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Abstract: As containers of human activities, both urban and rural built-up settlements play roles in 

the increment of regional GHG emissions. This study investigates the relationship between the spa-

tial characteristics of different urban-rural settlements and carbon emissions in Guangdong prov-

ince, China. After estimating the carbon emissions of 21 cities in Guangdong province from 2005 to 

2020, this paper constructs a panel regression model based on the STIPRAT model to identify the 

impact of different types of urban-rural settlements on carbon emissions with controlling socioeco-

nomic factors. The results show that the increase in high-density urban areas and low-density rural 

built-up areas have a significant positive correlation with carbon emissions. Moreover, the impact 

of rural built-up settlements is stronger than urban areas. In addition, our results indicate that car-

bon emission has little correlation with the spatial landscape pattern. This study highlights the im-

portance of rural built-up settlements for understanding regional carbon emissions. Local govern-

ments should not only focus on the reduction of carbon emissions in the large urban agglomerations 

but also need to make a plan for the small and medium-sized towns that are dominated by indus-

tries. 
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1. Introduction 

The interlocking crises caused by GHG emissions have been the focus of various re-

search fields [1–3]. It is well-known that urban areas play a vital role in the increase of 

energy consumption and GHG emissions [4,5]. Urban areas are aggregations of popula-

tion, economic activities, goods and services. More than 70 percent of global GHG emis-

sions associated with energy production are related to cities [5,6]. Researchers across dis-

ciplines have investigated various factors that could affect GHG emissions in urban areas, 

such as population [7], income [8,9], transportation [10], and urban forms [11,12]. How-

ever, few of these studies explore regional carbon emissions beyond the urban areas. Alt-

hough some scholars have discussed household carbon emissions and carbon efficiencies 

in non-urban areas [13,14], a more comprehensive analysis awaits development. Different 

from western developed countries, in developing countries, especially in Southeast Asia, 

the population of rural settlements is dense, and mixed agriculture and industrial activi-

ties are located in many villages [15,16]. However, the direct and indirect carbon emis-

sions in these rural places are often neglected [16]. 

Furthermore, the broad classification of urban and non-urban settlements is not 

enough to present the complex distribution of GHG emissions. From the perspective of 

urbanization, different types of human settlements are transforming from one to another 

during the process. The result of the transformation could be various, such as small cities, 
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suburbs, and industrial zones. Which type of built-up settlements generate more GHG 

emissions still lacks understanding at a regional level. Although scholars have studied 

carbon emissions at different spatial scales, such as regions [17], provinces [18] and urban 

areas [19], these administrative spatial scales are insufficient to find out the influential 

type of settlements. Therefore, a downscaling illustration of different genres of urban-ru-

ral settlements is required to comprehensively analyze carbon emissions at a regional 

level. 

Therefore, to fill the above research gap, this paper intends to study the effect of dif-

ferent urban-rural settlements on carbon emissions at a provincial-regional scale, which 

assumes that both urban and rural built-up settlements play evident roles in the increment 

of GHG emissions. Hence, we select the Guangdong province of China as the study case, 

estimate the carbon emissions data from 2005 to 2020 and extract the corresponding spa-

tial characteristics of different built-up settlements, to quantify the relationship between 

spatial characteristics and GHG emissions. The land proportion of different urban-rural 

settlements and spatial morphological forms of all built-up settlements are selected to rep-

resent the spatial characteristics. Furthermore, we utilize a fixed effects model extended 

from the STIRPAT model to control the socioeconomic factors and include spatial charac-

teristics as technological variables. The results demonstrate that the area increases of cer-

tain types of settlements generate significant influences on carbon emissions. By contrast, 

the morphological characteristics of urban forms fail to generate an impact on GHG emis-

sions after controlling for sociodemographic factors. Specifically, rural villages in Guang-

dong are positively associated with GHG emissions due to the allocation of local indus-

tries. Although the metropolitan area is the major contributor to emissions in terms of 

volume, the intensity of carbon emissions is lower than in these rural settlements. 

The main contribution of this paper lies in that it analyzes the relationship between 

different types of urban-rural settlements and carbon emissions at a regional scale from a 

dynamic perspective. How socio-demography, different built-up settlements, and spatial 

forms are associated with carbon emissions are comprehensively discussed. It yields an 

empirical result to highlight the importance of local context for understanding regional 

carbon emissions, which is vital for the optimization of spatial planning and low-carbon 

development. 

2. Literature Review 

The fundamental reason for understanding carbon emissions through the spatial per-

spective is that the physical space is the container of human activities and human activities 

are the most significant driver of GHG emissions. Among all types of physical space, ur-

ban-rural settlements are areas where most GHG emissions originate [4]. Therefore, schol-

ars have tried to analyze the relationship between the characteristics of built-up space and 

carbon emissions, which includes the type of settlements [20], volume [13], spatial forms 

[21], and the arrangement of land uses. This section reviews the relationship between 

built-up settlements and carbon emissions in terms of the above aspects. 

2.1. Urban-Rural Settlements and Regional Carbon Emissions 

The urban settlement accounts for the largest portion of carbon emissions, and hence 

it is under the spotlight of academic research, just as the statement in the introduction. In 

terms of the volume of settlements, the expansion of urban settlements brings increases in 

GHG emissions [9,22]. Moreover, in the same country, GHG emissions also change signif-

icantly depending on the city’s size and degree of prosperity [23]. On the other hand, nu-

merous studies focused on the bilateral correlation between urbanization and carbon 

emissions, which indicated that the positive correlation was not stable and permanent. 

Martínez-Zarzoso and Maruotti [24] studied the relationship between carbon emissions 

and urbanization at a global level. They proposed an inverse “U”-shape theory to describe 

the relationship at different stages of social development. The GHG emissions rose with 

the urbanization process at the early stage of development. However, the relationship 
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would turn to a negative correlation when urbanization reached a high level. The higher 

level of urbanization brought a higher utilization efficiency of resources that could reduce 

carbon emissions to a certain extent [25]. However, the major limitation of this research 

lies in that it cannot infer the integral regional carbon emissions. As Baiocchi, Creutzig, 

Minx and Pichler [20] mentioned, “such an approach may suppress both spatial context, 

non-linear effects, and the interdependence of emission drivers”. There is still a lack of 

downscaling understanding concerning which type of built-up settlement could generate 

more GHG emissions. 

Regarding other types of settlements, the major focus is the rural household carbon 

emissions and carbon efficiencies [13,26,27]. In general, household carbon emissions in 

rural settlements are lower than in urban settlements. However, the GHG emission from 

private transportation grew faster than urban residents during 1996–2012 in China [27]. 

Moreover, black carbon emissions (the incomplete combustion of fossil fuels, biofuel, and 

biomass) also contributed to the GHG emissions significantly in many rural areas of Asia 

[28]. Zhu et al. [29] studied the carbon emissions of the urban-rural fringe area in East Asia 

and concluded that the pressure of GHG emissions in these settlements was higher than 

in the urban center due to the higher production emissions. 

So far, few studies have considered rural settlements as a spatial unit to observe GHG 

emissions. Discussion regarding other types of settlements was also rare. However, the 

above studies showed the necessity of rural settlements in being considered in research 

on regional carbon emissions. 

2.2. Spatial Forms and Carbon Emissions 

Regarding carbon emissions and the arrangement of land uses, the most common 

approach is to utilize land use as the proxy to study the variation of regional carbon emis-

sions [30–32]. The spatial utilization of the built-up space–land uses, and spatial forms 

will affect the efficiency and pattern of regional carbon emissions. Overall, results showed 

that the spatial distribution of total carbon emissions was mainly from the built-up land 

and with strong spatial heterogeneity. Zhang and Wu [33] further quantified how the 

change in built-up land uses impacts carbon emissions through structural equation mod-

eling, indicating that regulating the location, scale, and intensity of land uses can be a 

feasible approach to promote emission reduction. 

However, as Cai et al. [11] stated, most current spatial simulations of carbon emis-

sions based on land uses failed to consider the impact of urban forms. The urban spatial 

form could reflect the urban traffic network, infrastructure, functional areas, and spatial 

organization of the population [34]. Kennedy et al. [35] noticed that geophysical condi-

tions and technical factors could influence urban GHG emissions. The design of the urban 

structure was considered a technical factor in their research. Essentially, the urban form 

could reflect the degree of diversity and complexity of human settlements. According to 

the definition of technology, Crawford [36] argued that “technology can also be viewed 

as a more comprehensive sociotechnical system”, and thus the urban form could be 

counted as a technical factor in the sociotechnical system. 

At present, scholars mainly use the landscape pattern index [21,34,37], network den-

sity of roads [38], and population density [39,40] to measure urban forms. Several studies 

indicated that compact cities could improve carbon emission efficiency [38,39], and a di-

versified spatial arrangement is a lower-carbon form than a mono-organization [41]. For 

example, Fang et al. [42] concluded that the increased urban shape complexity tended to 

generate a positive influence on CO2 emissions among 30 provincial capital cities in 

China. Moreover, the relationship between complex urban spatial forms and carbon emis-

sions is more significant in large cities [12]. However, Wang et al. [43] found that a more 

polycentric urban form did not have a significant relationship with GHG emissions. 

Despite this, few of them explored the relationship at a regional level and combined 

socioeconomic factors to conduct in-depth research. The true impact of spatial forms on 

GHG emissions will not appear until other socioeconomic factors are controlled in the 
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model. Therefore, this study is going to consider the spatial form of built-up settlements 

as a technical factor and enter them into an extended STIRPAT model for discussing the 

compound effect of spatial form on GHG emissions. Moreover, inspired by the study of 

Crawford [36], this study considers both genres and forms of human settlements as tech-

nical factors in the model because they are the production and representation of historical 

and current human development. 

3. Materials and Methods 

3.1. Study Area and Research Design 

Since China’s reform and opening up in the 1980s, urbanization and economic 

growth have advanced by leaps and bounds, and the total carbon emissions also have 

increased rapidly. The average annual increasing rate of China’s carbon emissions 

reached 7.86% from 1997 to 2012 and slowly declined after 2013 [44]. Nevertheless, the 

total carbon emissions remained at a high level and extended to 10081.34 million tons in 

2021, according to the data from International Energy Agency [45]. For enacting effective 

mitigation strategies, it is necessary to understand the GHG emissions in different regions 

of China because the territorial and socioeconomic differences are huge within these re-

gions. Therefore, we choose Guangdong province as representative of the most developed 

region of China to analyze the historical evolution of GHG emissions and its relationship 

with spatial characteristics of built-up settlements. 

As a manufacturing hub of China, the Guangdong province is a coastal province lo-

cated in the south of China, which consists of 21 cities (Figure 1). The Gross Domestic 

Product (GDP) retained the first ranking in China for 32 years and reached approximately 

USD 1.79 trillion in 2021. According to the seventh national census data, the total popula-

tion was about 127 million, and the average rate of urbanization was 74.63% in 2020. 

Therefore, Guangdong province is a typical place that can reflect the environmental effect 

of rapid economic development. On the other hand, the developing differences among 

cities are notable. The urbanization rate of the Pearl River Delta (Guangzhou, Shenzhen, 

Foshan, Zhaoqing, Dongguan, Huizhou, Zhuhai, Zhongshan, and Jiangmen) reached 

86.28%, and the built-up area exceeded 30% of the administrative area, which is also one 

of the economic and industrial engines in China. By contrast, the urbanization rate was 

60.38% in the eastern region of Guangdong, 45.18% in the west, and 50.80% in the northern 

part. Such a regional difference is helpful in understanding how spatial characteristics are 

correlated with GHG emissions. 
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Figure 1. Study area. 

This study quantifies the relationship between carbon emission and spatial charac-

teristics of urban-rural settlements at a city level based on the administrative boundary of 

Guangdong province. A 15-year land uses dataset is used to estimate the carbon emissions 

and calculate the morphological characteristics of all built-up areas. A global human set-

tlement dataset is utilized to extract the variations of different types of urban-rural settle-

ments in Guangdong province. The research design (Figure 2) follows three main steps: 

1. utilizing land uses data to access carbon emissions (Section 3.3); 

2. extracting spatial characteristics in terms of different urban-rural types and morpho-

logical forms of all built-up settlements (Section 3.4); 

3. quantifying the relationship by a fixed-effect model (Section 3.5). 
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Figure 2. Research framework. 

3.2. Data Collection and Processing 

The land uses data that we use is from the Institute of Geographic Sciences and Nat-

ural Resources Research(data source: CNLUCC [46]). It contains 26 categories of land uses 

with an accuracy of 1 × 1 km, such as paddy fields, shrubbery, rural settlements, and urban 

land. We obtained six years of data: 2005, 2010, 2013, 2015, 2018, and 2020. The socioeco-

nomic data is extracted from the Guangdong Statistical Yearbook, which is released every 

year by the Statistics Bureau of Guangdong province [47]. The granularity of statistics 

consists of a city level, a regional level and a provincial level. In this study, we used city-

level data in the corresponding years of land use datasets. The total population is defined 

by the number of permanent residents (that is, people who have lived in the place for 

more than six months). 

The human settlement dataset is extracted from the GHSL (Global Human Settlement 

Layer) of the European Commission [48], from which categories and standards of classi-

fications are listed in Table 1. Since the two datasets have the same spatial accuracy, the 

spatial unit of the calculation is set as a 1 km2 grid in all cities of Guangdong. However, 

as the GHSL data is only released every five years, we estimate the data of the missing 

years (2013, 2018) by the interpolation method: 

��� = ���� × (1 + ��)�  (1)

where ��� is the area of type i settlement within the administrative area of a city; �� is 

the average changing rate of one type of human settlement in five years, and n is the num-

ber of years. ���� is the area of type i in the base year. For example, the area of UC in 

2013 is estimated by the average variation of UC from 2010 to 2015, in which 2010 is the 

base year. 
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Table 1. Classification of urban-rural types. 

Category of Urban-Rural  

Settlement 
Classification Standard (Unit: 1 km2 Grid) 

 

Population Density 

Constraint “>“  

(Person/km2) 

Block Total Popula-

tion Constraint “>“ 

(Total Person) 

Built-Up Area 

Constraint “>“ 

(km2) 

Spatial Constraints 

Large dense urban area (UC) 1500 50,000 0.5  4-connectivity cluster 

Medium Dense Urban Area 

(DUC) 
1500 5000 0.5  4-connectivity cluster 

Low to Medium Dense Urban 

Area (SDUC) 
300 5000 0 

(1) 8-connectivity cluster; 

(2) Distance to UC or DUC 

> 3 km 

Suburban or peri-urbanized 

area (SUA) 
300 5000  0 

(1) 8-connectivity cluster; 

(2) Distance to UC or DUC 

< 3 km 

Dense Rural Area (RA) 300 500 0 8-connectivity cluster 

Low Dense Rural Areas (LR) 50 0 0 None 

Very Low Dense Rural Regions 

(SLR) 
0 0 0 land area > 50% 

Source: adapted from Schiavina, Melchiorri, Pesaresi, Politis, Freire, Maffenini, Florio, Ehrlich, Goch 

and Tommasi [48]. 

3.3. Estimation of Carbon Emissions 

Following the energy carbon emission coefficient method of the IPCC inventory [49], 

this paper estimates the carbon emissions of each city in Guangdong province by sum-

ming the energy consumption on five types of land use: industry, transportation and stor-

age, cultivated land, urban built-up area, and rural built-up area. Utilizing the energy bal-

ance sheet of Guangdong Province in the corresponding year, we estimate carbon emis-

sions of energy consumptions on different land uses. The formula is expressed as: 

��� =  ∑ ��� × �����   (2)

where GHG is the total amount of carbon emissions; t is the year, i is the energy type; Ei 

stands for the energy consumption of i type of energy (converted to standard coal), and β 

is the carbon emission coefficient, which is listed in Appendix A Table A1. The final car-

bon emissions of a city are the sum of GHG of the above land uses within its administra-

tive boundary. 

3.4. Indicators of Spatial Characteristics of Urban-Rural Settlements 

The measure of spatial characteristics of urban-rural settlement in this study is di-

vided into two aspects: the urban-rural type and the morphological form of all built-up 

settlements. Types of human settlement space refer to the division of human settlement 

according to the population density and the built-up settlement type, such as urban areas 

with a high density of population, suburban areas, and rural areas. In order to avoid the 

effect of proportionality between socioeconomic factors and built-up factors, this paper 

chooses the form of percentage as the characteristics of urban-rural settlement in a city. 

The calculation is expressed as: 

��� = ∑ ��� ����� ����⁄    (3)

in which �� represents the proportion of an urban-rural type, and Total Area is the area 

of a city’s administrative divisions in 2022. 

The morphological characteristics of human settlement refer to the spatial forms of 

all urban-rural built-up areas at a city level, which is analyzed by the landscape pattern 
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index [50] using the land uses dataset. The landscape pattern index is a set of quantitative 

indicators that reflect the composition of landscape patterns. Following previous studies 

[21,38], this paper utilizes six landscape indicators to describe the spatial form pattern 

(Table 2). The calculation process is completed by FragStats software (version 4.2). 

Table 2. Landscape pattern indicators and interpretations. 

Landscape Pattern Index Meaning Value Range 

Number of built-up spa-

tial patches (NP) 

Describe the degree of fragmentation of built-up patches. The larger 

number of NP is, the higher the degree of fragmentation of built-up 

spatial forms. 

Integral number 

Largest Patch Index (LPI) 
The proportion of the largest patch of a continuous built-up patch in 

the entire built-up area. 
[0, 1] 

Landscape Shape Index 

(LSI) 

Measure the irregularity index of built-up space. The larger LSI indi-

cates the more complex form of built-up area. 
≥1 

COHESION 
Measure the aggregation degree of built-up patches. COHESION in-

creases as the patch aggregates in its distribution. 
(0,100] 

Perimeter Area Fractal 

Dimension (PAFRAC) 

Measure the complexity of spatial form. The larger the value, the 

more complex the spatial form. 
[1, 2] 

Mean Shape Index 

(SHAPE_MN) 

Measure the complexity of spatial form. The larger the value, the 

more complex the shape of this type of patch. 
>0 

3.5. Fixed Effects Model Based on STIRPAT Model 

York et al. [51] proposed the STIRPAT model (The Stochastic Impacts by Regression 

on Population, Affluence, and Technology) on the basis of the IPAT model. The STIRPAT 

considers the impact of population, wealth, and technological factors on the environment 

and solves the problem of proportionality between variables [52]. This model is one of the 

most commonly used methods for studying the relationship between carbon emissions 

and socioeconomics [53,54]. Moreover, scholars often extended the basic model by adding 

more contextual variables or control variables for investigating more relationships be-

tween carbon emissions and other factors, such as human activities [55] and urbanization 

[8]. The basic form of the model is expressed as: 

� = ���
���

���
���   (4)

Among them, I is the environmental impact pressure, P is the population, A is the 

wealth, T is the technical influence factor, a is the model tensor parameter, b, c, and d are 

the impact parameters to be estimated, e is the error term, j is the corresponding spatial 

observation unit. In the field of carbon emissions, the environmental impact usually cor-

responds to the number of carbon emissions; P is the total population, and A is the GDP 

per capita. The logarithmic form is usually used for transforming the model into an ad-

dictive model: 

��� = �� + ���(��) + ���(��) + �(����)   (5)

Since it is difficult to define the proxy of the technology influencing factor T, scholars 

have many different interpretations. For example, Cao et al. [56] considered T as energy 

intensity, and Ji and Chen [57] used the share of industry output to approximate the T 

factor. Liu, Zhou and Wu [7] combined the share of added values of industry and the 

industry energy intensity (expressed as industry energy use per unit GDP) to construct 

the T factor. As mentioned in Section 2.2, Crawford [36] argued that the urban spatial form 

should be considered as the T factor. 

Since the influence of technology is so complex, this study decided to utilize energy 

intensity and spatial characteristics as technical factors in the model. The former is more 
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related with the economic and industrial progress, the latter is more correlated with the 

evolution of built-up space. The EI is the GHG emissions per GDP, which is defined as: 

�� =
���

���
  (6)

Meanwhile, we take the population, per capita GDP, and EI as control variables to 

analyze the effect of spatial characteristics of built-up settlements on GHG emissions. In-

dicators of spatial characteristics enter into the extended model as technological parame-

ters. The model is adapted as follows: 

��� = �� + ���(��) + ���(��) + �(�����) +  �(���) + �(���) + ��   (7)

where j is the city, C refers to the GHG emissions; � is the total population of the city, and 

A is the GDP per capita. PT represents variables of the percentage of different human 

settlements, LS is the indicator of spatial landscape form, and ε is the error term. Table 3 

describes the time interval and basic statistics of all variables in the model. 

Table 3. Descriptive statistics of variables. 

Variables  Mean Std. Dev. Min Max Type  Data Source 

A Mean Std. Dev. Min Max 
Dependent 

variables 
CNLUCC 

LnC 7.805  0.795  6.202  9.337   

Census LnPOP 6.108  0.556  4.953  7.536  
Control varia-

bles 

LnPerGDP 1.158  0.898  −0.956  2.753   

LnEI 0.348  0.462  −1.011  1.377  

PT variables GHSL 

PSD_SLR 0.482  0.204  0.129  0.803  

PSD_LR 0.135  0.047  0.037  0.251  

PSD_RA 0.017  0.008  0.000  0.034  

PSD_SUA 0.149  0.079  0.041  0.430  

PSD_SDUC 0.011  0.008  0.000  0.039  

PSD_DUC 0.025  0.011  0.004  0.049  

PSD_UC 0.169  0.203  0.008  0.716  

LS variables CNLUCC 

NP 149.079  105.307  20.000  488.000  

LPI 29.440  24.256  4.745  94.474  

LSI 13.668  3.886  7.661  24.262  

SHAPE_MN 1.186  0.141  1.056  1.726  

PAFRAC 1.579  0.042  1.418  1.665  

Time interval 2005, 2010, 2013, 2015, 2018, 2020   

Notes: P: Percentage. 

The next step is to determine the form and effect of the panel data model. Firstly, it 

is not necessary to examine the cointegration of the panel data in our model since the 

number of observations is larger than the number of the period. The regression will give 

a consistent estimation in this case [58]. Secondly, we use LSDV (least-squares dummy 

variable) regression to perform an F-test on individual dummy variables for determining 

the form of model-mixed cross-sectional regression (Pooled OLS) or variable coefficient 

model. The p-value of the F-test is less than 0.05, and thus the variable coefficient model 

should be conducted. The Hausman test is used to test the effects of the mode-random or 

fixed, which it turned out has rejected the null hypothesis. Therefore, according to the 

result of these statistical tests (Table 4), the entity fixed-effects model is adopted. In addi-

tion, the model uses the cluster–robust estimator to reduce the heterogeneity. The formula 

then becomes: 
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����� = �� + �������� + ����(��,�) + ����(���,�) + �����,�
� + �����,�

�  + ��,�   (8)

where β, γ, and μ are terms are coefficients for independent variables, t represents 

time; �� is the unknown intercept for each entity (that is, cities in this study); ��� refers 

to the i th PT variables, and ��� is the i th indicator of landscape patterns. To reduce the 

collinearity and heterogeneity (see the Pearson correlation test in Appendix A Figure A1, 

variables of spatial characteristics are introduced into the model one by one. All tests and 

calculations regarding the model are executed by STATA software (version 16). 

Table 4. F-test and Hausman test of the model. 

Model Selection 
Dependent  

Variable 
Statistical Test Test Result 

Mixed or variable coeffi-

cient panel Models 

LnC F test Chi-sq 10.76 

  p-value 0 

Fixed or random effects 
LnC Hausman test 

sigmamore  

Chi-sq 74.52 

 p-value 0 

4. Results 

4.1. Evolution of Carbon Emissions in Guangdong Province 

Figure 3 displays the carbon emissions of cities in Guangdong Province in the last 20 

years. The region with high carbon emissions was mainly concentrated in the Pearl River 

Delta region. Guangzhou, Foshan, Shenzhen, and Dongguan were the main contributors 

to carbon emissions in Guangdong. The total GHG emissions in the rest cities of Guang-

dong were relatively low, which just accounted for 30% of the province. However, cities 

with higher average increasing rates of carbon emissions (over 20%) were located out of 

the Pearl River Delta region, such as Maoming, Qingyuan, Zhaoqing, and Yangjiang. 

 

Figure 3. Temporal trends of total carbon emissions in cities of Guangdong. 

In general, 2005–2010 was the period of the fastest growth in carbon emissions. Com-

pared with 2005, GHG emissions in Guangdong province increased by 147% in 2010 (Fig-

ure 4). After that, the increasing rate tended to fall to less than 20%, compared to the pre-

vious period, even appeared a negative increase in Yunfu, Shantou, and Shaoguan in 2018. 

Although the increasing rate of Guangzhou, Shenzhen, Foshan, and Dongguan was lower 



Int. J. Environ. Res. Public Health 2023, 20, 2659 11 of 23 
 

 

than other cities, their sizeable volume of carbon emissions that led to the increment was 

still huge. 

 

Figure 4. Percentage increase of GHG emissions. Note: the percentage increase is based on the last 

recorded year. For example, the increment rate of 2010 is based on 2005, et cetera.   

4.2. Transition of Urban-Rural Types of Settlements in Guangdong Province 

Leveraging the variation of areas of different urban-rural settlements in the study 

period, we can figure out the direction and size of urbanization in Guangdong. This sec-

tion only discusses the difference between the start year (2005) and the final year (2020) 

because of the space limitation. The chord diagram (Figure 5) shows the direction of trans-

formation between different urban-rural settlements in Guangdong Province from 2005 

to 2020. The general trend was those rural built-up settlements transformed into urban 

areas. It coincided with the process of urbanization and the agglomeration of the popula-

tion in Guangdong province. The average urbanization rate of Guangdong increased from 

60.68% in 2005 to 74.15% in 2020. In the same period, about 50% of LR (low dense rural 

region) and RA (dense rural region) converted into small and medium towns (SDUC) or 

were absorbed by large dense urban areas (UC) as suburban areas (SUA). In rural types, 

21.2% of the very low-density rural region (SLR) has transformed into the low dense rural 

region (LR). Meanwhile, a portion of LR also has become RA during the past 15 years. 

Amid urban types, the suburbs and semi-urbanized regions (SUA) have been absorbed 

by medium-to-high-density urban areas (UC and DUC). Compared to 2005, all surfaces 

of urban types have expanded, especially the SUA, whose area increased by nearly 49%. 

The specific number could be found in the transformation matrix (see Appendix A Table 

A2). 
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Figure 5. Chord diagram of urban-rural types in Guangdong Province from 2005 to 2020.  

Secondly, in terms of differences in urban-rural types among cities, an evident heter-

ogeneity can be observed in Guangdong. Figure 6a,b indicate that UC is mainly distrib-

uted in the Pearl Delta River region and Shantou. The latter belonged to one of the special 

economic zones of China established in 1981. Within the Pearl Delta River region, com-

pared with 2005, UC became larger in Guangzhou and shrunk in Zhongshan in 2020. One 

possible explanation was the competition of cities in the Pearl Delta River region led to 

Zhongshan’s “degradation”. The GDP of Zhongshan has fallen from fifth to ninth in 

Guangdong province. The DUC only increased by 5% from 2005 to 2020 in terms of the 

total amount. The P_DUC (Figure 6c,d) mainly increased in cities located in the eastern 

region of Guangdong, such as Meizhou, Chaozhou, and Heyuan, while it decreased in the 

Pearl Delta River region. 

 

Figure 6. The spatial distribution of P_UC and P_DUC in 2005, 2020. 



Int. J. Environ. Res. Public Health 2023, 20, 2659 13 of 23 
 

 

The SDUC can be interpreted as towns as small cities according to its technical defi-

nition (Table 1). The P_SDUC (Figure 7a,b) mainly increased and distributed in the north-

western side of Guangdong, including Maoming, Yunfu, Zhaoqing, Zhanjiang, Qingyuan, 

and Jiangmen. Although the total surface of SUA dramatically increased, the percentage 

of SUA did not increase in all cities (Figure 7c,d). The P_SUA did not change significantly 

in Qingyuan, Shaoguan, and Heyuan, which took a lower P_SUA in 2005. By contrast, 

cities with more SUA areas in 2005 further expanded their proportion of SUA in 2020, 

such as Maoming, Zhanjiang, Foshan, and Zhongshan. 

 

Figure 7. The spatial distribution of P_SDUC and P_SUA in 2005 and 2020.   

Regarding the rural space, the disappearance of very low-dense rural areas (SLR) 

occurred in most of the cities of Guangdong (Figure 8), though the northern part of Guang-

dong still retained a higher P_SLR in 2020. Dongguan had the smallest P_SLR in 2005 and 

further decreased by about 3.6% in 2020. Conversely, the rest cities with higher P_SLR 

dropped by 12% on average. The largest descent of P_SLR happened in Huizhou, where 

SLR mainly transformed into a suburban or peri-urbanized area (SUA). Similarly, other 

cities also did not transform into metropolitan areas except Guangzhou. As the provincial 

capital, master planning has designed Guangzhou to develop into an international me-

tropolis. Therefore, the destination of its major land conversion was UC. 

 

Figure 8. The spatial distribution of P_SLR in 2005,2020.  
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The rural settlement also tended to aggregate to the denser rural settlements (RA and 

LR). However, just as Figure 5 performed, nearly half of RA was transformed into urban 

types, and thus the P_RA maintained the same level in 2020 (Figure 9a,b). Conversely, the 

P_LR significantly increased in 19 cities except for Shenzhen and Zhuhai (Figure 9c,d). 

Heyuan, Meizhou, and Yangjiang increased by over 8%, and the following were Jiangmen 

and Zhaoqing. These cities also held a higher rise in GHG emissions. To sum up, it could 

conclude that the metropolitan area concentrated in the Pearl Delta River region, espe-

cially in Guangdong, Foshan, Shenzhen, and Dongguan. 

 

Figure 9. The spatial distribution of P_RA and P_LR in 2005,2020.  

To sum up, the urbanization of Guangdong province varied in different cities. The 

transformation of settlement type was not only the large urban area. In fact, the expansion 

of SUA and SDUC was evident in many cities. Moreover, the increase of rural settlements 

also significantly increased. It indicated that the urban settlements might not be the single 

genre that was related to GHG emissions. Therefore, the next section explored the rela-

tionship in detail. 

4.3. Carbon Emission and Spatial Characteristics of Urban-Rural Settlements 

Tables 5 and 6 list all stable models and results with the same control variables (the 

natural log of population, GDP per capita, and energy intensity). Model_1 in Table 5, as 

the primary form of STIRPAT, is the base model for comparison. As a result, the spatial 

characteristics seem to be considered separately due to the high collinearity between land-

scape patterns and urban-rural types, though we have tried all possible combinations of 

morphological and genre variables. The compound effect is discussed in Section 4.3.2. In 

general, the impact of landscape patterns on GHG emissions was insignificant or very 

low. Conversely, the type of built-up space has a stronger impact on carbon emissions. 
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Table 5. Model results of GHG emissions and urban-rural settlements. 

 Model_1  Model_2  Model_3  

Independent 

Variables 
Coef. Sig. Coef. Sig. Coef. Sig. 

LnPOP 0.484  0.000  0.702  0.000  0.632  0.000  

LnperGDP 0.524  0.000  0.480  0.000  0.474  0.000  

LnIC 0.653  0.000  0.771  0.000  0.806  0.000  

P_UC   1.155  0.007  2.056  0.007  

P_DUC       

P_SDUC       

P_SUA     1.282  0.013  

P_LR   3.778  0.000  3.439  0.000  

P_RA       

NP       

LPI       

LSI       

PARFRAC       

COHESION       

Constant 4.016  0.000  1.987  0.031  2.112  0.022  

R-sq (within) 0.780   0.806   0.811   

F-statistic 295.620    213.680   263.300  

Prob (F-statistic) 0.000   0.000   0.000  0.000  

 Model_4  Model_5  Model_6  

Independent 

Variables 
Coef. Sig. Coef. Sig. Coef. Sig. 

LnPOP 0.744  0.000  0.698  0.000  0.593  0.000  

LnperGDP 0.467  0.000  0.473  0.000  0.476  0.000  

LnIC 0.771  0.000  0.766  0.000  0.816  0.000  

P_UC 1.330  0.001  1.236  0.008  2.223  0.005  

P_DUC 8.660  0.089      

P_SDUC   −5.648  0.236    

P_SUA     1.688  0.028  

P_LR 3.847  0.000  4.641  0.001  3.264  0.000  

P_RA     5.458  0.453  

NP       

LPI       

LSI       

PARFRAC       

COHESION       

Constant 1.489  0.071  1.955  0.038  2.187  0.014  

R-sq (within) 0.812   0.809   0.812   

F-statistic  253.120   191.560   239.400  

Prob (F-statistic) 0.000   0.000  0.000  0.000  0.000  

N.of observation 126 

Confident inter-

val 
95% 

Note: The grey color indicates that the variable is insignificant in the model at 0.05 level. The fol-

lowing tables are the same. 
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Table 6. Model results of GHG emissions and landscape pattern indicators. 

 Model_7  Model_8  Model_9  

Independent Variables Coef. Sig. Coef. Sig. Coef. Sig. 

LnPOP 0.505  0.000  0.514  0.000  0.701  0.000  

LnperGDP 0.522  0.000  0.527  0.000  0.481  0.000  

LnIC 0.666  0.000  0.682  0.000  0.772  0.000  

P_UC         1.156  0.006  

P_DUC             

P_SDUC             

P_SUA             

P_LR         3.727  0.000  

P_RA             

NP 0.001  0.071          

LPI             

LSI     0.029  0.003  0.002  0.855  

PARFRAC             

COHESION             

Constant 3.743  0.000  3.418  0.000  1.973  0.031  

R-sq (within) 0.7813 0.785    0.8062 

F-statistic   244.64   252.760  201.820    

Prob (F-statistic)   0   0.000  0.000    

       

N.of observation 126 

Confident interval 95% 

4.3.1. Urban-Rural Types and GHG Emissions 

The high R2 value of the base model indicates that sociodemographic factors are the 

main drivers of carbon emissions. Moreover, the results from Model_2 to Model_6 con-

firm that indicators of built-up settlements perform a significant and positive impact on 

GHG emissions because the R2 of these models is higher than the base model. Specifically, 

the percentage of large and high-density urban areas (P_UC), low-density rural built-up 

settlements (P_LR), and urban, suburban areas(P_SUA) have a stable and significant pos-

itive effect in all models, which means that the increment of these types is positively asso-

ciated with the GHG emissions in Guangdong regardless of socioeconomic factors. In 

other words, the increases in carbon emissions are more correlated with these three types 

of built-up settlements in Guangdong. The P_DUC, P_SDUC, and P_RA only account for 

a low proportion in all cities (see Section 3.2), and thus their effects are not significant in 

models (see Model_4 and Model_5) at the 0.05 level. The P_SLR is excluded from models 

due to its highly negative correlation with GHG emissions. 

Model_3 obtained the highest R2 value (0.811) among models, indicating that it is the 

most explanatory model regarding GHG emissions. The R2 of Model_6 is slightly higher 

than Model_3. However, P_RA loses significance in Model_6. If we remove P_RA, 

Model_6 will be the same as Model_3. Model_4 is a similar circumstance. Regarding 

Model_2 and 3, Model_2 would be the best fitting model if we follow the strictest criteria, 

that is, significance at 0.01 level. In that case, P_SUA would become an insignificant factor. 

However, as stated in Section 3.2, the area of SUA in 2020 expanded by 49% compared to 

2005. From this point of view, the model that includes P_SUA can better explain the re-

gional carbon emissions. Therefore, we select Model_3 as the final model for further anal-

ysis. 

The coefficient of P_LR is the highest among other urban-rural types in Model_3, 

which means that a higher percentage of low-dense rural settlements is associated with 
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higher carbon emissions. The rest models also appear to have a similar relationship. Such 

a finding could be interpreted from two aspects. Firstly, as previous studies pointed out 

[21,39], the carbon emission efficiency of compact high-density urban areas (UC) was sig-

nificantly higher than that of low-density rural built-up areas. Secondly, another possible 

explanation is that many village-level industrial parks have emerged in Guangdong Prov-

ince since the 1980s [59]. They are mainly distributed in the Pearl River Delta, western 

Guangdong, and northern Guangdong. It was coincident with the increases of LR in 19 

cities of Guangdong during this period. The seven cities with over 20% of the average 

increasing rate of GHG emissions also had a higher percentage of LR in 2020, except Fo-

shan and Chaozhou. The P_LR of Foshan was not high because of its high percentage of 

urbanization. Moreover, Foshan has started to upgrade these village-level industrial parks 

since 2000 [60]. Another supportive evidence is the increment in the population. Accord-

ing to the 2021 census of Guangdong province, the increase of population in the rest of 

Guangdong was slower than in the Pearl Delta River region. Some cities even appeared 

the decrement of population, such as Heyuan, Shanwei, and Zhanjiang. 

P_UC is the second influential type in the model. The correlation between large dense 

urban areas and carbon emissions was confirmed by many studies [5,8,11]. Except for the 

possible reason above, another possible explanation that the influence of P_UC is less than 

P_LR is the heterogeneity of spatial distribution of urban-rural types. Shenzhen, Guang-

zhou, and Shantou are cities with the largest increase in P_UC. However, the total carbon 

emission of Shantou was not as high as the two cities. The urban size of Shantou is only 

half of Shenzhen, though its increased percentage of PC is high. Regarding the P_SUA, it 

is the most increased category in all urban-rural types, while its relationship to GHG emis-

sions is not the most prominent (Model_3 and 6). One possible reason is the function of 

SUA in these cities. The suburban or peri-urbanized areas are usually constructed with 

more dwellings and fewer manufacturers because the housing market is profitable in 

China. Furthermore, the density of the population is lower than in the UC, and thus the 

household emissions are less than in the urban center. 

According to the models’ results, at the provincial level, the route and size of urban-

ization and economic development are different in cities, which lead to the contribution 

of different settlement type in GHG emissions are different. The impact of urban settle-

ments actually was less than the rural settlements in Guangdong due to its local condi-

tions. Such a complex local context consists of land policies, economic triggers, competi-

tions among local governments, and so on. However, the detailed reason for the develop-

ment mode in Guangdong province is beyond the aim of the paper. 

4.3.2. Spatial Morphological Forms and GHG Emissions 

Table 6 shows that the impact of landscape patterns on GHG emissions was not sta-

tistically significant after controlling socioeconomic factors, though both Model_7 and 

Model_8 exhibit a slightly higher R2 value than the base model. The number of built-up 

patches (NP) was not significant in Model_7 at the 0.05 level. The complexity index (LSI) 

of built-up patches of human settlements only has a slight impact on the carbon emission 

in Model_8. 

Although Yuan, Guo, Leng and Song [21] and Ou, Liu, Li and Chen [38] concluded 

that the landscape pattern could affect carbon emissions in the metropolis and middle-

small cities, they only discussed the landscape patterns in urban and failed to add the 

socioeconomic factors into the model. Model_9 tries to explore the compound effect of 

both spatial indicators by adding two stable variables of urban-rural types in previous 

models. However, LSI becomes insignificant because P_UC and P_LR are more influential 

factors, which could further support the conclusion that the GHG emission is more corre-

lated with genres of built-up types than the landscape forms. 
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5. Discussions and Policy Implications 

Empirically, we analyze the spatial characteristics of 21 cities in Guangdong province 

and investigate their correlation with carbon emissions from 2005 to 2020. Nine fixed-ef-

fect models are estimated for validating the relationship under different combinations of 

variables. The results show that different types of built-up settlements are significantly 

correlated with GHG emissions. Conversely, the spatial form merely has a limited influ-

ence on carbon emissions, which is contrary to some previous studies, as we stated in 

Section 4.3.2. 

As the carrier of human activities [61,62], the GHG emissions are not evenly distrib-

uted in the built-up space due to the density of the population, the function of the settle-

ment, and other external influences. In the context of Guangdong province, the continu-

ous expansion of built-up areas, mainly at the expense of the very low density of the rural 

region (SLR), corresponds to the increase of GHG emissions in general. The simplified 

relationship between urban settlements and GHG emissions has been confirmed by pre-

vious studies [37,57]. 

Regarding the increases in GHG emissions, the Pearl Delta River region contributes 

to 70% of the total emissions in Guangdong. It is also the region with the highest degree 

of urbanization. From 2005 to 2020, the population increased from 454.7 million to 782.3 

million in the region, according to the census. However, cities with a high increase rate 

are located out of the region, such as Maoming, Qingyuan and Yangjiang. These cities 

share two common points: (1) they are still in the process of urbanization; (2) many facto-

ries are built or transferred from the Pearl Delta River region due to government policy. 

Therefore, it could conclude that the emission increase is mainly caused by the socioeco-

nomic development in the region. A downscaling analysis based on different settlements 

is beneficial for understanding the dynamic spatial distribution of GHG emissions. 

Furthermore, the effects of the expansion of these settlements are different. P_LR is 

the most influential type under different model assumptions. As stated in Section 4.3.1, it 

is related to the industrial development in villages and towns of Guangdong and the re-

gional contexts. Although many studies have investigated GHG emissions in China at 

different levels and from different perspectives [9,22,42,44], they did not notice the role of 

rural settlements in carbon emissions during the development of industrialization and 

urbanization. Meanwhile, such a finding indicates that the carbon emission efficiency of 

high-density urban areas is significantly higher than that of rural built-up areas, which is 

also observed by Fan, Liao, Liang, Tatano, Liu and Wei [14] at the national level and Zhu, 

Zhang, Gao and Mei [29] in many cities of East Asia. Other built-up spaces, such as RA, 

SDUC, and DUC, do not perform statistical significance in the model because their varia-

tion and proportion of the total area are smaller than other types. 

Therefore, according to the result, for the governance strategy of emission reduction, 

Guangdong province should not only focus on the reduction of carbon emissions in the 

large urban agglomerations but also need to make a plan for the small and medium-sized 

towns that are dominated by industries. As a policy tool, spatial planning can intervene 

in the reduction of GHG emissions by arranging land resources, setting protective regu-

lations, and other administrative and market-based strategies [63–65]. Different emission 

reduction strategies should be formulated according to different built-up types and local 

scenarios. For high-density urban areas, the area of the built-up region should be con-

trolled rigidly, while the improvement of carbon emission efficiency should be the focus 

in rural built-up areas. Moreover, it is necessary to strengthen the regulation and surveil-

lance of GHG emissions beyond the urban areas, especially in the Pearl River Delta and 

the western and northern regions of Guangdong. Spatial-explicit assessments of GHG 

emissions should be adopted in these areas for selecting priority areas for emission reduc-

tions and developing a suitable plan to upgrade the industry. 
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6. Conclusions 

Leveraging the extended STIPRAT model, this study takes socioeconomic conditions 

and carbon emission intensity as control variables and constructs a fixed-effect regression 

model to discuss the role of different urban-rural settlements and spatial forms in GHG 

emissions. Our result confirms that the increase of high-density urban areas (UC), suburbs 

(SUA), and low-density rural built-up areas (LR) has a significant positive correlation with 

carbon emissions. On the contrary, the built-up landscape patterns fail to generate a sig-

nificant effect on the GHG emissions in Guangdong province. 

The effects of different settlements on carbon emissions in Guangdong also showed 

an apparent heterogeneity across cities. Even though Guangdong is one of the most de-

veloped regions in China, the unbalanced development caused the different forms of set-

tlements among cities. The emission effect of urban settlement growth mainly happened 

in the Pearl Delta River region. The effect of LR expansion could be observed in cities 

where many industries were located. These results demonstrated that improving the strat-

egy of land use and upgrading village industries might still be necessary and urgent to 

mitigate GHG emissions. 

Overall, we have shown how and why GHG emissions differ for cities in Guangdong 

province in the last 15 years. The downscaling methodology described the important 

types of urban-rural settlements regarding GHG emissions. The result may allow policy-

makers to understand and potentially reduce emissions in Guangdong. However, this 

study is limited by the uncompleted dataset. We are unable to deepen the analysis due to 

the lack of data in villages. In addition, the current datasets of estimation of GHG emis-

sions are hard to compare to each other, which indicates that the result cannot be validated 

by other datasets at a small scale, though the general trending is the same. Nevertheless, 

as urbanization is still ongoing and the environmental pressure is still tremendous in 

China, the comprehensive analysis regarding land policy, the transformation of rural set-

tlements, and GHG emissions should be further analyzed in future work. 
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Appendix A 

Table A1. Energy conversion coefficient of the studied year. 

Energy 2005 2010  2013 2015 2018 2020 

Raw coal (10,000 tons) 2.256 2.136 2.016 2.045 2.233 2.239 

Washed coal (10,000 tons) 2.589 2.589 2.589 2.589 2.589 2.589 

Other coal washing (10,000 

tons) 
1.511 1.511 1.511 1.524 1.553 1.553 

Briquette (10,000 tons) 1.747 1.747 1.747 1.747 1.747 1.747 

Coal gangue (10,000 tons) 0.000 0.575 0.633 0.633 0.633 0.575 

Coke (10,000 tons) 2.946 3.067 3.067 3.067 3.067 3.067 
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Coke oven gas (100 million cu-

bic meters) 
8.954 8.328 8.328 8.328 8.328 8.328 

Blast furnace gas (100 million 

cubic meters) 
0.000 2.012 2.012 2.012 2.012 2.012 

Converter gas (100 million cu-

bic meters) 
0.000 4.538 4.538 4.538 4.538 4.538 

Other gas (100 million cubic 

meters) 
5.117 3.178 3.178 3.178 3.178 3.178 

Other coking products (10,000 

tons) 
3.644 3.644 3.644 3.644 3.644 3.644 

Total oil products (10,000 tons) 3.107 3.082 3.100 3.118 3.117 3.100 

Crude oil (10,000 tons) 3.067 3.067 3.067 3.067 3.067 3.067 

Gasoline (10,000 tons) 3.158 3.158 3.158 3.158 3.158 3.158 

Kerosene (10,000 tons) 3.158 3.158 3.158 3.158 3.158 3.158 

Diesel (10,000 tons) 3.128 3.128 3.128 3.128 3.128 3.128 

Fuel oil (10,000 tons) 3.067 3.067 3.067 3.067 3.067 3.067 

Naphtha  

(10,000 tons) 
0.000 3.220 3.220 3.220 3.220 3.220 

Lubricating oil  

(10,000 tons) 
0.000 3.036 3.036 3.036 3.036 3.036 

Paraffin  

(10,000 tons) 
0.000 2.930 2.930 2.930 2.930 2.930 

Solvent oil  

(10,000 tons) 
0.000 3.149 3.149 3.149 3.149 3.149 

Petroleum asphalt  

(10,000 tons) 
0.000 2.812 2.812 2.812 2.812 2.812 

Petroleum coke  

(10,000 tons) 
0.000 2.254 2.254 2.254 2.254 2.254 

Liquefied Petroleum Gas  

(10,000 tons) 
3.680 3.680 3.680 3.680 3.680 3.680 

Refinery dry gas  

(10,000 tons) 
3.373 3.373 3.373 3.373 3.373 3.373 

Other petroleum products  

(10,000 tons) 
2.814 2.855 2.855 2.855 2.855 2.855 

Natural gas  

(100 million cubic meters) 
21.840 21.840 21.347 21.347 21.038 20.955 

Liquefied natural gas  

(10,000 tons) LNG 
2.874 2.886 2.886 2.886 2.903 2.892 

Heat  

(millions of kilojoules) 
0.093 0.113 0.112 0.110 0.115 0.107 

Electricity  

(100 million kWh) 
7.912 7.140 6.606 5.752 6.061 5.354 

Other energy sources  

(10,000 tons of standard coal) 
/ 0.000 0.000 0.000 0.000 0.000 

Source: own elaboration. 
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Table A2. Guangdong Province Built-up Spatial Density Type Transition Matrix. 

Area (km2) 2020 Type 

2005 Type SRL LR RA SUA SDUC DUC UC Total 2005 

SRL 92,056 19,577 454 2101 261 6 250 114,705 

LR 146 11,000 1342 7405 929 44 286 21,152 

RA - 189 1670 1173 589 15 2 3638 

SUA 29 322 25 15,338 394 1085 1715 18,908 

SDUC - 64 80 884 1041 45 - 2114 

DUC - - 10 506 120 2440 500 3576 

UC 30 79 - 870 - 160 10,918 12,058 

Total 2020 92,470 31,325 3583 28,296  3335 3795 13,685 177,667 

Note: “-” means that this paired item was not detected according to the GHSL data. 

 

Figure A1. The Pearson correlation between variables.  
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