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Abstract: Big Data analytics is a technique for researching huge and varied datasets and it is designed
to uncover hidden patterns, trends, and correlations, and therefore, it can be applied for making
superior decisions in healthcare. Drug–drug interactions (DDIs) are a main concern in drug discovery.
The main role of precise forecasting of DDIs is to increase safety potential, particularly, in drug
research when multiple drugs are co-prescribed. Prevailing conventional method machine learning
(ML) approaches mainly depend on handcraft features and lack generalization. Today, deep learning
(DL) techniques that automatically study drug features from drug-related networks or molecular
graphs have enhanced the capability of computing approaches for forecasting unknown DDIs.
Therefore, in this study, we develop a sparrow search optimization with deep learning-based DDI
prediction (SSODL-DDIP) technique for healthcare decision making in big data environments. The
presented SSODL-DDIP technique identifies the relationship and properties of the drugs from
various sources to make predictions. In addition, a multilabel long short-term memory with an
autoencoder (MLSTM-AE) model is employed for the DDI prediction process. Moreover, a lexicon-
based approach is involved in determining the severity of interactions among the DDIs. To improve
the prediction outcomes of the MLSTM-AE model, the SSO algorithm is adopted in this work. To
assure better performance of the SSODL-DDIP technique, a wide range of simulations are performed.
The experimental results show the promising performance of the SSODL-DDIP technique over recent
state-of-the-art algorithms.

Keywords: healthcare; decision making; big data; drug–drug interaction; deep learning; predictive
models

1. Introduction

In the digital era, the velocity and volume of public, environmental, health, and pop-
ulation data from a wider variety of sources are rapidly developing. Big Data analytics
technologies such as deep learning (DL), statistical analysis, data mining (DM), and ma-
chine learning (ML) are used to create state-of-the-art decision models [1]. Decision making
based on concrete evidence is crucial and has a dramatic effect on program implemen-
tation and public health. This highlights the significant role of a decision model under
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uncertainty, involving health intervention, disease control, health services and systems,
preventive medicine, quality of life, health disparities and inequalities, etc. A drug–drug
interaction (DDI) can occur when more than one drug is co-prescribed [2]. Even though
DDIs might have positive impacts, sometimes they have serious negative impacts and
result in withdrawing a drug from the market. DDI prediction could assist in reducing
the possibility of adverse reactions and improve the post-marketing surveillance and drug
development processes [3]. Medical trials are time consuming and impracticable with
respect to dealing with largescale datasets and the limitations of experimental conditions.
Hence, researchers have presented a computation method to speed up the process of pre-
diction [4]. The present computation DDI prediction method is divided into five classes of
models: DL-based, network-based, similarity-based, literature extraction-based, and matrix
factorization-based models.

ML techniques are an emerging area which are employed in large datasets for ex-
tracting hidden concepts and relationships amongst attributes [5]. An ML model can
be used to forecast outcomes. Since it is extremely complex for humans to process and
handle a large amount of data [6], hence, an ML model can play a major role to forecast
healthcare outcomes with high quality and cost minimization [7]. ML algorithms are based
primarily on rule-based, probability-based, tree-based, etc. methods. Large quantities of
data gathered from a variety of sources are applied in the data preprocessing stage. During
this stage, data dimension is minimized by eliminating redundant data. As the amount of
data increases, a model is not capable of making a decision. Hence, various methods must
be developed so that hidden knowledge or useful patterns are extracted from previous
information [8]. Then, a model using a ML algorithm is tested under test data to discover
the model’s performance, which can be augmented again by considering some rules or pa-
rameters. Generally, ML is utilized in the area of prediction, data classification, and pattern
recognition [9]. Numerous applications such as disease prediction, face detection, fraud
detection, traffic management, and email filtering, use the ML concept. The DL method
is part of ML algorithms, which makes use of supervised and unsupervised models for
feature classification [10]. The various elements of DL approaches are utilized in the field
of recommender systems, disease prediction, and image segmentation such as restricted
Boltzmann machines (RBM), convolution neural networks (CNN), and autoencoders (AEs).

In this study, we develop a sparrow search optimization with deep learning-based DDI
prediction (SSODL-DDIP) technique for healthcare decision making in big data environ-
ments. The presented SSODL-DDIP technique applies a multilabel long short-term memory
with an autoencoder (MLSTM-AE) model for the DDI prediction process. Moreover, a
lexicon-based approach is involved in determining the severity of interactions among the
DDIs. To improve the prediction outcomes of the MLSTM-AE model, the SSO algorithm is
adopted in this work. For ensuring better performance of the SSODL-DDIP technique, a
wide range of simulations are performed.

2. Related Works

In [10], the authors proposed a positive unlabeled (PU) learning model which utilized
a one-class support vector machine (SVM) model as the learning algorithm. The algorithm
could learn the positive distribution from the unified feature vector space of drugs and
targets, and regarded unknown pairs as unlabeled rather them labeling them as negative
pairs. Wang et al. [11] introduced a novel technique, multi-view graph contrastive rep-
resentative learning for DDI forecasting, MIRACLE for brevity, for capturing intra-view
interactions and inter-view molecular structure among molecules concurrently. MIRACLE
treated a DDI network as a multi-view graph in which all nodes in the interaction graph
were a drug molecule graph sample. The author employed a bond-aware attentive message
propagating algorithm for capturing drug molecular structured data and a graph convolu-
tion network (GCN) for encoding DDI relations in the MIRACLE learning phase. Along
with that, the author modeled an innovative unsupervised contrastive learning element to
integrate and balance multi-view data. In [12], the author devised a deep neural networks
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(DNNs) method that precisely identified the protein–ligand interactions with particular
drugs. The DNN could sense the response of protein–ligand interactions for the particular
drugs and could find which drug could effectively combat the virus.

Lin et al. [13] modeled an end-to-end structure, named a knowledge graph neural
network (KGNN), for resolving DDI estimation. This structure could capture a drug
and its neighborhood by deriving their linked relations in a knowledge graph (KG). For
extracting semantic relations and high-order structures of the KG, the author studied
the neighborhoods for all entities in KG as its local receptive, and then compiled neigh-
borhood data from representations of the current entities. Pang et al. [14] presented a
new attention-system-related multidimensional feature encoder for DDI estimation, called
attention-related multidimensional feature encoders (AMDEs). To be specific, in an AMDE,
the author encoded drug features from multidimensional features, which included data
from an atomic graph of the drug and a simplified molecular-input line-entry system
sequence. Salman et al. [15] modeled a DNN-oriented technique (SEV-DDI: Severity-DDI)
that included certain integrated units or layers for attaining higher accuracy and precision.
The author moved a step further and used the techniques for examining the seriousness of
the interaction, after outpacing other methods in the DDI classifier task successfully. The
capability to determine DDI severity helps in clinical decision aid mechanisms for making
very precise and informed decisions, assuring the patient’s safety.

Liu et al. [16] presented a deep attention neural network-related DDI predictive
structure (DANN-DDI), for forecasting unnoticed DDIs. Firstly, by utilizing the graph
embedding technique, the author framed multiple drug feature networks and learned drug
representation from such networks; after that, the author concatenated learned drug embed-
dings and implemented an attention neural network for learning representation of drug-
drug pairs; finally, the author devised a DNN to precisely estimate DDIs. Zhang et al. [17]
introduced a sparse feature learning ensembled approach with linear neighborhood regu-
larization (SFLLN), for forecasting DDIs. Initially, the authors compiled four drug features,
i.e., pathways, chemical structures, enzymes, and targets, by mapping drugs in distinct
feature spaces into general interaction spaces by sparse feature learning. Then, the au-
thors presented the linear neighborhood regularizations for describing the DDIs in the
communication space by utilizing known DDIs.

3. The Proposed Model

In this study, we introduce a novel SSODL-DDIP technique for DDI predictions in
big data environments. The presented SSODL-DDIP technique accurately determines the
relationship and drug properties from various sources to make predictions. It encompasses
data preprocessing, MLSTM-AE-based DDI prediction, SSO hyperparameter tuning, and
severity extraction.

3.1. Data Preprocessing

Standard text cleaning and preprocessing operations were carried out on sentences
involving but not constrained to lemmatization. Every drug discussed in a sentence was
considered and labeled to interact with others [18]. The number of drug pairs (DP) in a
sentence is evaluated as follows:

Drug Pairs (DP) = max (0,
n

∑
i=1

(i− 1)) (1)

where n indicates the number of drugs in a sentence.
In addition, drug blinding was used, whereby all the drug names were allocated to the

label, for a sentence, “Aspirin might reduce the effect of probenecid”, labeled sentence was
“DrugA might reduce the effect of DrugB”. The drug blinding method assists a technique
to identify this label as ”subject” and ”object” that ultimately assist an approach during
classification. Then, the processed sentence is given to the approach for classification and
detection of DDI.
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During word embedding, every word was converted into a real value vector. This
word mapping into the matrix can be performed using Word2Vec and embedding data
using the abstract of PubMed comprising the drugs.

s→i = WEMB · vs
i (2)

Every sentence is preprocessed and constitutes “si” and “dj”, where dj represents drug
labels and si is another word in the sentence. Every word “si” is transformed to the word
vectors using the word embedding matrices. Word embedding (WEMB) is an embedding
matrix and WEMB ∈ Rds×|V| whereas V′ denotes the vocabulary in the training dataset, ds
signifies the count of dimensions, and vs

i denotes the index of word embedding.

3.2. DDI Prediction Process

To predict the DDI accurately, the MLSTM-AE model is applied in this study. The
MLSTM-AE model learns to recreate a time flipped version of input [19]. Every input
electricity signal is denoted as χi =

{
χ1

i , χ2
i , . . . , χT

i
}

, and is of length T. The hidden state
vectors of long short-term memory (LSTM) encoding at Ph instant are represented as ht

i .
The encoder captures relevant data to recreate the input signals. Once it encodes the final
point in the input, the hT

i hidden state of the encoder is the vector depiction for the input
χi. The decoding has a similar network architecture as the encoding; however, it learns to
recreate a flipped version of e input, viz.,

{
χT

i , χT−1
i , χ1

i

}
. The last hidden state hT

i of the
encoder can be utilized as the first hidden state of decoding input. The targeted output
acts as a flipped version of input, viz.,

{
χT

i , χT−1
i , . . . , χ1

i

}
and the actual recreated one

is {χ̂, χ̂, . . . , χ̂}. The presented method has been demonstrated. Now, the encoder and the
decoders are LSTM for modeling dynamic signals. The depiction from the deep layer of the
encoder is interconnected with the output label through fully connected networks (FCNs).
The reconstruction utilized for training the MLSTM-AE model is formulated by:

Lrec =
1
N

N

∑
i=1

T

∑
;=1

(xt
i − x̂t

i )
2 (3)

where N denotes the overall sample count. Because, the final objective of the study is to
learn to categorize, the embedding from the hT

i hidden layer is passed via a fully connected
(FC) layer, the output of which is the class label. The class label is one-hot encoded. The
size of the label vector is equivalent to the number of appliances; once an appliance is
ON, the corresponding location of the label vector is 1 or else 0. This can be denoted
by yi =

{
y1

i , y2
i , . . . , yc

i
}

, considering C appliances. Figure 1 represents the structure
of MLSTM.

When the C th appliance is ON, the corresponding yc
i is 1; otherwise it is 0. The ground-

truth probability vector of ith samples are described as p̂i = yi/‖yi‖1. The predicted
probability vector can be represented as pi.

Lcls =
1
N

N

∑
i=1

c

∑
c=1

(pc
i − p̂c

i )
2 (4)

This algorithm has been trained collectively with the reconstruction loss and multilabel
classification loss, hence, the overall loss function is formulated by Equation (5):

L = Lcls + γLrec (5)
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Figure 1. Structure of MLSTM.

3.3. Hyperparameter Tuning Process

For the hyperparameter tuning process, the SSODL-DDIP technique uses the SSO
algorithm. The SSO is a recent metaheuristic approach which stimulates the anti-predatory
and predation actions of the sparrow population [20], particularly, in foraging, individual
sparrows act in two roles: joiner and discoverer. The discoverer is responsible for searching
the food and guiding others, and the joiner forages by following the discoverers. A
specific percentage of sparrows has been carefully chosen as the guarder that transmits
alarm signals and carries out anti-predation behavior while they realize the danger. The
discoverer position can be redeveloped as follows:

Xt+1
i,j =

Xt
i,j · exp

(
− i

α·T

)
R2 < ST

Xt
i,j + O · G R2 ≥ ST

(6)

In Equation (6), t is the existing value of update. T presents the maximal value of
update. Xt

ij defines the present position of the i− th agent. Xt+1
ij denotes the upgraded

position of the i− th sparrow in the j− th dimension α ∈ (0, 1] refers to a random number.
ST ∈ (0.5, 1] signifies a safety value. R2 ∈ (0, 1] defines a warning value. G denotes a 1× d
matrix where each value is 1. O represents a random variable.

The joiner position is regenerated as follows:

Xt+1
i,j =

O · exp
(

xw−Xt
i,j

i2

)
i > n/2

Xb + |Xt
i,j − Xb| · B · G otherwise

(7)

In Equation (7), Xb signifies the existing optimum position of the discoverer. Xw
describes the worst position of the sparrow, B denotes the 1× d matrix where every value
is equivalent to 1 or −1, and A+ = AT(AAT)−1. Figure 2 demonstrates the steps involved
in the SSO algorithm.

The position regeneration for the guarder can be defined as follows:

Xt+1
i,j =


Xt

best + β ·
∣∣∣Xt

i,j − Xt
best

∣∣∣ f tj > f tg

Xt
i,j + K ·

(
Xt

i,i−Xt
worst

( f ti− f tw)+ε

)
f ti = f tg

(8)
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Figure 2. Steps involved in the SSO algorithm.

In Equation (8), Xbest stand for the best global location. β and K ∈ [−1, 1] represent
two random integers; f ti defines the fitness value. f tw and f tg are the present worst and
best fitness values in the population, correspondingly; ε indicates a minimal number that is
closer to zero as explained in Algorithm 1.

Algorithm 1: Pseudocode of SSO algorithm

Define Itermax, NP, n, Pdp, s f , Gc, FSU and FSL
Arbitrarily initializing the flying squirrels places

FSi,j = FSL + rand() ∗ (FSU − FSL), i = 1, 2, . . . , NP, j = 1, 2, . . . , n

Compute fitness value

fi = fi
(

FSi,1, FSi,2, . . . , FSi,n
)
, i = 1, 2, . . . , NP

while Iter < Iter max

[sorted− f , sorte− index] = sort( f )

FSht = FS(sorte_index(1))

FSat(1 : 3) = FS(sorte−index(2 : 4))

FSnt(1 : NP− 4) = FS(sorte_index(5 : NP))

Create novel places
for t = 1 : n1(n1 = entire count of squirrels on acorn trees)
if R1 ≥ Pdp

FSnew
at = FSold

at + dgGc

(
FSold

ht − FSold
at

)
else

FSnew
at = random location

for t = 1 : n2(n2 = entire count of squirrels on normal trees moving to acorn trees)
if R2 ≥ Pdp

FSnew
nt = FSold

nt + dgGc

(
FSold

at − FSold
nt

)
else

FSnew
nt = random location

end
end
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for t = 1 : n3(n3 = entire count of squirrels on normal trees moving to hickory trees)
if R3 ≥ Pdp

FSnew
nt = FSold

nt + dgGc

(
FSold

ht − FSold
nt

)
else

FSnew
nt = random location

end
end

St
c =

√√√√ n

∑
k−−1

(FSt
atk − FShtk)

2, Sc min =
10B− 6

365Iter/(Iter max )/2.5

if st
c < sc min

FSnew
nt = FSL + Lévy(n)× (FSU − FSL)

end
Compute fitness value of novel places

fi = fi

(
FSnew

i,1 , FSnew
i,2 , . . . , FSnew

i,n

)
, i = 1, 2, . . . , NP

Iter = Iter + 1

end

The SSO algorithm derives a fitness function (FF) for reaching maximum classifier
performance. It determines positive values for signifying the superior outcome of the
candidate solutions. In this article, the reduction of the classifier error rate is the FF, as
presented below in Equation (9):

f itness(xi) = Classi f ierErrorRate(xi) =
number o f misclassi f ied samples

Total number o f samples
∗ 100 (9)

3.4. Severity Extraction Process

Lexicons such as Sent WordNet and WordNet Affect are common lexicons that are
utilized for extracting common sentiments of texts, for instance, movies and social reviews.
The subjectivity lexicon has been utilized for extracting subjective expression in arguments
or text statements. Several common and subjectivity lexicons have been changed in medici-
nal study to distinct healthcare tasks. A wide pharmaceutical lexicon has also progressed
specifically to the biomedical and healthcare domains and has been used for extracting
the sentiments of clinical and pharmaceutical text. It can extract the polarity of sentences
by executing Sent WordNet, and the interface has been classified as low, moderate, or
high levels, as dangerous and advantageous DDIs are dependent upon the polarity of
candidate sentences.

4. Results and Discussion

The experimental validation of the SSODL-DDIP technique was tested using drug
target datasets [10,21]. We used four different datasets to examine the performance of the
SSODL-DDIP technique. Table 1 presents the details of the datasets. The distribution of
samples under drug, target, and interactions is given in Figure 3.

Table 2 and Figure 4 present the performance of the SSODL-DDIP technique under
unlabeled and labeled samples on the top k% values. The results indicate that the SSODL-
DDIP technique effectively labeled the samples. For instance, on the top 10% of the
enzyme dataset, the SSODL-DDIP technique labeled 317 samples under 29,036 unlabeled
samples. Likewise, on the top 10% of the G protein-coupled receptors (GPCR) dataset, the
SSODL-DDIP technique labeled 311 samples under 1916 unlabeled samples. Similarly, on
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the top 10% of the ion channel dataset, the SSODL-DDIP technique labeled 395 samples
under 4026 unlabeled samples. Lastly, on the top 10% of the nuclear receptor dataset, the
SSODL-DDIP technique labeled 34 samples under 110 unlabeled samples.

Table 1. Details on the datasets.

Dataset Drug Target Interactions

Enzyme dataset 445 664 2926
Ion channel dataset 210 204 1467

GPCR dataset 223 95 635
Nuclear receptor dataset 54 26 90

Figure 3. Sample distribution.

Table 3 presents the overall results of the area under the ROC curve (AUC) and the
area under the precision-recall curve (AUPR) analysis of the SSODL-DDIP technique on
four datasets.

Figure 5 shows the comprehensive AUC values of the SSODL-DDIP technique under
different coefficient of variation (CV)_seed values. The figure shows that the SSODL-DDIP
technique reached maximum AUC values under all datasets. For instance, on the enzyme
dataset, the SSODL-DDIP technique attained higher AUC values of 93.46%, 97.32%, 96.72%,
88.33%, and 97.78% under CV_SEED values of 3201, 2033, 5179, 2931, and 9117, respectively.
On the GPCR dataset, the SSODL-DDIP technique attained higher AUC values of 87.09%,
84.82%, 87.17%, 88.50%, and 92.95% under CV_SEED values of 3201, 2033, 5179, 2931, and
9117, respectively.

Figure 6 presents the comprehensive AUPR values of the SSODL-DDIP technique
under different CV_seed values. The figure implied that the SSODL-DDIP technique
attained maximum AUPR values under all datasets. For example, on the enzyme dataset,
the SSODL-DDIP technique attained higher AUPR values of 60.29%, 68.78%, 66.59%,
54.85%, and 71.31% under CV_SEED values of 3201, 2033, 5179, 2931, and 9117 respectively.
On the GPCR dataset, the SSODL-DDIP technique attained higher AUPR values of 63.21%,
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62.04%, 63.58%, 66.67%, and 68.97% under CV_SEED values of 3201, 2033, 5179, 2931, and
9117 respectively.

Table 2. Analysis results of the SSODL-DDIP technique applied to distinct datasets.

Enzyme Dataset GPCR Dataset

Top k (%) Unlabeled Labeled Top k (%) Unlabeled Labeled

10 29,036 317 10 1916 311
20 58,173 478 20 3901 461
30 87,431 510 30 5966 497
40 116,727 516 40 8020 541
50 145,973 547 50 10,043 607
60 175,216 578 60 12,097 640
70 204,442 639 70 14,107 690
80 233,718 645 80 16,163 699
90 262,967 682 90 18,214 703

100 292,205 727 100 20,292 719

Ion Channel Dataset Nuclear Receptor Dataset

Top k (%) Unlabeled Labeled Top k (%) Unlabeled Labeled

10 4026 395 10 110 34
20 8052 736 20 241 36
30 12,219 802 30 374 36
40 16,418 803 40 503 38
50 20,358 1090 50 630 41
60 24,453 1189 60 760 41
70 28,596 1232 70 888 43
80 32,713 1277 80 1017 44
90 36,823 1346 90 1143 48

100 40,911 1422 100 1271 50

Figure 4. Result analysis of the SSODL-DDIP system: (a) Enzyme; (b) GPCR; (c) ion channel;
(d) nuclear receptor.
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Table 3. AUC and AUPR analysis of the SSODL-DDIP system under distinct datasets.

Enzyme Dataset GPCR Dataset

CV_SEED AUC AUPR CV_SEED AUC AUPR

3201 93.46 60.29 3201 87.09 63.21
2033 97.32 68.78 2033 84.82 62.04
5179 96.72 66.59 5179 87.17 63.58
2931 88.33 54.85 2931 88.50 66.67
9117 97.78 71.31 9117 92.95 68.97

Ion Channel Dataset Nuclear Receptor Dataset

CV_SEED AUC AUPR CV_SEED AUC AUPR

3201 83.71 61.46 3201 91.67 75.35
2033 88.11 66.96 2033 94.79 76.65
5179 91.94 67.55 5179 98.08 82.93
2931 83.98 63.18 2931 98.13 86.05
9117 92.00 70.34 9117 98.85 87.94

Figure 5. AUC analysis of the SSODL-DDIP technique under different CV_seed values.

Table 4 and Figure 7 show the results of a comparison study of the SSODL-DDIP
technique on four datasets in terms of AUC [22–25]. The experimental values indicate that
the SSODL-DDIP technique attained maximum AUC values under all datasets. For instance,
on the enzyme dataset, the SSODL-DDIP technique attained a higher AUC value of 97.78%.
In contrast, the bigram position-specific scoring matrix (PSSM), neural network (NN),
IFB, kernelized Bayesian matrix factorization with twin kernels’ (KBMF2K), drug-based
similarity inference (DBSI), and drug–target interaction prediction model using optimal
recurrent neural network (DTIP-ORNN) technique attained lower AUC values of 86%,
94.80%, 89.80%, 84.50%, 83.20%, 80.60%, and 96.10% respectively. On the GPCR dataset, the
SSODL-DDIP technique attained a higher AUC value of 92.95%. Conversely, the bigram
PSSM, NN, IFB, KBMF2K, DBSI, and DTIP-ORNN technique attained lower AUC values
of 86%, 87.60%, 88.90%, 88.90%, 81.20%, 85.70%, 80.30%, and 91.53%, respectively.
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Figure 6. AUPR analysis of the SSODL-DDIP system under different CV_seed values.

Table 4. Comparative analysis of the SSODL-DDIP technique on different datasets in terms of AUC.

Methods Enzyme GPCR ION Channel Nuclear Receptor

UDTPP 86.00 87.60 77.50 80.00
Bi-gram PSSM 94.80 88.90 87.20 86.90

Nearest neighbor 89.80 88.90 85.20 82.00
IFB model 84.50 81.20 73.10 83.00
KBMF2K 83.20 85.70 79.90 82.40

DBSI 80.60 80.30 80.30 75.90

DTIP-ORNN 96.10 91.53 90.14 98.72
SSODL-DDIP 97.78 92.95 92.00 98.85

Table 5 and Figure 8 present a comparative inspection of the SSODL-DDIP technique
on four datasets in terms of AUPR. The simulation values indicate that the SSODL-DDIP
technique attained maximum AUPR values under all datasets. For instance, on the enzyme
dataset, the SSODL-DDIP technique attained a higher AUPR value of 71.31%. In contrast,
the bipartite local model (BLM), self-training support vector machine with BLM (SELF-
BLM), positive-unlabeled learning with BLM (PULBLM)-3, PULBLM-5, PULBLM-7, and
DTIP-ORNN technique attained lower AUPR values of 57.00%, 63.00%, 67.00%, 67.00%,
66.00%, and 69.01% respectively. In addition, on the GPCR dataset, the SSODL-DDIP
technique attained a higher AUPR value of 68.97%. In contrast, the bigram BLM, SELF-
BLM, PULBLM-3, PULBLM-5, PULBLM-7, and DTIP-ORNN technique attained lower
AUPR values of 55.00%, 60.00%, 64.00%, 64.00%, 65.00%, and 67.20%, respectively. These
results confirmed the effective DDI prediction results of the SSODL-DDIP technique.

Table 5. Comparative analysis of the SSODL-DDIP technique on different datasets in terms of AUPR.

Methods Enzyme GPCR ION Channel Nuclear Receptor

BLM 57.00 55.00 47.00 42.00
SELF-BLM 63.00 60.00 51.00 45.00
PULBLM-3 67.00 64.00 60.00 58.00
PULBLM-5 67.00 64.00 61.00 59.00
PULBLM-7 66.00 65.00 63.00 59.00

DTIP-ORNN 69.01 67.20 68.12 86.38
SSODL-DDIP 71.31 68.97 70.34 87.94
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Figure 7. AUC analysis of the SSODL-DDIP technique: (a) Enzyme; (b) GPCR; (c) ion channel;
(d) nuclear receptor.

Figure 8. AUPR analysis of the SSODL-DDIP technique: (a) Enzyme; (b) GPCR; (c) ion channel;
(d) nuclear receptor.



Int. J. Environ. Res. Public Health 2023, 20, 2696 13 of 15

5. Conclusions

In this study, we introduced a novel SSODL-DDIP technique for DDI predictions in
big data environments. The presented SSODL-DDIP technique accurately determined the
relationship and drug properties from various sources to make a prediction. In addition, the
MLSTM-AE model was employed for the DDI prediction process. Furthermore, a lexicon-
based approach was involved in determining the severity of interactions among the DDIs.
To improve the prediction outcomes of the MLSTM-AE model, the SSO algorithm was
adopted in this work. To assure better performance of the SSODL-DDIP technique, a wide
range of simulations were performed. The experimental outcomes show the promising
performance of the SSODL-DDIP technique over recent state-of-the-art methodologies.
Thus, the SSODL-DDIP technique can be employed for improved DDI predictions. In the
future, hybrid metaheuristics could be designed to improve the prediction performance. In
addition, outlier detection and clustering techniques could be integrated to enhance the
predictive results of the proposed model.
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Abbreviations

Abbreviation Meaning
DDI Drug–drug interactions
ML Machine learning
DL Deep learning
SSODL-DDIP Sparrow search optimization with deep learning-based DDI prediction
MLSTM-AE Multilabel long short-term memory with an autoencoder
DM Data mining
RBM Restricted Boltzmann machines
CNN Convolution neural networks
AE Autoencoder
PU Positive unlabeled
SVM Support vector machine
GCN Graph convolution network
DNN Deep neural networks
KGNN Knowledge graph neural network
KG Knowledge graph
AMDE Attention-related multidimensional feature encoders
SEV-DDI Severity DDI
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DANN-DDI Deep attention neural network-related DDI
SFLLN Sparse feature learning ensembled approach with linear neighborhood

regularization
DP Drug pairs
WEMB Word embedding
LSTM Long short-term memory
FCN Fully connected networks
FC Fully connected
FS Flying Squirrels
GPCR G protein-coupled receptors
AUPR Area under the precision-recall curve
AUC Area under the ROC Curve
CV Coefficient of variation
PSSM Position-specific scoring matrix
NN Neural network
KBMF2K Kernelized Bayesian matrix factorization with twin kernels
DBSI drug-based similarity inference
DTIP-ORNN Drug–target interaction prediction model using optimal recurrent neural

network
BLM Bipartite local model
SELF-BLM Self-training support vector machine with BLM
PULBLM Positive unlabeled learning with BLM
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