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Abstract: In this paper, we propose a lossless electrocardiogram (ECG) compression method using
a prediction error-based adaptive linear prediction technique. This method combines the adaptive
linear prediction, which minimizes the prediction error in the ECG signal prediction, and the modified
Golomb–Rice coding, which encodes the prediction error to the binary code as the compressed data.
We used the PTB Diagnostic ECG database, the European ST-T database, and the MIT-BIH Arrhythmia
database for the evaluation and achieved the average compression ratios for single-lead ECG signals
of 3.16, 3.75, and 3.52, respectively, despite different signal acquisition setup in each database. As
the prediction order is very crucial for this particular problem, we also investigate the validity of the
popular linear prediction coefficients that are generally used in ECG compression by determining the
prediction coefficients from the three databases using the autocorrelation method. The findings are in
agreement with the previous works in that the second-order linear prediction is suitable for the ECG
compression application.

Keywords: electrocardiogram (ECG); lossless compression; linear prediction; Golomb–Rice coding

1. Introduction

Cardiovascular disease (CVD) has become the second major cause of death of non-
communicable diseases (NCDs) for several years. Although the trend of NCD mortality
was decreased over the last 20 years, the COVID-19 pandemic has aggravated that trend by
increasing the risk of illness and death for the existing NCD patient [1].

An electrocardiogram (ECG) signal, consisting of the P, T, and U waves and the QRS
complex, represents the electrical activity of the heart [2]. For the diagnosis and treatment
of CVD, monitoring and recording of the ECG signals are required. The ECG signal
can represent electrical activities, heart rate variability (HRV), and abnormalities of the
heart. One approach to the ECG application is telemedicine, which is the implementation
of the internet of things (IoT), wireless sensor networks, and embedded systems in the
medical system. Also, multi-lead ECG acquisition, long-term monitoring and recording,
higher resolution, and frequency of the signal are required for better ECG monitoring and
diagnosis. To improve the performance and efficiency of the data transmission, data storage,
and clinical application, the data compression process for the ECG signal is important,
especially for those requirements mentioned before.

The compression method for the ECG signal is approached in two directions, i.e.,
lossy and lossless compression. Lossy compression significantly has a higher compression
ratio than lossless compression, where the compression ratio is the ratio of the original
data size to the compressed data size. However, the lossy compression generally has
some reconstruction error which means the reconstructed signal value is different from the
original one. While the lossless term for the ECG signal compression implies no error from
the reconstructed signal.
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The ECG compression method can also be categorized into three techniques, i.e.,
direct-time domain, transform domain, and parameter extraction [3]. The direct-time
technique compresses the data in the time domain directly by extracting the significant
samples and removing redundancies. The transform domain technique compresses the
data by transforming the data to another domain, for example, Fourier transform, wavelet
transform, discrete cosine transform, etc. The parameter extraction technique compresses
the data by extracting the characteristics of features of the signal, for example, linear
prediction, complex or peak extraction, neural network approach, etc. In recent years,
most of the compression methods have been based on two main approaches, i.e., the linear
prediction technique and the transform domain technique. In addition, the coding and data
packaging techniques are also implemented to maximize the compression performance.

Tsai and Kuo [3] proposed the adaptive linear prediction with content-adaptive
Golomb–Rice coding. Tsai and Tsai [4] proposed the multi-channel adaptive linear predic-
tion with a modified Golomb–Rice coding method, and Tsai et al. [5] also implemented the
method in [4] on Very Large-Scale Integration (VLSI). This work compressed the 12-lead
ECG signal by using four reference leads to calculate the other eight leads of the signals.
The fuzzy theory and exponential weighting technique were applied to the adaptive linear
prediction. Deepu et al. [6] introduced sign-sign least mean square (SSLMS) adaptive linear
prediction with the Savitzky-Golay filter. Deepu et al. [7] proposed linear prediction and
fixed-length data packaging and also introduced the 1st to 4th order of the linear predic-
tion function for the ECG signal. Arnavut [8] introduced the Burrow-Wheeler transform
with the autoregressive (AR) model, the Move-to-front coder, and the Inversion ranks
coder with the linear prediction compression method. Luo et al. [9] proposed the adaptive
linear prediction based on a fuzzy decision with 2-stage Huffman coding implemented
on VLSI. Jia et al. [10] proposed the dual-mode linear prediction compression method
with context-based error modeling and modified Golomb–Rice coding. Tseng et al. [11]
introduced the compression method using Takagi-Sugeno fuzzy neural network with pre-
dictive coding. Miaou and Chao [12] proposed wavelet-based vector quantization for
lossless compression with a unified vector quantization framework. Koski [13] introduced
an example of ECG compression with various encoding methods, including 1st and 2nd-
order linear prediction, Gamma coding, Huffman coding, LZ-77 method, and complex
extraction. Giuseppe et al. [14] proposed an ECG lossless compression method using the
RAKE algorithm with simple prediction. Zhou [15] introduced the K-means clustering for
lossless ECG compression by applying the K-means clustering with the QRS complex and
the 1st-order differential for non-QRS region. Li et al. [16] proposed the differential linear
prediction method with modified variable-length coding.

This paper is organized as follows. The proposed method and the related techniques,
including the prediction error-based linear prediction, the modified Golomb–Rice coding,
the data reconstruction process, and the linear prediction coefficient determination, are
described in Section 2. Section 3 describes the 3 ECG data sets used in this research. The
experimental results are presented and discussed in Sections 4 and 5, respectively. Section 6
then concludes the paper.

2. Materials and Methods

The proposed compression method aims to increase the compression ratio, which is
the ratio of the original data size to the compressed data size while maintaining the lossless
feature. In addition, the compression method was designed to be operable in real time
without determining any parameters or thresholds. The method proposed in this work is
based on the lossless compression concept. The adaptive linear prediction was introduced
in recent works where the linear prediction function was changed according to the trend of
the ECG signal. However, this concept does not bring the lowest linear prediction error,
especially in regions between intervals, abnormal beats, and noisy regions. In addition,
the thresholds of some parameters for determining the linear prediction functions may
be changed when the data sets or the acquisition setups of the ECG signals are different.
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The encoding process in [5] is applied in this work since the process can adaptively adjust
the parameters according to the input signal. The overall scheme of the proposed ECG
compression method comprising the compression stage and reconstruction stage is shown
in Figure 1.
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The compression stage for ECG signal in this work includes 2 processes, i.e., the
prediction error-based adaptive linear prediction and the Golomb–Rice coding. The concept
of this compression stage is to minimize the ECG signal level into the prediction error for
each sample by using linear prediction and to encode the prediction error to the binary
format by using length-variable coding. Meanwhile, the reconstruction of the compressed
signal data can be done by reversing the compression processes. The related techniques are
described in more detail next.

2.1. Prediction Error-Based Adaptive Linear Prediction

The linear prediction has been implemented in many related works for ECG compres-
sion since it has the benefit of low complexity for implementation in hardware such as
Silicon-on-Chip (SoC) and Field Programmable Gate Array (FPGA). In this research, we
exploited the modified forward linear prediction for the linear prediction process. The
predicted value x̂p(n) for the linear prediction order p of the signal x(n) can be predicted
from the linear combination of the past signal value x(n− i) with the linear prediction
function in Equation (1) where ap(i), i = 1, p, are the linear prediction coefficients,

x̂p(n) = ∑p
i=1 ap(i)x(n− i) (1)

and the prediction error ep(n) of the prediction order p can be defined with Equation (2), i.e.,

ep(n) = x(n)− x̂p(n) (2)

Therefore, the main factor that affects the compression ratio in this approach is the
prediction error. The compression ratio can be maximized by minimizing the prediction
error. This means the linear prediction order and the linear prediction coefficients must
be determined or selected appropriately for each ECG signal. One of the methods to
determine the linear prediction coefficients is by using the autocorrelation method, which
can be solved by using the Yule–Walker equations with the Levinson–Durbin algorithm [17].
In terms of adaptive linear prediction (ALP), the order of the linear prediction function
can be changed following the trends or the region of the ECG signal to give the lowest
prediction error. We initially proposed a compression method and tested it on small data
in [18]. The algorithm of the prediction error-based adaptive linear prediction consists
of 2 steps.
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The first step is to calculate the prediction value and the prediction error of each linear
prediction function from the 1st to 4th order. These coefficients of the linear prediction were
used in many related works using the triangle of binomial transform coefficients like Pas-
cal’s triangle. All 4 linear prediction functions are shown in Equations (3)–(6), respectively.

x̂1(n) = x(n− 1) (3)

x̂2(n) = 2x(n− 1)− x(n− 2) (4)

x̂3(n) = 3x(n− 1)− 3x(n− 2) + x(n− 3) (5)

x̂4(n) = 4x(n− 1)− 6x(n− 2) + 4x(n− 3)− x(n− 4) (6)

The second step is to compare the absolute value of each prediction error from the
first step. The smallest absolute prediction error is chosen to be the determined absolute
prediction error as shown in Equation (7),

e(n) = min
{∣∣ep(n)

∣∣} (7)

The block diagram that summarizes the prediction error-based adaptive linear predic-
tion method is shown in Figure 2.
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Figure 3 illustrates an ECG signal from the MIT Arrhythmia database record number
“100” along with its prediction errors from the 1st to 4th linear prediction orders and the
determined prediction error from Equation (7). We can see that the lower order of linear
prediction function yields a better prediction error in the flat region, whereas the higher
order yields a better prediction error in the high slope region.

2.2. Modified Golomb–Rice Coding

The concept of entropy coding is to encode the data in length-variable code format.
Many related works introduced Huffman coding and Golomb–Rice coding for data com-
pression since they are lossless compression methods. Golomb–Rice coding was introduced
by Solomon W. Golomb [19] and was modified by Robert F. Rice [20,21]. The idea of this
method is to convert the data value to the quotient and remainder by using the power of 2,
which is suitable for storing the compressed data in binary format.
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The modified Golomb–Rice coding process converts the prediction error to a non-
negative integer value since the prediction error from the linear prediction process is the
signed integer value, while the encoding input must be a non-negative value [5]. For the
non-negative value M(n), the prediction error e(n) can be converted by Equation (8).

M(n) =
{

2e(n) , e(n) ≥ 0
2|e(n)| − 1 , e(n) < 0

(8)

The non-negative prediction error is then encoded into the quotient and remainder by
using the power k(n) of 2 in Equations (9) and (10),

q(n) =
[
M(n)/2k(n)

]
(9)

r(n) = M(n) mod 2k(n) (10)

where k(n) is the base-2 logarithm of the mean absolute error (MAE) of the 3 latest samples,
defined as Equations (11) and (12),

MAE(e(n)) =
∑3

i=1|e(n− i)|
3

, (11)

k(n) = log2(MAE(e(n))) (12)
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The compressed data c(n) includes the quotient q(n), which is encoded in unary
format, one of the ‘0′ bit for the quotient and the remainder separation, and the remainder
r(n), which is encoded in binary format, i.e.,

c(n) = [q(n), 0, r(n)] (13)

The length of the compressed data depends upon the absolute prediction error and the
parameter k(n). The block diagram of the Golomb–Rice coding can be shown in Figure 4.
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2.3. Data Reconstruction Process

The ECG signal can be reconstructed back by reversing the compression process. The
compressed data is encoded with the modified Golomb–Rice coding as described earlier.
Then the reconstructed ECG signal value xr(n) can be computed with Equation (2) since
x̂p(n) can be computed with the 4 recently reconstructed signals, and e(n) is received as
the compressed data. The reconstructed signal xr(n) will be the same as the original ECG
data x(n). Hence, this is a lossless compression method since there is no reconstruction
error. Note that the first 4 samples of the ECG signal data must be encoded and stored
directly to compute the 1st to 4th order of the linear prediction at the compression and
reconstruction process. The data packet of the compressed data is shown in Figure 6.
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Figure 6. Data package of the compressed data.

Figure 7 illustrates the proof of the lossless compression method. The first plot is an
example of ECG signal data from the record number “100” with 2 s in time duration. The
second plot is the prediction error that is determined before the encoding process. Then the
third plot is the decoded prediction error from the compressed data, whereas the fourth
plot is the reconstructed ECG signal data. The last plot shows the difference between the
original data and the reconstructed data to confirm that there is no reconstruction error in
the proposed method. The compression ratio achieved from this example is 3.63.
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reconstruction error for the MITDB record number “100”. To convert the amplitude to millivolts,
divide the value by 200.
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2.4. Linear Prediction Coefficient Determination

As for a linear prediction-based ECG compression method, the prediction order and
coefficients are very crucial. Some questions still remain to answer, for example, which
of Equations (1)–(4) is the best for ECG signal prediction? Are the coefficients in those
equations good enough? Hence, they deserve a close investigation of how or how well
we could come up with them. Consider a function that predicts the current sample by
using the linear combination of the past samples as in Equation (1); the linear prediction
coefficients are a set of coefficients that minimize the prediction error

e(n) = x(n)−∑p
i=1 ap(i)x(n− i) (14)

One of the approaches to determine the coefficients ak, k = 1, 2, . . . , p, is by using the
autocorrelation method [17]. Yule–Walker equations were used to solve the coefficients
with the autocorrelation of the signal x(n), i.e., solve the following equation:

R(0) R(1) R(2) · · · R(p− 1)
R(1) R(0) R(1) · · · R(p− 2)
R(2) R(1) R(0) · · · R(p− 3)

...
...

...
. . .

...
R(p− 1) R(p− 2) R(p− 3) . . . R(0)




a1
a2
a3
...

ap

 = −


R1
R2
R3
...

Rp

 (15)

where R(k) is the autocorrelation of x(n) for time lag k = 1, 2, . . . , p. This equation can be
solved by using the well-known Levinson–Durbin recursive procedure [22].

3. ECG Data Sets

For the performance evaluation for data compression in this research, we used three
public data sets of ECG signals, i.e., the PTB Diagnostic ECG database (PTBDB), the Euro-
pean ST-T database (EDB), and the MIT-BIH Arrhythmia database (MITDB). As mentioned
earlier, we initially tried to compress a part of MITDB in [18]. However, more experiments
needed to be done, and some issues needed to be investigated. Hence, in this research,
extensive experiments were performed on these three ECG data sets. It is worthwhile
noting that these three data sets have totally different characteristics [23] as follows:

1. PTB Diagnostic ECG database (PTBDB) [24]:

• 549 records
• Mostly 2 min duration
• 1000 Hz of sampling frequency
• 16-bit resolution with 2000 A/D units per mV

2. European ST-T database (EDB) [25]:

• 90 records
• 120 min duration
• 250 Hz of sampling frequency
• 12-bit resolution with 200 A/D units per mV.

3. MIT-BIH Arrhythmia database (MITDB) [26]:

• 48 records
• 30 min duration
• 360 Hz of sampling frequency
• 11-bit resolution with a 10-mV voltage range.

As we can see, these three data sets are different in all of these features, i.e., number of
records, time duration per record, sampling frequency, and resolution. Hence, they will
be very good candidates to be used in the evaluation of lossless ECG compression across
different data sets or different setups.
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4. Experimental Results
4.1. Lossless Compression Performance

The performance of a data compression method is defined in terms of the compression
ratio (CR), i.e.,

CR = B0/BC (16)

where B0 is the original ECG data size and BC is the compressed ECG data size.
The compression ratio can indicate the reduced data size of the compressed data

compared to the original data size. The larger compression ratio means more data size has
been reduced. The average compression ratio from all records of each database is used
to compare the compression performance with other methods. For the lossy compression
method, the reconstructed error of the compressed signal data is also defined by using
Percent Root-Mean-Square Difference (PRD). Since there is no reconstruction error for the
lossless compression, the PRD for the lossless compression is always 0.

For the PTBDB ECG records, the EDB ECG records, and the MITDB ECG records, the
proposed compression method achieved average compression ratios of 3.16, 3.75, and 3.52,
respectively. Figure 8a,b,c illustrates the compression ratio achieved for each record from
the PTBDB, EDB, and MITDB data sets, respectively. These results clearly demonstrate
different ranges and deviations of compression ratios in different data sets.
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To evaluate the data compression performance of the proposed method to other state-
of-the-art methods, its compression ratios achieved are compared to the related works for
PTBDB, EDB, and MITDB data sets, as shown in Tables 1–3, respectively.

Table 1. The comparison of the average compression ratio to other methods on PTBDB data set.

Ref. Compression Method Average CR

[4] Multi-channel ALP (1st, 2nd, and 4th order weight
average) + Golomb–Rice Coding 3.98 (Multi-lead)

[5] Multi-channel ALP (1st,2nd, and 3rd order weight
average) + Golomb–Rice Coding 4.07 (Multi-lead)

Proposed Prediction error-based ALP + Golomb–Rice Coding 3.16 (Single-lead)

Table 2. The comparison of the average compression ratio to other methods on EDB data set.

Ref. Compression Method Average CR

[8] Burrow–Wheeler Inversion Coding 4.77
[12] Wavelet-based Vector Quantization 3.499
[16] Differential Linear Prediction + MVLC 2.45

Proposed Prediction Error-based ALP + Golomb–Rice Coding 3.75

Table 3. The comparison of the average compression ratio to other methods on MITDB data set.

Ref. Compression Method Average CR

[3] ALP + Context-based Golomb–Rice Coding 2.835
[4] ALP + Golomb–Rice Coding 2.89
[6] SSLMS ALP + Savitzky–Golay Filter 2.15
[7] ALP + Fixed-length Coding 2.25
[8] LP + Burrow–Wheeler Inversion Coding 4.24
[9] Fuzzy-based ALP + 2-stage Huffman Coding 2.53

[10] Dual-mode LP + Error Modeling + Golomb–Rice Coding 2.975–3.040
[11] Takagi–Sugeno fuzzy NN Predictive Coding 3.22
[12] Wavelet-based Vector Quantization 3.031
[14] RAKE Coding Algorithm 2.67
[15] K-means Cluster + Differential Coding 2.49 (12-bit Length)

Proposed Prediction Error-based ALP + Golomb–Rice Coding 3.525

4.2. Linear Prediction Coefficient Comparison

For the compression method proposed in this research, the linear prediction coefficients
are determined by using Pascal’s triangle of binomial transform coefficients, as shown
in Equations (3)–(6). In the related works, each order of the linear prediction with these
coefficients was used for different regions or trends of the ECG signal. The low-order
linear prediction function yields a lower prediction error at the flat region, while the high-
order yields better performance in the complex interval or the high slope region. In [6],
it was mentioned that the 2nd order of the linear prediction function yielded the best
performance from the 1st to 4th order by comparing mean absolute prediction error and
root-mean-square prediction error.

In this section, the linear prediction coefficients for the ECG signal were determined by
using the autocorrelation method mentioned in Section 2.4. The highest order to determine
the coefficients was varied from 1 to 4, and each coefficient was also rounded to an integer
value. This would make it usable in the lossless compression method since all the signal
values and parameters must be in the integer format. The proposed and average determined
coefficients are shown in Tables 4 and 5, respectively. In addition, the average determined
coefficients rounded to the nearest integers are shown in Table 6.
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Table 4. Proposed Linear Prediction Coefficients.

Data Sets
Proposed Coefficients [a1,a2,. . . ,ap]

1-Order 2-Order 3-Order 4-Order

MITDB
[1] [2, −1] [3, −3, 1] [4, −6, 4, −1]PTBDB

EDB

Table 5. Average Determined Linear Prediction Coefficients.

Data Sets
Average Determined Coefficients [a1,a2,. . . ,ap]

1-Order 2-Order 3-Order 4-Order

MITDB [0.99] [1.85, −0.86] [2.18, −1.57, −0.38] [2.10, −1.25, −0.06, 0.20]
PTBDB [0.99] [1.59, −0.60] [1.54, −0.51, −0.04] [1.53, −0.66, 0.40, −0.28]

EDB [0.99] [1.74, −0.75] [2.13, −1.63, 0.50] [2.14, −1.63, 0.46, 0.02]

Table 6. Rounded Average Determined Linear Prediction Coefficients.

Data Sets
Rounded Average Determined Coefficient [a1,a2,. . . ,ap]

1-Order 2-Order 3-Order 4-Order

MITDB [1] [2, −1] [2, −2, 0] [2, −1, 0, 0]
PTBDB [1] [2, −1] [2, −1, 0] [2, −1, 0, 0]

EDB [1] [2, −1] [2, −2, 0] [2, −2, 0, 0]

5. Discussion

From the compression results compared to the state-of-the-art works in Tables 1–3
in Section 4.1, the proposed compression method achieved compression ratios close to
or better than that of the others. The results demonstrate that the proposed lossless ECG
signal compression method is very robust. It can be applied even in different ECG signal
acquisition setups, i.e., different numbers of records, different time duration per record,
different sampling frequencies, or different resolutions (number of bits per sample). For
the PTBDB data set, the result in [4,5] showed CR of 3.98 and 4.07, which is higher than the
3.16 achieved by the proposed method. However, we cannot really compare them because,
in [4], data from other channels were required to reconstruct the data in the channel of
interest. It was not a single-lead ECG signal reconstruction like what we have here. For
the EDB and MITDB data sets, it is interesting that the results in [8] yielded very high
CRs compared to other existing methods. In [8], however, it was mentioned that not all
data were used; there was data selection to make it comparable to a previous method.
Meanwhile, we applied the proposed method for the entire data in each data set. Hence,
the results may not be comparable. To make a fair comparison, we need to make sure that
all methods take the exact same ECG signals as the inputs.

We compare the prediction error for each order and the determined absolute prediction
error from the MITDB data set in Figure 2 (see Section 2.1), the PTBDB data set in Figure 9,
and the EDB data set in Figure 10. The results in these figures show that the higher
resolution and sampling frequency of the ECG signal will cause a higher prediction error
which in turn decreases the compression ratio. In the PTBDB data set, the high frequency
and resolution of the original signals also significantly increases the low-order prediction
errors in the flat regions, whereas it is lower for the MITDB and EDB data sets. This is the
reason that the average CR for the PTBDB data set is lower than that for the MITDB and
EDB data sets.
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From the results shown in Tables 4–6 in Section 4.2, the proposed and algorithm-
determined linear prediction coefficients were compared. Each order of the proposed
coefficient was chosen to minimize the prediction error for the different signal regions.
Meanwhile, the determined coefficient was calculated to fit the entire length of the signal.
Therefore, the results show that the 2nd order of the linear prediction function is sufficient to
predict the ECG signal with an acceptable prediction error. The corresponding coefficients
are a1 = 2 and a2 = −1. It is very interesting that although all three data sets are
different in signal acquisition setups, especially the sampling frequency, which dictates the
temporal information, they still produce the same rounded prediction coefficients. This is
in agreement with the results in [7] in that, using the mean absolute prediction error and
root-mean-square prediction error, the 2nd order of the linear prediction function yielded
the best prediction performance.
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6. Conclusions

In this research, a lossless ECG signal compression method was proposed. The method
exploited the prediction error-based adaptive linear prediction and the modified Golomb–
Rice coding. The evaluation results of the proposed method on the PTB Diagnostic database,
the European ST-T database, and the MIT-BIH Arrhythmia database achieved an average
compression ratio (CR) of 3.16, 3.75, and 3.52, respectively. These average CRs on these
three data sets are comparable to or better than most of the other related works. The
results also suggested that the proposed lossless ECG signal compression method was very
robust and could be applied in different ECG signal acquisition setups, i.e., numbers of
records, time duration per record, sampling frequencies, or resolution. In addition, the
proposed linear prediction coefficients were compared to the coefficients determined by
the autocorrelation method with Yule–Walker equations and the Levinson–Durbin method.
The results demonstrated the agreement with previous work, i.e., the 2nd order of the linear
prediction function is suitable to apply to ECG signal compression with the corresponding
prediction coefficients a1 = 2 and a2 = −1. Even though the proposed method is robust
to different ECG signal acquisition setups, its obvious limitation is that it is specifically
designed for ECG signals only. The ongoing and future trends of this work include how to
further increase the compression ratio in this lossless ECG signal compression and how to
implement the proposed method to other signals in which lossless compression is required.
We can anticipate that the determination of the prediction coefficients of each particular
signal will be crucial. If the proper prediction coefficients are determined, efficient lossless
compression will be achieved by the proposed method.
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