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Abstract: The complex formation mechanism and numerous influencing factors of urban waterlogging
disasters make the identification of their risk an essential matter. This paper proposes a framework
for identifying urban waterlogging risk that combines multi-source data fusion with hydrodynamics
(MDF-H). The framework consists of a source data layer, a model parameter layer, and a calculation
layer. Using multi-source data fusion technology, we processed urban meteorological information,
geographic information, and municipal engineering information in a unified computation-oriented
manner to form a deep fusion of a globalized multi-data layer. In conjunction with the hydrological
analysis results, the irregular sub-catchment regions are divided and utilized as calculating containers
for the localized runoff yield and flow concentration. Four categories of source data, meteorological
data, topographic data, urban underlying surface data, and municipal and traffic data, with a total
of 12 factors, are considered the model input variables to define a real-time and comprehensive
runoff coefficient. The computational layer consists of three calculating levels: total study area, sub-
catchment, and grid. The surface runoff inter-regional connectivity is realized at all levels of the urban
road network when combined with hydrodynamic theory. A two-level drainage capacity assessment
model is proposed based on the drainage pipe volume density. The final result is the extent and
depth of waterlogging in the study area, and a real-time waterlogging distribution map is formed. It
demonstrates a mathematical study and an effective simulation of the horizontal transition of rainfall
into the surface runoff in a large-scale urban area. The proposed method was validated by the sudden
rainstorm event in Futian District, Shenzhen, on 11 April 2019. The average accuracy for identifying
waterlogging depth was greater than 95%. The MDF-H framework has the advantages of precise
prediction, rapid calculation speed, and wide applicability to large-scale regions.

Keywords: risk identification; disaster risk assessment; urban waterlogging; multi-source data;
environmental risk; flood prediction; hydrodynamics; GIS

1. Introduction

Urban waterlogging disasters are characterized by high suddenness, extensive cover-
age, and catastrophic devastation, and have become one of the most threatening disasters in
the world [1]. In recent decades, continued urbanization has resulted in an annual increase
in the population density and land use [2]. Numerous flood-prone low-lying sites have been
incorporated into building plans, and poor drainage capacity has further exacerbated the
risk of flooding [3]. During extreme rainstorms or typhoons, the intensity of the storm often
far exceeds the design drainage capacity of the municipal system [4]. The surface rainfall
cannot be drained in a timely manner, thus forming surface runoff and further converging
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into waterlogging. Urban flooding risk identification can predict the area, depth, and veloc-
ity of waterlogging under different storm intensities and generate real-time urban storm
flooding risk maps. This can be used as a decision-making resource for predicting urban
floods during extreme rainfall occurrences [5]. Early warning information has been a crucial
component of flood mitigation [6]. There has been a lot of research conducted on urban
waterlogging prediction and risk identification. The urban waterlogging prediction methods
can be roughly divided into five categories: statistical methods, hydrodynamic methods,
data-driven approaches, remote sensing methods, and multi-source data fusion methods.

Statistical methods. The moving-window variance technique, which does not require
baseflow estimation for defining the start and end of a flood event, was suggested [7]. In
flood vulnerability mapping, the robustness of the statistical and MCDM (multi-criteria
decision making) models is evaluated. The validation results demonstrate that the statistical
models provide more accurate predictions than the MCDM model [8]. To assess urban
waterlogging risk, a spatial framework integrating WNB (Weighted Naive Bayes) with GIS
was developed, and its results demonstrated a more accurate spatial pattern of the urban
waterlogging risk [9]. A flood risk detection method that uses static Bayesian networks
and historical data to generate flood risk nodes can explain the flood prediction logic more
clearly than the machine learning “black box” model [10].

Hydrodynamic methods. The hydrodynamic model necessitates extensive urban
subsurface data, and for data-rich study areas, the hydrological model can produce more
accurate simulation results. The disadvantage is that the modeling process is complex, so
it is difficult to apply it to large-scale urban flooding risk identification. A methodology
considering the variability of the building types and the spatial heterogeneity of land
surfaces was proposed. The model complexity is increased stepwise by adding components
to an existing 2D overland flow model [11]. Some research analyzed local rainfall patterns
and used a coupled hydrodynamic model for the waterlogging simulation [12]. Using gra-
dient estimation, the method based on the D8 algorithm and fourth-order finite-difference
techniques has been shown to locate the runoff and ponding points [13].

Data-driven approach. Chen et al. tested and compared the prediction capabilities
of the naive Bayes tree (NB Tree), the alternating decision tree (AD Tree), and the random
forest (RF) approaches for the spatial prediction of flood. The probability certainty factor
(PCF) technique was utilized to assess the relationship between the factors and flood
occurrences [14]. The long and short-term memory and support vector regression models
perform better than the artificial neural network models for hourly flood forecasting at
a fine scale. Comparing the models during the dry season and the rainy season revealed that
the models were more sensitive during the rainy season. It was found that the sensitivity
of the models was higher in the rainy season [15]. Flood data has the advantage of being
easy to call when analyzing floods. Some scholars have used GBDT to build a model for
predicting flood zones and can achieve an accuracy of 88.48%, which greatly increases the
prediction performance [16]. The prediction results of machine learning flood identification
methods are accurate, but the model is difficult to interpret. On the other hand, the method
requires high requirements for historical flooding data, and good training results often
need a large amount of spatial and temporal flooding data to support them. In reality,
it often relies on the deployment of a large number of sensors to collect the spatial and
temporal flooding data, which is relatively costly.

Remote sensing methods. With the gradual rise in remote sensing resolution, the
inundation extraction model based on remote sensing has been able to be employed for
inundation risk identification. This method mainly compares the remote sensing images
before and after flooding in a particular area and extracts the extent and depth of the
inundation after processing. It can provide pre-disaster reference information as well as
statistics about the affected area. Shao et al. put forward an urban multi-level watershed
runoff monitoring model that can be used to analyze the relationship between impervious
surfaces and urban runoffs at multi-scale watersheds [17]. A hybrid method for urban
flood mapping by combining random forest and texture analysis based on high-resolution
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UAV imagery was proposed. A random forest consisting of 200 decision trees was utilized
to extract the inundated areas [18]. The remote sensing methods lack a description of
the flooding process and cannot be continuously simulated in real time. Resources, such
as remote sensing satellites and aircraft, are scarce and unevenly distributed, making it
difficult to promote their use on a large-scale in a short period of time.

Multi-source data fusion methods. The city waterlogging application domain exten-
sion (CTVLADE) includes data from hydrology, meteorology, planning, and mapping to
study the mechanisms of waterlogging occurrence and cessation [19]. A novel emergency
decision model based on a similarity algorithm for case inference is created and validated
using the emergency case of urban waterlogging. It is proved that the model has a high
degree of adaptability and can provide a good reference to assist the decision making for
disaster incidents [20]. Li et al. combined multi-source data fusion and neural network
modeling to build a prediction model. By constructing a fuzzy matrix, they achieved the
goal of a low error rate and faster computing speed [21].

In summary, the main problems of the current research include: (1) Inadequate de-
scription of the mechanism of urban waterlogging runoff yield and flow concentration, and
an approach that lacks an explanation and simulation of the process and outcomes of floods.
(2) Inadequate consideration of the factors influencing the formation and spread of urban
waterlogging, as well as a significant gap between some assumptions and the actual situation.
(3) The data pre-processing of the model is not meticulous, and the data’s generalizability and
applicability are lacking. (4) Some strategies struggle to simultaneously improve the model’s
prediction accuracy and processing efficiency. (5) It is unsuitable for large-scale regions.

This paper focuses on the identification of the waterlogging risk in large-scale urban
areas. The main feature of this method compared to the above is that it can be applied
to large-scale study areas. The modeling workload is smaller because there is no need
to construct surface and underground pipe network models. The model parameters are
easier to set, and the requirements for urban subsurface and historical waterlogging data
are low. The calculation speed is faster and the accuracy is higher. Combined with the
evolution simulation of hydrodynamics, the model is able to simulate the waterlogging
process well and has good interpretability. Compared with other methods for the large-
scale identification of urban waterlogging (Table 1), the method proposed in this paper
has obvious advantages, especially for the large-scale study area, in terms of adaptability,
computational speed, and interpretability (more4 Positive indicators). It is also the least
dependent method on historical data (# Negative indicators are lower).

Table 1. Comparison of the main methods of current waterlogging risk identification.

Indicators Statistical
Methods

Data-Driven
Approach

Remote Sensing
Methods

Hydrodynamic
Methods

Multi-Source Data
Fusion Methods

Large-scale study
applicability 444 44 4444 4 4444

Modeling workload ## #### ## ##### ##

Accuracy requirements for
urban subsurface data ### ## # ##### ##

Waterlogging process
simulation capability 4 4 4 44444 444

Accuracy requirements for
historical flooding data ### ##### ##### ## #

Calculation speed 4 4444 44 4 4444
Interpretability 44 4 44 44444 4444
Prediction or

identification accuracy 44 4444 4 44444 444

4: Positive indicators; #: Negative indicators.
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2. Methodology
2.1. MDF-H Urban Waterlogging Risk Identification Framework

Multi-source data fusion is the process of combining data from different sources to
evaluate the robustness and completeness of a given system. Since a single data source
cannot provide enough information to fully detect a complex system, multi-source data
fusion can yield comprehensive and reliable results after combining data sets that reflect
various characteristics of the system [22]. According to the classification of algorithm con-
cepts, there are three main categories, namely: physical model-based, parameter-based, and
epistemic model-based, among which the parameter-based methods are most widely used.

This paper proposed a framework for urban flooding risk identification by combining
multi-source data fusion and hydrodynamic modeling (Figure 1). We have combined
the domain knowledge, references to the other literature, and simulation experiments to
validate the selection and construction of the factors. The mechanism behind these factors
is the process of the runoff yield and flow concentration formation due to waterlogging
caused by heavy rainfall. Although this process is continuous and complex, we discretize
the continuous confluence process and perform hydraulic calculations by dividing the
computational unit. From the grid level to the sub-catchment level, the aggregation from
micro to macro computation is realized. At the global scale of the study area, it is equivalent
to a continuous process. The formation of urban storm waterlogging is related to several
factors [23], which can be summarized into three main categories, namely gain factors,
impedance factors, and flow concentration distribution factors. The gain factor is mainly
the rainfall intensity and rainfall duration, which show a positive correlation with the
scale of flooding. The return period of the rainfall refers to the average time between the
possible occurrence of a rainfall intensity greater than or equal to this value, in years, and
the recurrence period is inversely proportional to the frequency. The impedance factor co
sist of certain factors that are negatively related to the formation of waterlogging and can
impede the generation of standing water. The main factors include the surface infiltration
capacity, drainage capacity, evaporation, etc. [24]. The flow concentration distribution
factor is mainly related to topography, geomorphology, roads, and surface structures [25].
The rainfall causes a continuous increase in the surface runoff, and the overflowing surface
runoff is influenced by gravity to flow horizontally from high terrain to low terrain areas.
The continuously increasing surface runoff cannot be discharged by the drainage system in
time, thus forming waterlogging in low-lying areas. In terms of the rainfall process, the
extent and depth of waterlogging generally increases continuously. The specific process by
which rainfall is eventually transformed into waterlogging is complex. The process can be
divided into two phases based on hydrodynamics: runoff yield and flow concentration.
The runoff yield is the flow of the rainfall falling to the ground, minus the infiltration,
evaporation, and entry into the drainage network. The surface runoff formed in the runoff
yield stage will be influenced by the topography and slope, from high terrain to low terrain.
In the flow concentration stage, the continuous flow converges toward the lowest point
of the area and forms internal flooding in a short period of time. The contribution of each
factor to the formation of inland flooding is relatively independent, and we also performed
correlation degree detection in certain regions without the problem of multicollinearity. It
proves that there is no redundancy in the overall framework.
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Figure 1. MDF-H Framework: where U is the unified fusion parameter, E is the elevation, Ris is
the rainfall intensity, Riv is the rainfall interval, Rd is the rainfall duration, H is the building height,
S is the slope, Fd is the flow direction, L is the land cover type, N is the road network, DP is the
drainage pipes, RG is the rainwater grate, SC is the sub-catchment, M is the mean monthly rainfall
rank, SER is the soil erosion rate, BRC is the basic runoff coefficient, CRC is the comprehensive runoff
coefficient, RWARC is the regional weighted mean runoff coefficient, RDC is the regional drainage
coefficient, D is the waterlogging depth, V is the runoff flow velocity, and A is the area of SC. The
data descriptions and sources used in this framework in the case study refer to Table 2.

Table 2. Data sources and data resolution accuracy corresponding to each factor involved.

Item Data Description Data Source Resolution

Digital Elevation
Model (DEM)

Realize digital simulation of ground terrain
through limited terrain elevation data (2020). BIGEMAP 5 m × 5 m

Land cover type

Current status of all land use in the city,
including construction land, broad-leaved
forest land, coniferous forest land, water

bodies, wetlands, etc. (2015).

2015 Global Fine Land cover
product (GLC_FCS30-2015)

produced by The Academy of
Aerospace Information Innovation,

Chinese Academy of Sciences

30 m × 30 m

Building height
Building vector files containing building
location, height, number of floors, floor

space, etc. (2018).
BIGEMAP 0.01 m

Drainage system Rainwater outlet vector file, including
location, orifice size, orifice shape (2015).

Water Bureau of Shenzhen
Municipality (WBSM) 0.001 m

Rainfall intensity Rainfall per unit time (2015). Shenzhen Meteorological Bureau
(SMB) 0.01 mm/min

Historical waterlogging
sensor data

Waterlogging sensor monitoring data
(184 stations, 2020).

Water Bureau of Shenzhen
Municipality (WBSM) 0.01 m, 5 min

Historical
meteorological

station data

Meteorological observation data of rainfall,
wind speed, visibility, temperature, and

humidity at 242 stations in the city (2020).

Shenzhen Meteorological Bureau
(SMB) 0.1 mm, 5 min

Urban Road network Vector file of roads at all levels in Futian
District, Shenzhen (2021). OpenStreetMap 0.01 m
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2.2. Building Multi-Source Parameter Layers

Different parameter layers are constructed by combining the magnitudes of each
influencing factor parameter and converting them into the form of parameters that can be
involved in hydrological calculations. There are relatively large differences in the structure,
format, and magnitude of each raw dataset. The DEM, land cover type, slope, etc. are
raster data. The drainage pipes and rainwater outfalls are vector data, and rainfall data are
time series. According to the final task objective, each type of data is unified into different
parameter layers according to the study area (Figure 2), and the parameter information
within each parameter layer is used as the input factor of the model.

Int. J. Environ. Res. Public Health 2023, 20, x  6 of 27 
 

 

involved in hydrological calculations. There are relatively large differences in the struc-
ture, format, and magnitude of each raw dataset. The DEM, land cover type, slope, etc. 
are raster data. The drainage pipes and rainwater outfalls are vector data, and rainfall data 
are time series. According to the final task objective, each type of data is unified into dif-
ferent parameter layers according to the study area (Figure 2), and the parameter infor-
mation within each parameter layer is used as the input factor of the model. 

 
Figure 2. Building a multi-source data layer for a unified region (schematic diagram of the method). 

2.3. Runoff Yield Simulation and Calculation 
The model uses a variable rainfall input model in the runoff yield calculation. The 

Chicago rainfall model is based on the statistical storm intensity formula to design a typ-
ical rainfall process. The rainfall ephemeral time series is divided into two parts, pre-peak 
and post-peak, by introducing a rainfall peak coefficient to describe the moment when the 
peak of the rainstorm occurs [26]. According to the localized rainfall intensity formula, 
which can reflect the pattern of rainfall intensity over time [27], the Chicago rainfall model 
is generated for a specific rainfall recurrence period and rainfall peak coefficient. The rain-
fall time node parameter τ is introduced to quickly locate the cumulative rainfall and rain-
fall intensity at a certain moment (Figure 3). 

Figure 2. Building a multi-source data layer for a unified region (schematic diagram of the method).

2.3. Runoff Yield Simulation and Calculation

The model uses a variable rainfall input model in the runoff yield calculation. The
Chicago rainfall model is based on the statistical storm intensity formula to design a typical
rainfall process. The rainfall ephemeral time series is divided into two parts, pre-peak and
post-peak, by introducing a rainfall peak coefficient to describe the moment when the peak
of the rainstorm occurs [26]. According to the localized rainfall intensity formula, which
can reflect the pattern of rainfall intensity over time [27], the Chicago rainfall model is
generated for a specific rainfall recurrence period and rainfall peak coefficient. The rainfall
time node parameter τ is introduced to quickly locate the cumulative rainfall and rainfall
intensity at a certain moment (Figure 3).
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2.3.1. Time-Varying Rainfall Input Factor

According to the storm intensity Equation (1).

q =
167A(1 + Clga)

(t + b)n (1)

where q is the rainfall intensity; a is the return period of storm; t is the rainfall duration; A,
C, b, n are the rain force formula parameters.

Then the cumulative rainfall R at a moment τ is Equation (2).

R =
∫ τ

0
qTdT (2)

where, q is the instantaneous rainfall intensity, T is the calculation time, and τ is the
calculation moment.

ϕ =
Qr

Qq
(3)

The runoff coefficient is widely used in hydrological studies to characterize the pro-
portion of the rainwater converted to the surface runoff. Where the runoff coefficient is
widely used in hydrological studies to characterize the proportion of rainwater converted
to the surface runoff, Qr is the converted surface runoff flow rate (m3/s), and Qq is the
rainfall flow rate (m3/s) (Equation (3)). Within the urban area, land cover types can be di-
vided into permeable and non-permeable surfaces. The permeable surface mainly includes
forest land, grassland, irrigated land, wetland, gravel land, and bare soil. Non-permeable
surfaces mainly include roads, building plots, rooftops, squares, parking lots, and other
built-up land. The runoff coefficients of the two differ greatly [28]. The runoff coefficient
not only varies depending on the type of land cover but is also influenced by the current
water content in the surface medium, which shows a positive correlation with the rain-
fall intensity-ephemeris curve integral. Therefore, the runoff coefficient is a time-varying
function related to the rainfall intensity and rainfall ephemeris. Based on the experimental
measurement results, we fitted the binary relationship between the runoff coefficient and
rainfall duration and intensity by interpolation. The final two-dimensional interpolation
surface was obtained, and the time-varying runoff coefficient ϕtq could be determined for
a specific rainfall input condition.

2.3.2. Seasonal Runoff Coefficient (SRC)

Experiments have confirmed that the process of runoff yield is influenced by multiple
factors, such as latitude, climate zone, monsoon, and season. The change in air humidity,
air pressure, and temperature brought on by the change of seasons will directly affect the
water content in the air and soil. In the dry season, the soil water content is low, infiltration
is high, and rainfall is easily absorbed by the soil. The intensity and duration of rainfall
in the dry season are low, making it relatively difficult to produce waterlogging. In the
rainy season, the soil water content is high, and the infiltration rate is slow, so rainfall
is not easily absorbed by the soil quickly. Furthermore, the high intensity and duration
of the rainfall, as well as the higher frequency of the rainfall during the rainy season,
makes urban flooding relatively easy to form. Therefore, this study defines the seasonal
infiltration coefficient (SRC) (Equation (4)) to characterize the effect of seasonal differences
on surface runoff coefficient. Before calculating the SRC, a dispersion test needs to be
performed in conjunction with the historical monthly average rainfall data. The monthly
average rainfall of many years is sorted, and finally, a certain proportion of rainy season,
dry season, and compromise months are divided. We choose lgX as the main function
for fitting, where X ∈ (1,10) fits the seasonal variation differences of the monthly average
rainfall, to describe the data characteristics and patterns. The reason is that the derivative
of lgX decreases when X is close to 10, which can better describe the data characteristics of
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the low dispersion in the dry and rainy seasons; while the derivative increases when X is
close to 1, which can reflect the high dispersion characteristics of the data in the transition
season. The median month of the transition month is used as the base case. Where M is the
corresponding value of the monthly average rainfall after ranking, α is the regional area
compensation coefficient, which is determined according to the regional climate type and
historical rainfall.

SRC = 1 + 0.1α× lgM (4)

2.3.3. Soil Erosion Coefficient (SEC)

Numerous studies have shown that soil erosion is also an important factor in flooding.
Furthermore, [29] was introduced the fact that the mechanism of soil erosion by heavy
rainfall is closely related to the formation of flood. The land cover type data cannot reflect
the changes in water storage capacity due to the erosion in real time, thus affecting the true
yield flow. Here, the regional erosion area proportion β is used to correct the yield flow, so
the average weighted SEC of the region can be defined as Equation (5).

SEC =
1
i ∑

i
1

1
1− βi

(5)

2.3.4. Rainfall Interval Factor (δI)

Rainfall intervals lead to changes in soil aridity. According to the findings, the runoff
coefficient of permeable areas is closely related to the rainfall event interval [30]. In their
study, the rainfall event of 100.6 mm on 5 August 2015, lasted for 3.1 days. It continued
with the next rainfall event on 9 August, and the short interval caused the water in the
surface not to be drained in time, thus the initial runoff coefficient increased in vain and
the surface runoff volume appearing to increase significantly. Some studies also consider
the effect of circumventing short intervals of rainfall on the experimental results. Between
two short intervals of rainfall, the water content in the soil or surface is at a high level
because the water in the soil or surface has not infiltrated or evaporated in time [31].
When rainfall occurs at this time, a surface runoff is more likely to form and produce
flooding, so the rainfall interval indicator Riv is defined to assess this effect. The Horton
infiltration equation f = fc + ( f0 − fc)e−kt simulates the rate change of the fluid infiltration
in different media. Where f is the infiltration rate, fc is the steady infiltration rate, f0 is the
initial infiltration rate, t is the interval time, and k is an empirical constant related to the
surface medium. Therefore, the function e−x is introduced as the basic function to fit the
rainfall interval coefficient, C is the coefficient to be estimated from each surface infiltration
experiment, and I is the rainfall interval (Equation (6)). The experimental results showed
that the occurrence of no rainfall for more than five days could be considered a subsurface
drought, and the authors finally set the surface with more than seven days of prior clear
days as the base condition after the experiment [32]. When calculating the runoff coefficient
of a rainfall event, first consider whether the interval exceeds seven days, if so, the initial
runoff coefficient is used directly, and I is taken as ∞. If it does not exceed seven days,
the number of interval days is introduced to make corrections to the runoff coefficient. In
practice, for ease of estimation, the interval time I can be directly formulated to fit this
degree of influence in a graded manner (Equation (7)). The non-permeable surface is not
greatly affected by the previous rainfall interval, and no correction is required.

Riv = Ce−
k
I (6)

δI =


ϕ0, I ≥ 7

1.1ϕ0, 3 ≤ I ≤ 7
1.2ϕ0, I < 3

(7)
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In addition, the effects of slope and crown interception on the runoff coefficients were
also taken into account in the final integrated runoff coefficient by experimentally fitting
θsc. Finally, the time-varying runoff coefficient ϕtq is combined with the above SEC,SRC,δI ,
θsc to obtain the real-time comprehensive runoff coefficient (CRC) at different landcover at
any time under a real rainfall event, denoted by ω (Equation (8)).

ω = SEC× SRC× ϕtq × δI × θsc (8)

2.3.5. Calculation of Capacity with Coupled Overwater Capacity and Pipe Volume

Due to the complex topology of the drainage network and many calculation nodes,
the drainage flow has been a difficult problem in simulation. The shape of the rainwater
grate within the city is overwhelmingly a flat rectangle, and the drainage capacity per
unit time can be expressed as Equation (9). The distribution of the underground drainage
network affects the discharge efficiency of rainwater outfalls. Due to the characteristics of
water flow fluctuation and the complexity of drainage network topology, the estimation of
drainage capacity or drainage flow rate has been a difficult problem in large-scale urban
flooding identification studies. In this paper, a rapid assessment method of urban large-scale
drainage capacity is proposed, using the overflow rate Qc of above-ground rainwater grates
as the base quantity. Then, the regional drainage volume density (RDVD) (Equation (10)),
the ratio of the total equivalent volume of the drainage to the regional ground area) is
calculated as a characteristic quantity characterizing the ability of underground pipes to
quickly discharge the runoff entering the stormwater outfall. Without considering the
influence of the top-support effect of the drainage network overload, the regional drainage
capacity (Equation (13)) can be expressed as the product of the total water cross capacity of
m rainwater grates (WCC) (Equation (11)) and the normalized drainage capacity assessment
coefficient εnor (Equation (12)), which corresponds to the total holding capacity of n drains
in the region.

Qc = µz
√

2gh (9)

where Qc is the single rainwater grate drainage flow rate (m3/s), µ is the orifice flow
coefficient, z is the drainage orifice area (m2), and h is the wellhead water flow depth (m).

ε j = RDVD =
∑n

1 πr2
k l

A
(10)

WCC = ∑m
1 Qcc (11)

where r is the radius of the drain with serial number k, l is the length of the drain, n is the
number of drains in the sub-catchment, and j is the catchment number.

εnor =
εi − εmin

εmax − εmin
(12)

Qd = εnor ×WCC (13)

2.4. Flow Concentration Simulation and Calculation
2.4.1. Sub-Catchment Extraction

In this study, sub-catchments were extracted as hydrodynamic calculation units, and the
results of the waterlogging extent, depth, and flow velocity were calculated by hydrodynamic
equations to improve the prediction accuracy and calculation efficiency. We define the catch-
ment area threshold that can generate surface runoff of a certain scale and form a waterlogging
hazard as AC (m2) and perform the river classification and linkage processing in ArcGIS
according to AC to derive the runoff flow concentration and transfer the relationship among
sub-catchments and obtain the appropriate sub-catchment distribution.
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2.4.2. Analysis of Water Flow Process

The water flow process is mainly based on the single flow direction D8 algorithm. It is
assumed that the water flowing in a grid can only flow into the lowest of the eight adjacent
grids (if there are more than two lowest adjacent grids, then one outflow is randomly
selected). The algorithm is fast and responds well to the role of the topography on the
surface runoff formation. At the same time, the water flow will be blocked by buildings
and change directions, which will eventually affect the spatial distribution of the ponded
water. In order to realistically simulate the blocking effect of the buildings on the water
flow, we superimpose the building height information with the original DEM data to obtain
a new DEM_BH with the building height information. After traversing the flow direction
values of all grids, we can calculate the cumulative flow values of all grids in the area,
which represents the number of target grids receiving upstream convergent grids [33].

2.4.3. Simulation of Evolutionary Routes Based on Urban Road Network

Although each sub-catchment is divided according to the independent catchment
process, the evolutionary process of waterlogging has a holistic character, and the water
flow connection between each sub-catchment needs to be considered. The terrain of urban
roads is generally lower than the ordinary ground in urban areas, and rainwater grates
are generally set on both sides of the roads. The strong connectivity of the road network
causes waterlogging to flow and spread through the lower roads in the form of surface
runoff. The roads are divided into different levels and are not included in the analysis
because the highway generally has a higher roadbed or adopts an elevated form, which
is not prone to waterlogging. By calculating the width of the road nearest to the pouring
point in the region, the hydraulic parameters used for ponding depth calculation can be
obtained. The flow of water between the upstream sub-catchment and the downstream
sub-catchment is considered to be connected through the road with the lowest terrain, so
the road is modeled as a U-shaped open drainage channel with width w and depth d.

2.5. Waterlogging Depth Calculation

The above parameters of the runoff yield and flow concentration stage were adjusted
experimentally and by reference to the literature, and the threshold setting of the reasonable
interval of the parameters was carried out for the calculation of the final water accumulation
depth. Multiple parameter layers are fused within the region, with sub-catchments as
boundaries. The parameter layers will include a topography layer, a subsurface drainage
layer, a surface cover type layer, a surface runoff coefficient layer, etc. [34]. Hydrodynamic
equations can provide accurate calculations for the waterlogging runoff. In this paper, we
use our algorithm for calculating the depth of a waterlogged runoff with the nearest road
as the evolution path to achieve the depth and flow rate [35].

Firstly, runoff flow Qro (Equation (15)) and total flow Q (Equation (14)) can be deter-
mined by the rainfall input, drainage flow (Qd), comprehensive runoff coefficient ω, and
area A. Then the hydraulic radius R is solved jointly using the Chézy formula (Chézy
coefficient) and the overwater cross-sectional flow formula (Equation (16)).

Q = Qro −Qd (14)

Qro = qωA (15)

Q = SC(Ri)
1
2 (16)

R =
dW

2d + W
(17)

For a U-shaped canal, the boundary of the overwater cross-section is a rectangle with
two heights (d) and one long side (W). W is the width of the nearest road, obtained from
the road data layer statistics; d is the waterlogging depth of (m) (Equation (17)).
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3. Case Study
3.1. Study Area

This paper takes Futian District, Shenzhen, China, as the research object. Shenzhen,
a global megacity, is one of the core cities in the Guangdong-Hong Kong-Macao Greater Bay
Area (Figure 4). The population density is 8791 people per square kilometer, ranking first
in China. The overall road density in the urban area is 9.50 km/km2, ranking first among
36 major cities in China. The higher population density and road density increases the risk of
the city when facing the occurrence of waterlogging. Futian District is the central urban area of
Shenzhen with a high level of development and economic density. With a resident population
of over 1.66 million in 2021, its GDP accounts for 16.9% (454.6 billion yuan) of the city’s GDP
(269.27 billion yuan), although its area only accounts for 4% of the city’s total area. Futian District
has a total area of 78.6 square kilometers, and its topography is mainly plains, hills, mountains,
and beaches, with mountains in the north and the sea in the south, and the terrain is high in
the north and low in the south. Futian District is located south of the Tropic of Cancer and has
a subtropical maritime climate with abundant rainfall, and an average annual precipitation of
1866 mm [36]. The rainfall is primarily concentrated from June to August, with August being
typhoon season, with typhoon rainstorms and other extreme weather prone to flooding.
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3.2. Data Processing
3.2.1. Data Description

The description, sources, and accuracy of the research data used in this study are
in Table 2.

3.2.2. Multi-Source Data Layer Fusion Computing

The spatial extent of all data layers is bounded by the administrative division of Futian
District. The rainfall input patterns are divided into the simulated rainfall and real rainfall
verification. The simulated rainfall can simulate the rainfall input for different return
periods, which can provide more reference for the early prevention of disasters and the
identification of risk areas. Real rainfall can effectively rate the key parameters of the model
and also better validate the model effect. In order to simulate the extreme rainfall event
suffered by Futian district, based on the formula of the rainfall intensity (Equation (18))
published by Shenzhen Meteorological Bureau in 2015, the return periods are set as 10 years,
50 years, and 100 years, the peak rainfall is 0.4, the rainfall duration is 120 min and τ is set
as 60 min, and the three simulated rainfall input models are obtained by using the Chicago
rainfall model [37]. They correspond to the rainfall intensities of 79.434 mm/h (a = 10),
100.122 mm/h (a = 50), and 109.032 mm/h (a = 100).

q =
1450.239(1 + 0.594lga)

(t + 11.13)0.555 (18)

The real rainfall verification was selected for the rainfall event in Futian District on
11–12 April 2019. This heavy rainfall caused local waterlogging in Futian District, resulting
in the drowning of three river workers due to the back-up of waterlogging. To obtain the
real-time rainfall input at any given moment, we use the rainfall history data from seven
weather stations located in Futian District. The rainfall trend surface was divided using
Tyson polygons to obtain the rainfall input at a point.

By analyzing the monthly average rainfall statistics of Shenzhen for a total of 60 years
from 1961 to 2020 [38] (Figure 5), the months with the most rainfall in Shenzhen are June,
July, and August; the months with the least rainfall are November, December, and January,
and the compromise months are February, March, April, May, September, and October. The
SRC method was used to determine the rainy month MR (25%), dry month MD (25%), and
compromise month MT (50%) for Futian District, Shenzhen.
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From the statistical results (Table 3), it can be seen that the monthly average rainfall
throughout the year shows a relatively obvious distribution pattern of three components.
Among them, the monthly average rainfall in the rainy month MR and the dry month MD
has a low degree of dispersion, with RSDs of 3.60% and 8.42%, respectively. The dispersion
degree of MT in the transition month is higher, with an RSD of 58.63%. After ranking, then
substitute M into Equation (19) to obtain SRC (the results are shown in Table 4). For the
three storm scenarios set, a rainfall of this magnitude usually occurs in the rainy season of
Shenzhen. We assume that the simulation occurs in June, July, and August, respectively,
then each RC needs to be modified. The runoff coefficients of the permeable areas under
the three rainfall events are assigned weighting factors 1.08, 1.09, and 1.10 [39].

SRC = 1 + 0.1α× lgM (19)

Table 3. Relative standard deviation (RSD).

Statistical Indicators MR MT MD

MEAN 332.33 138.42 29.50
Std Dev 11.95 81.16 2.48

RSD 3.60% 58.63% 8.42%

Table 4. Monthly rainfall ranking and corresponding SRCs in Futian.

Month
Rank

1 2 3 4 5 6 7 8 9 10 11 12

Month August June July May September April October March February December November January
Rainfall

(mm/month) 348 330 319 247 237.5 153 86.5 69 37.5 31.5 31 26

M 10 8 6 4 2 1 1 1/2 1/4 1/6 1/8 1/10
SRC 1.1 1.09 1.08 1.06 1.03 1.0 1.0 0.97 0.94 0.92 0.91 0.90

3.2.3. Runoff Yield Calculation

The construction land in Futian District is 5909 hectares, accounting for 74.9% of the
total land area. Most of the construction land has asphalt, concrete, and cement surfaces,
which have larger runoff coefficients; while woodlands, grassland, wetland, and bare soil
have smaller runoff coefficients and a stronger ability to accumulate rainfall. According
to the data on surface cover types, we get the range of base runoff coefficients for each
material terrain [40] and use the runoff coefficients of woodland and grassland to simulate
the experimental results [41,42]. As shown in (a) to (h) of Figure 6, the green dots are
experimental data, varying with the rainfall intensity and rainfall ephemeris. The fitted
runoff coefficients based on each surface cover type for a given rainfall intensity and
ephemeral conditions were obtained by two-dimensional interpolation fitting.

For forested land, indices such as depression and herbaceous layer thickness were
not considered here. The runoff coefficient of coniferous forests is calculated at 1.15 times
that of broadleaf forests [43]. A storm scenario with a = 10 was used as an example to
fit the real-time runoff coefficients for each grid (corresponding to different land cover
types), based on the rainfall ephemeris and rainfall intensity (t = 60 min, q = 79.434 mm/h).
According to the degree of quantitative influence of the slope factor on the runoff coefficient
for each land cover type, the slope was classified into four classes, 0–5◦, 5–10◦, 10–20◦,
and >20◦, respectively. Based on the study results [44,45], the slope-runoff coefficient
multiplier relationships for permeable surfaces were fitted separately by setting the slope
0–5◦ as the base case, as shown in Table 5. The slope runoff coefficients were calculated by
calculating the slope case (Figure 7a) for the Fountain District (Figure 7b).
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Table 5. Effect of slope and rainfall intensity on runoff coefficient.

Rainfall Intensity (mm/h) 0–5◦ 5–10◦ 10–20◦ >20◦

45~75 1.000 1.043 1.174 1.287
75~105 1.000 1.087 1.196 1.316
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According to Shenzhen 2020 soil erosion statistics data, the erosion area of Futian
District is 0.75 km2, the total area is 78.59 km2, and the erosion ratio β is 0.95%, then
SEC = 1/ (1− β) = 1.01. The rainfall interval is set to be greater than seven days, and I is
∞ that is, the original runoff coefficient is taken. The SEC and rainfall interval factor are
substituted into the runoff coefficient values of each grid in (Figure 7b), and the average
runoff coefficient of a sub-catchment is calculated by zoning statistics and weighting
(Figure 7c).

For the discharge volume calculation, the 37,987 rainwater outfalls and 106,193 sections
of drainage pipes in Futian District, Shenzhen, are mainly distributed on the surface and
underground in the built-up area of the city (Figure 8a). The analysis shows that most of
the rainwater outfalls are rectangular flat grates (size 75 cm × 40 cm, area 0.3 m2). Due to
the late construction in Shenzhen, the planning and construction of pipelines are strictly
based on the municipal drainage standard specifications, so it is assumed that the area



Int. J. Environ. Res. Public Health 2023, 20, 2528 16 of 25

with the lowest pipe density can also basically meet the daily drainage needs. The real
volume of each section of drainage pipes in the catchment area was calculated based on
pipe diameter and length, and the thicker line in Figure 8b represents the larger volume
of that section of drainage pipes. The RDVD was calculated using the surface density of
the drainage pipes (Figure 8c). The RDVD was normalized to reflect its contribution to
the enhanced discharge effect at the outfall among different regions, and the amplification
effect interval was set to 1.0-1.2 under the rainfall input conditions of the case (Figure 8d).
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3.2.4. Flow Concentration Calculation

Based on the DEM of the superimposed building height in Figure 9a, the flow direction
values of each grid are calculated using the D8 single flow direction algorithm to obtain
the flow direction results in Figure 9b. From the flow direction results of each grid, the
cumulative value of flow is calculated. After several trials, we defined the catchment area
threshold AC in Futian District that can generate the surface runoff as 40,000 m2. The
reason is that the topography of Futian District is mostly flat, and most of the mountains are
concentrated in the northern region, where the runoff flow kinetic energy is small. When
it is smaller than AC, it is difficult for the area to form large-scale waterlogging in reality.
A catchment area of 40,000 m2 corresponds to a cumulative flow value of 1600. In total,
596 sub-catchments are shown in Figure 10 after calculation and correction.
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For the surface runoff road evolution simulation, there are 166 sections of highways
(2.79%), 782 sections of primary roads (Class 1 roads: national roads, provincial roads, and
other main roads), 326 sections of secondary roads (Class 2 roads: ordinary main roads),
and 4,675 sections of tertiary roads (Class 3 roads: town streets, rural roads, etc.) in Futian
District (Figure 11), and Table 6 shows the road statistics. The regional pouring points
were extracted through the connectivity relationship between each sub-catchment, and the
urban roads with the closest distance to each pouring point were captured for matching.
Statistically, 596 sub-catchment dumping outlets were matched to 101 (16.95%) for the Class
1 roads, 42 (7.05%) for the Class 2 roads, and 453 (76.01%) for the Class 3 roads. According
to the Chinese road design specification (GB50220-95), the average widths, w, of the Class
1,2,3 roads were set at 25 m, 14 m, and 10 m, respectively.
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Table 6. Statistics of roads at all levels in Futian District, Shenzhen.

Indicator Highway Class 1 Roads Class 2 Roads Class 3 Roads

Number of road sections 166 782 326 4675
Total mileage 42.48 km 311.60 km 136.17 km 843.07 km

Mileage percentage 3.19% 23.37% 10.21% 63.23%

3.3. Results

The extent and depth of ponding in the 596 sub-catchments differed under the three
rainfall scenarios, where the water depth values greater than 0.02 m were set as waterlog-
ging. As shown in Table 7, in the once in 10 years rainstorm, there are 215 sub-catchments
with waterlogging, the deepest depth in each area is 0.089 m, the deepest depth is 0.335 m,
and the average depth of waterlogging in the whole area is 0.110 m, with a standard
deviation of 0.077. In the once in 50 years rainstorms, there are 260 sub-catchments with
waterlogging, the deepest depth in each area is 0.127 m, the deepest depth is 0.394 m, the
average depth of waterlogging in the whole area is 0.123 m, and the standard deviation is
0.094. In the once in 100 years rainstorm, there are 277 sub-catchments with waterlogging,
the average value of the deepest depth in each area is 0.146 m, the deepest is 0.42 m, the
average depth of waterlogging in the whole area is 0.127 m, and the standard deviation is
0.102. As shown in Figure 12, the water depths of 582, 505, and 506 are always the highest
among the top 30 sub-catchments in terms of the waterlogging depth. The other areas have
smaller differences in waterlogging depths. These three areas are low-lying and adjacent to
hills, which are more likely to generate flow concentration. This phenomenon is exacer-
bated by the lack of drainage capacity. As can be seen from the map of the waterlogging
distribution in Figure 13, the average depth and extent of the waterlogging are gradually
increasing as the rainfall return period increases. When the once in 100 years rainstorm
occurs, a total of 5.1 km2 of the region will become waterlogging areas.

Table 7. Statistical results of water accumulation depth under three rainfall models.

Indicator a = 10 a = 50 a = 100

Number of waterlogging areas 215 260 277
Area of waterlogging (km2) 3.590 4.560 5.100

Maximum depth (m) 0.335 0.394 0.420
Maximum depth mean (m) 0.089 0.127 0.146
Global average depth (m) 0.110 0.123 0.127

Standard deviation of depth 0.077 0.094 0.102
Global average flow velocity (m/s) 0.930 1.090 1.160
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For road access risk, there is no unified grading standard for the road waterlogging
depth. By analyzing the spatial relationship between urban roads and waterlogging areas,
based on the height of the car engine intakes and the lower edge of car doors, we believe
that waterlogging road sections with a grade of orange (15–20cm) or higher in the figure
can have a significant impact on the traffic passage, including slowing down the vehicle
passage or restricting some vehicles from passing. The road sections above 20 cm (purple
and dark blue) may cause temporary or prolonged traffic disruptions by causing vehicles to
stall and water to enter the vehicle. These will have an impact and change the road access
options, emergency rescue dispatch, and disposal decisions (Figure 14).
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In this study, the sudden rainstorm event in Futian District on the evening of 11 April 2019,
was selected for truth verification. According to the data from the monitoring station 106 of
the Shenzhen Water Bureau and the G3634 observation site of the Shenzhen Meteorological
Bureau, the short-time intense rainfall (166 mm) brought about a sharp change in the water
level of the surface ponding. From 21:00 to 21:40 (GMT+8) of the same day, the water level
at this site rose from 0 to 26.0 cm within 40 min (Table 8). In addition, 106 is located in
sub-catchment 479. n = 0.2, J = 5.1%, and Q = 1.12 m3/s. The depth of waterlogging at
this station was obtained as 25.3 cm by hydrological calculation (R = 0.241, v = 0.437 m/s),
which is closer to the sensor monitoring value (absolute percentage error: 2.7%).

Table 8. Waterlogging data at monitoring station 106 in Futian District, 11 April 2019.

Date Time Waterlogging Depth (m)

11 April 2019 21:00 0.000

11 April 2019 21:05 0.036

11 April 2019 21:10 0.065

11 April 2019 21:15 0.098

11 April 2019 21:20 0.130

11 April 2019 21:25 0.163

11 April 2019 21:30 0.195

11 April 2019 21:35 0.228

11 April 2019 21:40 0.260
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4. Discussion

As can be seen from the waterlogging distribution maps in Figure 14, the urban in-
undation is usually concentrated in low-lying areas. For mountainous areas, the steep
terrain makes the runoff coefficient larger than that of the flat areas. The drainage facilities
in the mountainous areas are not well developed and correspond to insufficient drainage
capacity. A large amount of rainfall that is not absorbed by the ground is converted into
the surface runoff that moves down the slopes and collects in the low-lying areas at the
foot of the mountains. In contrast, the urban built-up areas have relatively good drainage
facilities, and the accumulated rainfall can usually be discharged into the underground
drainage network in a timely manner, so these areas are not prone to waterlogging. How-
ever, there are some urban areas where the drainage capacity is insufficient to meet the
needs of waterlogging prevention and drainage. In response to the above results, urban
municipalities should strengthen the construction of drainage network facilities in the
waterlogging areas, especially in the flooded areas adjacent to hills, such as by changing
the drainage pipes to larger diameters and increasing the above-ground rainwater out-
falls. This can enhance the ability to resist the occurrence of waterlogging when hit by
typhoon and rainstorm disasters. For areas where it is difficult to change the structure of
the drainage network, it is recommended to improve the waterlogging disaster plan, such
as by deploying emergency drainage teams in advance to carry out emergency drainage
operations on the roads, communities, and facilities with serious waterlogging, so as to
reduce the impact of waterlogging disasters. Some roads with deep water may also face
problems such as poor drainage (low terrain is prone to overflow), and the depth in reality
may be higher than the simulation value. In extreme rainstorm scenarios, a broken vehicle
trapped in standing water will be at risk of being gradually submerged over time [46]. The
occupants of the vehicle need to escape in time.

Compared with other studies on waterlogging prediction and risk identification in recent
years, the proposed method is more comprehensive and closer to the actual situation, and the
model performance has improved (Table 9). The method has the following advantages:

Table 9. Comparison of results with other methods.

Study Data Structure Method Influencing Factors

Abedin and Stephen,
2019 [34]

University of Nevada, Las
Vegas main campus flooding

on 11 September 2012.

GIS-framework for flood
spatiotemporal
variation (2019)

DEM, pour point, watershed
boundary, storm drain inlet,

flow travel time.

Mukherjee and Singh,
2019 [47] Harris County, TX, USA

GIS-based weighted
multi-criteria analysis to
determine flood prone

areas (2020)

Slope, elevation, soil type, rainfall
intensity, flow accumulation, LULC,
NDVI, and distance from river and

distance from road.

Elkhrachy, 2015 [5] Najran city, located in the
southwestern of Saudi Arabia.

Flash flood map using satellite
images SPOT and SRTM

DEMs data (2015)

Land cover, drainage density, rainfall,
soil influences, surface slope, surface
roughness, distance to main channel.

Proposed method
in paper Futian, Shenzhen, China 2022

MDF-H waterlogging risk
identification

framework (2022)

Rainfall intensity, rainfall duration,
rainfall interval, erosion situation,
DEM, building height, slope, slope

direction, surface cover type, regional
drainage capacity, urban roads.

(1) The runoff coefficient is an important parameter for calculating the surface runoff,
which is mainly determined by the land cover type, but is also influenced by the
rainfall intensity, rainfall ephemeris, season, and surface water content [48]. In prac-
tice, the runoff coefficients are supposed to be time-varying variables influenced by
multiple factors. In this study, the time-varying runoff coefficients of impervious
surfaces, woodlands, grasslands, and bare soils were fitted for different rainfall inputs
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and seasonal factor scenarios using experimental results from other studies. The
surface runoff coefficients can be quickly obtained using the runoff coefficient fitting
function (Figure 6).

(2) Both cities and water flows are complex systems driven by multiple factors. There is
no clear demarcation between the runoff yield and flow concentration in the urban
waterlogging formation mechanism [49]. The variables from multiple influencing
factors need to be extracted to support the simulation process. In this study, based on
a combination of references, expert experience, and historical sensor data analysis,
12 factors such as rainfall intensity, rainfall duration, rainfall interval, historical rain-
fall statistics, soil erosion rate, DEM, building height, surface slope, land cover type,
rainwater grate, drainage pipes, urban roads, etc., are transformed into environmental
variables that can be calculated. The influencing factors and variables analyzed are
more comprehensive and more consistent with the real urban waterlogging forma-
tion mechanism.

(3) The quantitative estimation of large-scale drainage flow is more difficult due to
the complexity of the pipe network topology and the fluctuating characteristics of
the water flow. The simulation of the flow runoff yield in urban areas with a high
proportion of non-permeable surfaces must consider drainage flows. The two-layer
drainage capacity assessment model proposed in this paper integrates the surface
layer represented by the stormwater grate with the subsurface layer represented by
the drainage network. Using the overflow capacity of the surface rainwater grate as
the basis for the calculation, the difference in the drainage capacity between regions is
simulated by converting the volume per unit area of the subsurface drainage network
(i.e., the regional drainage volume density, RDVR) into a normalized coefficient.
However, because the actual flow monitoring data of the drainage pipes is missing,
only a preliminary quantification of the RDVD is made here, and the parameter
settings are relatively conservative. In future studies, more accurate drainage flow
simulation can be achieved by extracting the characteristics of multi-region drainage
networks and combining some of the actual flow measurement data.

(4) For large-scale waterlogging risk identification studies, improving the accuracy and
computational speed has been the goal pursued by researchers. In this study, the
parameters related to geographic factors were obtained after preprocessing the raw
data using ArcGIS. The parameter layer was directly called as model input using
Python to perform the hydrodynamic calculations and output the results of water-
logging depth. The accuracy of the model is verified by the true value validation in
the article, and the prediction accuracy of the waterlogging depth can reach 97.3%
when compared with the real rainfall event. The final absolute error is only 0.7 cm,
and the relative error is 2.7%. To simulate the results for different rainfall scales in
the study area, only the time-varying input variables of the parameter layer need to
be adjusted, which simplifies the modeling process and improves the computational
efficiency. We calculated the waterlogging depth and area of 596 sub-catchments in
2.13 s by inputting the processed parameters into the computational model under the
hardware conditions of 8 core Intel (R) Xeon (R) W-2123 3.60 GHz CPU, 64.0 GB RAM
and NIVDIA Quadro RTX4000 GPU.

5. Conclusions

The results of this study provide suggestions for the government to rapidly and
effectively delineate the risk control areas, timely release the early warning information,
and thus dramatically reduce or even avoid casualties and property damage due to urban
waterlogging. Traffic dispatching departments can rely on this to predict the waterlogged
areas in advance and release real-time information to citizens about the impact of the
disasters on each road. It provides a scientific basis for navigation service providers to
improve their algorithms in disaster scenarios by circumnavigating waterlogging roads
in advance, based on real-time disaster information and providing more reasonable and
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efficient navigation path solutions. At the same time, it provides emergency dispatching
departments with disaster assessment references, enhances the allocation of rescue forces
in high-risk areas, conducts quantitative assessments of the accessibility of rescue services
in key areas, and optimizes the layout of rescue stations and rescue force dispatching plans.

In this paper, meteorological information, geographic information, and municipal
engineering information are deeply fused by multi-source fusion technology. The MDF-H
large-scale waterlogging risk identification framework is proposed to realize the hydrologi-
cal analysis and prediction process of horizontal evolution after the conversion of rainfall
into surface runoff. Combined with the regional hydrological analysis results, 596 irregu-
lar sub-catchments are divided, and sub-catchments are set as the calculation units. The
globalized unified data index and scale are adopted, while the localized data factors within
the sub-catchment calculation units are fused to take into account the model’s calculation
speed and accuracy. The road network at all levels in the city realizes the surface runoff
linkage effect among the sub-catchments by using the hydrodynamic equation, and, finally,
the information of waterlogging extent and depth in each area is output, and a real-time
waterlogging distribution map is formed.
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19. Shen, J.; Zhou, J.; Zhou, J.; Herman, L.; Řezník, T. Constructing the CityGML ADE for the Multi-Source Data Integration of Urban
Flooding. Int. J. Geo-Inf. 2020, 9, 359. [CrossRef]

20. Xiao, H.; Wang, L.; Cui, C. Research on emergency management of urban waterlogging based on similarity fusion of multi-source
heterogeneous data. PLoS ONE 2022, 17, e0270925. [CrossRef]

21. Li, S.; Lu, L.; Hu, W.; Tang, J.; Qin, L. Prediction Algorithm of Wind Waterlogging Disaster in Distribution Network Based on
Multi-Source Data Fusion. Math. Probl. Eng. 2022, 2022, 1–11. [CrossRef]

22. Wang, Z.; Xiao, F. An Improved Multi-Source Data Fusion Method Based on the Belief Entropy and Divergence Measure. Entropy
2019, 21, 611. [CrossRef] [PubMed]

23. Yang, Y.; Pan, C.; Fan, G.; Tian, M.; Wang, J. A New Urban Waterlogging Simulation Method Based on Multi-Factor Correlation.
Water 2022, 14, 1421. [CrossRef]

24. Zhang, Q.; Wu, Z.; Hui, Z.; Fontana, G.; Tarolli, P. Identifying dominant factors of waterlogging events in metropolitan coastal
cities: The case study of Guangzhou, China. J. Environ. Manag. 2020, 271, 110951. [CrossRef] [PubMed]

25. Liu, F.; Liu, X.; Xu, T.; Yang, G.; Zhao, Y. Driving Factors and Risk Assessment of Rainstorm Waterlogging in Urban Agglomeration
Areas: A Case Study of the Guangdong-Hong Kong-Macao Greater Bay Area, China. Water 2021, 13, 770. [CrossRef]

26. Mei, C.; Liu, J.; Wang, H.; Zejin, L.; Yang, Z.; Shao, W.; Ding, X.; Weng, B.; Yu, Y.; Yan, D. Urban flood inundation and damage
assessment based on numerical simulations of design rainstorms with different characteristics. Sci. China Technol. Sci. 2020, 63,
2292–2304. [CrossRef]

27. Al Hassoun, S. Developing an empirical formulae to estimate rainfall intensity in Riyadh region. J. King Saud Univ.-Eng. Sci. 2011,
23, 81–88. [CrossRef]

28. Huang, J.; Wu, P.; Zhao, X. Effects of rainfall intensity, underlying surface and slope gradient on soil infiltration under simulated
rainfall experiments. CATENA 2013, 104, 93–102. [CrossRef]

29. Piacentini, T.; Galli, A.; Vincenzo, M.; Miccadei, E. Analysis of Soil Erosion Induced by Heavy Rainfall: A Case Study from the NE
Abruzzo Hills Area in Central Italy. Water 2018, 10, 1314. [CrossRef]

30. Herrera, J.; Flamant, G.; Gironás, J.; Vera, S.; Bonilla, C.; Bustamante, W.; Suárez, F. Using a Hydrological Model to Simulate the
Performance and Estimate the Runoff Coefficient of Green Roofs in Semiarid Climates. Water 2018, 10, 198. [CrossRef]

31. Wong, T. Optimum Rainfall Interval and Manning’s Roughness Coefficient for Runoff Simulation. J. Hydrol. Eng. 2008, 13,
1097–1102. [CrossRef]

32. Cheng, J.; Yang, K.; Liu, L.; Li, B. Impact of 60 Years Land Use Change on Rainfall-Runoff in Central Shanghai. J. Nat. Resour.
2010, 25, 914–925. [CrossRef]

33. Bisht, D.; Chatterjee, C.; Kalakoti, S.; Upadhyay, P.; Sahoo, M.; Panda, A. Modeling urban floods and drainage using SWMM and
MIKE URBAN: A case study. Nat. Hazards 2016, 84, 749–776. [CrossRef]

34. Abedin, S.; Stephen, H. GIS Framework for Spatiotemporal Mapping of Urban Flooding. Geosci. J. 2019, 9, 77. [CrossRef]
35. Zhang, Z.; Meng, F.; Zeng, Y.; Liu, J.; Yuan, D.; Fong, S.; Yang, L. Identification of Urban Rainstorm Waterlogging Based on

Multi-source Information Fusion: A Case Study in Futian District, Shenzhen. E3S Web Conf. 2021, 259, 01004. [CrossRef]
36. Zhang, Z.; Liang, J.; Zhou, Y.; Huang, Z.; Jiang, J.; Liu, J.; Lili, Y. A multi-strategy-mode waterlogging-prediction framework for

urban flood depth. Nat. Hazards Earth Syst. Sci. 2022, 22, 4139–4165. [CrossRef]
37. Li, J.; Deng, C.; Li, H.; Ma, M.; Li, Y. Hydrological Environmental Responses of LID and Approach for Rainfall Pattern Selection

in Precipitation Data-Lacked Region. Water Resour. Manag. 2018, 32, 3271–3284. [CrossRef]
38. Ke, Q.; Tian, X.; Bricker, J.; Tian, Z.; Guan, G.; Cai, H.; Huang, X.; Yang, H.; Liu, J. Urban pluvial flooding prediction by machine

learning approaches—A case study of Shenzhen city, China. Adv. Water Resour. 2020, 145, 103719. [CrossRef]
39. Wu, Q.; Zhang, Z.; Zhang, G.; Jian, S.; Zhang, L.; Ran, G.; Zhao, D.; Lv, X.; Hu, C. Rainfall-runoff processes in the Loess Plateau,

China: Temporal dynamics of event rainfall-runoff characteristics and diagnostic analysis of runoff generation patterns. Hydrol.
Earth Syst. Sci. Discuss. 2020, 1, 31. [CrossRef]

40. Russ, T.H. Site Planning and Design Handbook, 2nd ed.; McGraw-Hill Education: New York, NY, USA, 2002.

http://doi.org/10.1016/j.jhydrol.2021.127105
http://doi.org/10.1007/s12665-022-10330-y
http://doi.org/10.1016/j.scitotenv.2019.134979
http://doi.org/10.1007/s00477-021-01993-3
http://doi.org/10.1016/j.scitotenv.2020.137077
http://www.ncbi.nlm.nih.gov/pubmed/32036148
http://doi.org/10.1016/j.rse.2019.111338
http://doi.org/10.3390/w7041437
http://doi.org/10.3390/ijgi9060359
http://doi.org/10.1371/journal.pone.0270925
http://doi.org/10.1155/2022/2721734
http://doi.org/10.3390/e21060611
http://www.ncbi.nlm.nih.gov/pubmed/33267325
http://doi.org/10.3390/w14091421
http://doi.org/10.1016/j.jenvman.2020.110951
http://www.ncbi.nlm.nih.gov/pubmed/32579518
http://doi.org/10.3390/w13060770
http://doi.org/10.1007/s11431-019-1523-2
http://doi.org/10.1016/j.jksues.2011.03.003
http://doi.org/10.1016/j.catena.2012.10.013
http://doi.org/10.3390/w10101314
http://doi.org/10.3390/w10020198
http://doi.org/10.1061/(ASCE)1084-0699(2008)13:11(1097)
http://doi.org/10.11849/zrzyxb.2010.06.004
http://doi.org/10.1007/s11069-016-2455-1
http://doi.org/10.3390/geosciences9020077
http://doi.org/10.1051/e3sconf/202125901004
http://doi.org/10.5194/nhess-22-4139-2022
http://doi.org/10.1007/s11269-018-1990-9
http://doi.org/10.1016/j.advwatres.2020.103719
http://doi.org/10.5194/hess-2020-431


Int. J. Environ. Res. Public Health 2023, 20, 2528 25 of 25

41. Rahaman, Z. Runoff coefficient (C value) evaluation and generation using rainfall simulator: A case study in urban areas in
Penang, Malaysia. Arabian J. Geosci. 2021, 14, 2168. [CrossRef]

42. Liu, W.; Feng, Q.; Deo, R.; Yao, L.; Wei, W. Experimental Study on the Rainfall-Runoff Responses of Typical Urban Surfaces and
Two Green Infrastructures Using Scale-Based Models. Environ. Manag. 2020, 66, 683–693. [CrossRef] [PubMed]

43. Chu, X.; Wang, Y.; Xia, Y.; Wu, Y.; Chen, L. Generation of runoff characteristics over three time periods for four typical forests in
Jinyun Mountain, Chongqing City, southwest China. Front. For. China 2009, 4, 171–177. [CrossRef]

44. Fang, H.; Cai, Q.; Chen, H.; Li, Q. Effect of Rainfall Regime and Slope on Runoff in a Gullied Loess Region on the Loess Plateau in
China. Environ. Manag. 2008, 42, 402–411. [CrossRef] [PubMed]

45. Merz, R.; Blöschl, G. A Regional Analysis of Event Runoff Coefficients With Respect to Climate and Catchment Characteristics in
Austria. Water Resour. Res. 2009, 45, W01405. [CrossRef]

46. Green, D.; Yu, D.; Pattison, I.; Wilby, R.; Bosher, L.; Patel, R.; Thompson, P.; Trowell, K.; Draycon, J.; Halse, M.; et al. City-scale
accessibility of emergency responders operating during flood events. Nat. Hazards Earth Syst. Sci. 2017, 17, 1–16. [CrossRef]

47. Mukherjee, F.; Singh, D. Detecting flood prone areas in Harris County: A GIS based analysis. GeoJournal 2019, 85, 647–663.
[CrossRef]

48. Wang, S.; Yuan, W.; Zhou, J. Analysis of Runoff Coefficient Prediction Based on LM-BP Neural Network. J. Phys. Conf. Ser. 2022,
2333, 012020. [CrossRef]

49. Jiang, B. Analysis of urban waterlogging causes and LID techniques. Highlights Sci. Eng. Technol. 2022, 5, 244–249. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1007/s12517-021-08575-1
http://doi.org/10.1007/s00267-020-01339-9
http://www.ncbi.nlm.nih.gov/pubmed/32710139
http://doi.org/10.1007/s11461-009-0025-3
http://doi.org/10.1007/s00267-008-9122-6
http://www.ncbi.nlm.nih.gov/pubmed/18427882
http://doi.org/10.1029/2008WR007163
http://doi.org/10.5194/nhess-17-1-2017
http://doi.org/10.1007/s10708-019-09984-2
http://doi.org/10.1088/1742-6596/2333/1/012020
http://doi.org/10.54097/hset.v5i.749

	Introduction 
	Methodology 
	MDF-H Urban Waterlogging Risk Identification Framework 
	Building Multi-Source Parameter Layers 
	Runoff Yield Simulation and Calculation 
	Time-Varying Rainfall Input Factor 
	Seasonal Runoff Coefficient (SRC) 
	Soil Erosion Coefficient (SEC) 
	Rainfall Interval Factor (I ) 
	Calculation of Capacity with Coupled Overwater Capacity and Pipe Volume 

	Flow Concentration Simulation and Calculation 
	Sub-Catchment Extraction 
	Analysis of Water Flow Process 
	Simulation of Evolutionary Routes Based on Urban Road Network 

	Waterlogging Depth Calculation 

	Case Study 
	Study Area 
	Data Processing 
	Data Description 
	Multi-Source Data Layer Fusion Computing 
	Runoff Yield Calculation 
	Flow Concentration Calculation 

	Results 

	Discussion 
	Conclusions 
	References

