the
sampling period, high peaks were observed in 2008, 2009 and 2018, indicating a clustering
of ESDE towards high levels in these three years, which suggests an overall fluctuating
trend in the level of sustainable economic development in the eastern region. Furthermore,
the overall ESDE in the central region is significantly disparate, with a fluctuating level
of development.

As shown in Figure 5d, the Kernel density curve in the western region appears to have
multiple peaks, and the ESDE in the western region has a gradient effect, with multipolarity
in some years. The main peak of the Kernel density curve in the western region shows
a trend of “right shift–left shift–right shift–left shift”, indicating that the overall ESDE
in the western region has an “increasing–decreasing–increasing–decreasing” trend. The
Kernel density function center and curve in 2012 show a distinct rightward shifting trend,
demonstrating a substantial increase in ESDE. Meanwhile, the curves in 2017 and 2018
show high peaks and high levels of average efficiency. Overall, ESDE has improved and
grown significantly in recent years in the western region.

4.3. Analysis of Spatial Network Characteristics
4.3.1. Overall Network Characteristics Analysis

In order to study the relationship among the level of sustainable economic develop-
ment of the 30 provinces in China and the closeness of the connection among regions, this
paper uses the social network analysis method to visualize the flow of sustainable economic
development between different regions. This is convenient for targeting corresponding
policies that should be implemented in accordance with the degree of regional correlation,
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thereby enhancing the level of sustainable economic development of the region through
the flow between different provinces.

The ESDE spatial correlation matrix is constructed based on the modified gravity
model, and the spatial correlation network of China’s regional economic growth in 2008,
2012, 2016 and 2018 is visualized and mapped with ArcGIS (Figure 6).
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Figure 6. The spatial association network of regional economic growth in China. (a) Year 2008;
(b) year 2012; (c) year 2016; (d) year 2020. Data source: calculated by the social network analysis
according to the variables in Table 2.

Non-neighboring provinces break the traditional geographic constraints and produce
complex cross-regional connections, with inter-provincial interaction and transmission
existing through both proximity and jumping paths, resulting in a spatial structure charac-
terized by polar nucleus fission and with multiple inter-provincial connections intertwined
in a typical “spider web” structure. The average number of network associations be-
tween 2008 and 2020 reaches 191, and the network structure remains comparatively stable.
Among the spatially associated networks, Beijing-Tianjin, the Yangtze River Delta region
and Guangdong Province have the densest network associations, while the northeast,
northwest and southwest regions have sparser network associations; the spatial association
effect is higher in the eastern region than in the western region overall. The spatial associa-
tion network remains relatively stable, with Beijing and Tianjin, the Yangtze River Delta
and Guangzhou as the core circles, while the number of spatial associations in the central
and western provinces is low, and the role of these provinces in the spatial association
network is weak, showing an apparent “dense in the east and sparse in the west” pattern
of regional differentiation.

Ucinet 6.0 software was used to produce the values of four indicators: number of
association network, network density, hierarchy and network efficiency (Table 5) and to
draw the plots (Figure 7).
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Table 5. Overall structural features of regional economic growth in China.

Year 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Number of
association networks 177 183 184 192 196 198 199 198 195 191 190 194 189

Density of network 0.2034 0.2103 0.2115 0.2207 0.2253 0.2276 0.2287 0.2276 0.2241 0.2195 0.2184 0.223 0.2172
Hierarchy 0.432 0.4361 0.4361 0.4337 0.4337 0.4337 0.3404 0.3452 0.2974 0.3444 0.346 0.346 0.3444

Efficiency of network 0.7315 0.7167 0.7217 0.7094 0.6995 0.697 0.6946 0.6946 0.7044 0.7044 0.6995 0.6946 0.7069

Data source: calculated by the social network analysis according to the variables in Table 2.
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Figure 7 and Table 5 show that the number of inter-provincial ESDE connections
in China follows a “rising–fluctuating–declining” trend, network density and network
efficiency remain relatively stable, network hierarchies show a “stable–declining–stable”
trend, and network efficiency declines in general, indicating that the stability of the overall
network structure has enhanced. Specifically, the number of network connections rose
from 177 in 2008 to 199 in 2014, reaching a peak in 2014 with a stable network structure.
This was followed by a fluctuating downward trend in the number of network connections
between 2015 and 2019, though the decline was minor and within the scope of standard
fluctuations. The number of network connections in 2020 decreased to 189 from 194 in 2019,
most likely as a result of the COVID-19 pandemic outbreak in 2020 and a decrease in inter-
provincial economic sustainability connections due to the increasing spatial liquidity of
economic factor resources and a minor decrease in network connections under the influence
of market regulation and government macro-control policies. Importantly, the network
density value reflects the closeness of the connections between the regions in the network,
and the maximum number of possible connections in the network is 870. During the study
period, the actual number of connections and the network density value remains low and
the closeness of the connected network has to be strengthened, indicating that the spatially
connected exchange and spillover effects of the inter-provincial ESDE remains weak; the
inter-provincial collaborative and balanced economic sustainable development has the
potential to be improved, and the economic connections between regions need to be further
enhanced. The network hierarchy remains stable at 0.4343 between 2008 and 2013, yet the
network hierarchy declined from 0.4337 to 0.3404 in 2014, with a downward movement
towards a ‘W’-shaped adjustment between 2014 and 2017, indicating that the spatially
connected network hierarchy is less rigid and there is a possibility of spatial spillover
between different regions. Spatial spillover is potentially possible between regions, and
the interaction and interdependence between regions is growing. The network hierarchy
moves to a stable level of approximately 0.3452 after 2017. The network efficiency level
exceeds 0.6 across the study period; however, there is an overall downward trend from
0.7315 in 2008 to 0.7069 in 2020, implying that despite the existence of a higher number of
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spillover and redundant paths of interaction between regions, the cost of ESDE transmission
and spillover between provinces is reduced and the paths of interaction move in a more
reasonable and coordinated direction. The stability of the network is growing. Moreover,
the overall network structure of ESDE is stable and continues to improve, yet has the
potential to be improved.

4.3.2. Individual Network Characteristics Analysis

To reveal the centrality characteristics of the individual networks in the spatial as-
sociation network, three indicator values were calculated for each province: in-degree,
out-degree and total number of associated connections (Table 6).

Table 6. In/Out-degree and Number of Association Network of Inter-Provincial ESDE in China.

Region

Year 2008 Year 2012 Year 2016 Year 2020

In-
Degree

Out-
Degree

Number of
Association

Network
In-

Degree
Out-

Degree
Number of
Association

Network
In-

Degree
Out-

Degree
Number of
Association

Network
In-

Degree
Out-

Degree
Number of
Association

Network

Beijing 6 24 30 6 24 30 6 23 29 6 24 30
Tianjin 5 15 20 5 16 21 5 12 17 3 10 13
Hebei 4 3 7 5 4 9 5 4 9 5 5 10
Shanxi 5 2 7 5 3 8 6 5 11 5 2 7

Inner Mongolia 3 1 4 6 1 7 5 2 7 5 1 6
Liaoning 5 2 7 6 2 8 4 2 6 5 1 6

Jilin 6 1 7 6 1 7 6 0 6 5 0 5
Heilongjiang 6 1 7 7 1 8 7 0 7 7 0 7

Shanghai 7 27 34 8 27 35 7 27 34 7 27 34
Jiangsu 5 22 27 5 25 30 5 27 32 6 26 32

Zhejiang 4 20 24 4 19 23 4 18 22 4 19 23
Anhui 3 6 9 3 6 9 3 6 9 3 4 7
Fujian 7 1 8 9 6 15 7 6 13 8 10 18
Jiangxi 6 5 11 7 6 13 7 6 13 7 6 13

Shandong 7 11 18 6 9 15 7 9 16 5 9 14
Henan 6 5 11 6 9 15 6 8 14 6 6 12
Hubei 5 4 9 6 5 11 8 5 13 7 5 12
Hunan 5 2 7 7 3 10 7 3 10 7 2 9

Guangdong 10 14 24 10 11 21 11 10 21 10 10 20
Guangxi 5 1 6 6 2 8 7 4 11 7 3 10
Hainan 5 1 6 6 1 7 7 1 8 6 1 7

Chongqing 7 2 9 8 3 11 8 5 13 8 6 14
Sichuan 8 2 10 8 2 10 6 2 8 8 2 10
Guizhou 6 2 8 8 4 12 8 2 10 7 2 9
Yunnan 5 1 6 8 2 10 7 2 9 7 2 9
Shaanxi 7 0 7 7 1 8 6 1 7 5 1 6
Gansu 7 2 9 8 3 11 10 4 14 9 5 14

Qinghai 8 0 8 8 0 8 7 1 8 8 0 8
Ningxia 8 0 8 6 0 6 7 0 7 6 0 6
Xinjiang 6 0 6 6 0 6 6 0 6 7 0 7

Data source: Calculated by the social network analysis according to the variables in Table 2.

Table 6 shows the spillover–benefit relationship for the 30 provinces in China. Specifi-
cally, the in-degree represents the beneficial relationship and the out-degree represents the
spillover relationship. The out-degree of Beijing, Tianjin, Shanghai, Jiangsu and Zhejiang
is higher than the in-degree, indicating that Beijing, Tianjin and Yangtze River Delta have
more spillover relationships than beneficiary relationships in the ESDE association network,
forming a significant spillover effect on other regions; the out-degree of the northeast,
northwest, southwest and central regions is less than the in-degree, suggesting that the
these regions have fewer spillover relationships than beneficiary relationships, receiving
more spillover from other regions in the association network and showing a significant
beneficiary effect. The explanation for this is that the Beijing-Tianjin Urban Agglomeration
and Yangtze River Delta regions are in the early stage of economic development mode
transformation, focusing on environmental management and protection in the process
of fast economic development. Under the pressure of national macro-control policies,
especially under the promotion of the regional coordinated development strategy and
the concept of sustainable development, capital and technology conducive to sustainable
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economic development have continued to spread to regions such as the central and western
regions and the northeast, thus showing a strong spillover effect, while other regions have
a markedly beneficial relationship.

5. Conclusions and Recommendation
5.1. Conclusions

At present, most of the literature on efficiency measurement uses human resources,
capital and energy consumption as the input indicators of the EBM model. On this basis, this
paper takes “social livelihood” and “environmental protection” as an input index. In order
to prevent the potential bias of a single perspective on the total evaluation, six dimensions of
input indicators—environment, resources, social livelihood, science and technology, capital,
and labor—were designed. This study of the ESDE reflects the unity of human-centered
attributes and natural environmental attributes, which fills the gap of previous studies.
Based on the ESDE evaluation indicators, the EBM-Malmquist model of super-efficiency
of non-expected output was constructed, which overcomes the problem of easy loss of
information on the ratio between the target and actual values of inputs or outputs in the
calculation and accurately measures the provincial ESDE in China. The Gini coefficient
method was applied to analyze the regional differences and sources of differences in ESDE.
Combined with the Gaussian density function estimation method, the density function of
the distribution of regional differences and the dynamic evolution pattern are concluded.
The spatial correlation matrix of ESDE is constructed based on the modified gravity model
in combination with the variance analysis. The social network method was used to assess
the overall ESDE network structural characteristics, individual network characteristics and
spatial network spillover effects.

This study’s four main findings are as follows:

(1) China’s overall ESDE is on an upward trend. The ESDE in the eastern regions of
Beijing, Shanghai, Jiangsu, Zhejiang and Guangdong are leading at high levels, while
the ESDE in the central regions of Liaoning, Jilin and Heilongjiang are lagging behind.
The western regions are mostly at a medium level of ESDE, the eastern regions are
in the leading position, and the central and western regions are keeping up with the
East, while ESDE in the Northeast is lagging behind.

(2) The overall regional differences in China’s ESDE have fluctuated and have tended to
widen in recent years. On a national level, the ESDE exhibits a “gradient effect” and
weak polarization. The ESDE in the eastern region does not appear to be polarized;
however, there is a tendency for the differences to widen, and the ESDE in the central
region is evidently disparate and fluctuates, while the ESDE in the western region
appears to have a gradient effect with multi-polarization in some years.

(3) The regional ESDE has shown significant spatial unevenness, with Beijing-Tianjin,
the Yangtze River Delta and Guangzhou as the core of the circle structure. The role
of the central and western provinces in the spatial network is weak, showing an
apparent pattern of geographical differentiation with high density in the east and
low density in the west, and the spatial interaction and spillover effects are also
weak. Furthermore, the ESDE’s inter-provincial transmission and spillover costs
are decreasing, the interaction paths are moving towards a more reasonable and
coordinated direction, and the stability of the network is improving. Overall, the
network structure of ESDE is stable and continues to progress in a positive direction,
though there is still considerable improvement potential.

(4) Beijing, Tianjin and the Yangtze River Delta have higher spillover relationships than
beneficiary relationships in the correlation network, resulting in significant spillover
effects on other regions; the node out-degrees of the northeast, northwest, southwest
and central regions are less than the node in-degrees, as the spillover relationships in
the above regions are lower than the beneficiary relationships; the regions receive more
spillover effects from other regions in the correlation network and show significant
beneficiary effects.



Int. J. Environ. Res. Public Health 2023, 20, 2966 20 of 22

5.2. Recommendation

To promote the sustainable and balanced development of China’s economy, three
policy recommendations are proposed on the basis of our research findings.

(1) The spillover relationship is low in central and western China, and their spillover
effects need to be strengthened. The western region has greater advantages in terms
of promoting clean energy compared to the eastern region; the rapid development of
clean energy could significantly contribute to sustainable development. Moreover, it
would be beneficial to strengthen capital and technology investment in the central
and western regions, focus on clean energy development policies, and use clean
energy development to enhance sustainable economic spatial spillover relations, thus
supporting sustainable economic development.

(2) For economically less developed regions, the level of investment in environmental
protection has to be enhanced while maintaining economic growth. These regions
thus will need the support and supervision of government and national policies.
Meanwhile, it would be beneficial to enhance the leading role of Beijing, Tianjin and
the Yangtze River Delta in ESDE to strengthen the sustainable economic development
of nearby regions.

(3) Strengthen the effectiveness of the policy impact of market regulation and govern-
ment macro-control, accelerate the spatial movement of economic factor resources
and improve the inter-provincial economic connections for sustainable development.
Reduce channels for inter-regional spillover and redundant interactions to enhance
the network structure of ESDE, lower the cost of ESDE transmission and spillover be-
tween provinces, enhance the hierarchy and stability of spatially connected networks,
and comprehensively enhance China’s sustainable economic development.

In future research, a more refined division of input variables and output variables
in the EBM-Malmquist model can be further studied so as to include most aspects of the
connotation of ESDE and increase the measurement accuracy.
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