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Abstract: Background: Several environmental factors seem to be involved in childhood leukaemia
incidence. Traffic exposure could increase the risk while urban green spaces (UGS) exposure could
reduce it. However, there is no evidence how these two factors interact on this infant pathology.
Objectives: to evaluate how residential proximity to UGS could be an environmental protective
factor against traffic exposure on childhood leukaemia incidence. Methods: A population-based
case control study was conducted across thirty Spanish regions during the period 2000–2018. It
included 2526 incident cases and 15,156, individually matched by sex, year-of-birth, and place-
of-residence. Using the geographical coordinates of the participants’ home residences, a 500 m
proxy for exposure to UGS was built. Annual average daily traffic (AADT) was estimated for all
types of roads 100 m near the children’s residence. Odds ratios (ORs) and 95% confidence intervals
(95% CIs), UGS, traffic exposure, and their possible interactions were calculated for overall childhood
leukaemia, and the acute lymphoblastic (ALL) and acute myeloblastic leukaemia (AML) subtypes,
with adjustment for socio-demographic covariates. Results: We found an increment of childhood
leukaemia incidence related to traffic exposure, for every 100 AADT increase the incidence raised
1.1% (95% CI: 0.58–1.61%). UGS exposure showed an incidence reduction for the highest exposure
level, Q5 (OR = 0.63; 95% CI = 0.54–0.72). Regression models with both traffic exposure and UGS
exposure variables showed similar results but the interaction was not significant. Conclusions:
Despite their opposite effects on childhood leukaemia incidence individually, our results do not
suggest a possible interaction between both exposures. This is the first study about the interaction of
these two environmental factors; consequently, it is necessary to continue taking into account more
individualized data and other possible environmental risk factors involved.

Keywords: urban green spaces; traffic exposure; environmental factors; childhood cancer; childhood
leukaemia; incidence; spatial epidemiology

1. Introduction

Childhood leukaemia has become an important epidemiology issue for decades. It is
the most common childhood cancer, representing more than a third of the total cases during
this life period [1,2]. However, we only know nearly 10 per cent of its etiology [3]: current
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evidence suggests a combination of genetic susceptibility and environmental factors as its
cause [4]. Some environmental factors as proximity to industrial installations and exposure
to radon or crop fields have been related to it [5–7]. Among the possible environmental
factors linked to childhood leukaemia, air pollution stands out in the urban context.

Nowadays, air pollution is one of the main environmental challenges for global public
health [8]. Inside urban centres, traffic emissions are one of the most relevant sources.
Motor vehicles emit many different substances, some of which as benzene, particulate
matter with a diameter of less than 2.5 µm (PM2.5), or polycyclic aromatic hydrocarbons,
are listed as carcinogenic by the International Agency for Research on Cancer (IARC) [9].
Such is that, benzene was related to a leukaemia risk increment occupationally among
adults and with acute lymphoblastic leukaemia (ALL) in their offspring [10,11].

Traffic-related air pollution is one of the most studied environmental agents also related
to children’s health. Some evidenced effects, as respiratory or allergic disorders in infant
populations, have been related to this environmental factor [12]. Recent literature supports
a link between traffic exposure and childhood leukaemia risk. Wei et al. indicated that
exposure to some traffic components like benzene or NO2 during the second and third
trimester of pregnancy could increase the risk of leukaemia [13]. Furthermore, among
childhood leukaemia subtypes, acute myleoblastic leukaemia (AML) seems to be more
associated with this exposure [14]. Before these last two studies were published, a systematic
review performed by Filippini et al. found 29 eligible studies and pointed out the support
for the association between exposure to benzene and childhood leukaemia risk [15].

As a consequence to this growing concern about the harmful effects of air pollution,
many important cities have focused their urban plans on increasing urban green spaces
(UGS). Simultaneously, under the hypothesis that these UGS could have environmental
and health effects, research has been developed, even though there is not an established
definition of UGS yet [16]. UGS’ environmental effects go from a noise pollution or a
possible urban heat island effect reduction, thanks to the possibility of their physical
qualities [17,18], to environmental pollutants reductions by different plant mechanisms
as dispersion, adsorption, or decomposition of them by plants [19–21]. Studies published
during this time have revealed some positive associations of these spaces [22]. In particular,
some beneficial associations with them have been observed in infant mortality, childhood
obesity, mental health disorders, or birth weight [23]. In the same line, we have observed a
childhood leukaemia incidence reduction too [24].

With this in mind, where trees could reduce environmental pollutants, our objective
was to evaluate if the UGS around the children’s residences could reduce the traffic pollution
effect on childhood leukaemia incidence, taking into account the most common histologic
subtype also (ALL and AML). For this purpose, we organized this paper in three different
sections: firstly, we estimated the effect of traffic exposure for all the childhood population
at risk; secondly, we estimated the effect of UGS exposure for children living in urban
areas; and thirdly, we estimated the effect of both exposures combined and the possible
interaction between them on childhood leukaemia incidence.

2. Materials and Methods Record
2.1. Study Design

We conducted a population-based case-control study of childhood leukaemia in Spain,
covering the period 2000–2018. Incident cases were children, newborn to 14 years old, with
leukaemia diagnoses born during the studied period. They were extracted from the Spanish
Registry of Childhood Tumours (RETI-SEHOP), which collects information from hospitals’
paediatric oncology units all over Spain. Each record included the child’s home address
when diagnosed, which gave us the opportunity to geocode every house to estimate the
exposure to different environmental factors.

The control population was all Spanish newborns during the same period. These data
came from the Spanish Statistical Office Birth Registry (Instituto Nacional de Estadistica,
INE) [25]. We extracted the mother’s home address coordinates from the Birth Registry. To
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preserve participants’ anonymity, coordinates were given a 30-metre random error. Both
cases and controls’ residences coordinates were projected into the ETRS89/UTM zone 30N
(EPSG:25830) using QGIS® version 3.4.4 software (Free Software Foundation, Inc., Boston,
MA, USA).

The studied region did not include the whole country. The selection criteria for the
regions was based on the reported coverage of the last report of the RETI-SEHOP and INE’s
infant population statistics. According to both databases, these regions represent 72% of the
national infant population with higher coverage cases recorded, over 85% of the paediatric
cases [26] (Figure 1).
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2.2. Traffic Exposure Measure

We estimated the traffic exposure measurement for each studied child using the annual
average daily traffic (AADT). This measure represents the total volume of vehicles crossing
a road over the course of a year divided by 365 days. AADT for Spanish road and street
was provided by the Spanish Ministry of Public Works and we measured it for all roads
100 m around the children’s residence [27].

2.3. UGS Selection and Measurement

For UGS selection, we used the Spanish Land Use Information System (SIOSE)
databases from 2005, 2011, and 2014 [28]. We selected spaces whose level specifications
were linked directly to UGS. We followed the same method explained in our previous
study to measure this exposition [24]. Considering our previous results, we selected a
500 m buffer distance around each subject. Furthermore, we categorized this exposure
into 5 levels (quintiles) using the controls UGS values obtained, in which quintile 1 (Q1)
represented the lowest level (reference group).

2.4. Sociodemographic Covariates

For the analysis, we included as potential confounders the following variables: sex,
year of birth, socio-economic status (SES), and activity rate (AR). SES and AR were extracted
from a census-tract level of the 2001 INE Census. SES combines information regarding
the activity, professional situation, and occupation of the heads of families in each census
tract, ranging from 0.46 (worst) to 1.57 (best) [25]. AR was defined as the ratio between the
number of adult people working and the population equal or older than 16 years old or
over in the census tract.

2.5. Statistical Analysis

Firstly, to estimate the relationship between traffic exposure and childhood leukaemia
incidence, we fitted a mixed multiple unconditional logistic regression model and non-
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linear regression model, via generalized additive models (GAM). For this analysis, we used
all possible cases and all newborn records in the studied regions.

Secondly, mixed multiple unconditional logistic regression models were fitted to
estimate odds ratios (ORs) and 95% confidence intervals (95%CIs) associated with UGS
exposure and our incidence target using those cases with residence in the urban areas,
defined as municipalities with populations equal of superior to 20,000 inhabitants. As
controls, we randomly selected newborns with maternal residence in the same cities; these
were individually matched to cases in a 6:1 ratio by sex and year of birth.

Finally, we fitted mixed multiple unconditional logistic regression models in which
we introduced both environmental factors and their interactions to estimate ORs and 95
CIs. We used the same population than in the previous analysis.

The fitted models for these objectives were adjusted by all the above-mentioned
covariates as potential confounders. In addition, independent models for ALL, AML
subtypes, and the sensitivity group were developed for the second and third objective of
this study.

The sensitivity analysis had the purpose of assessing robustness to the results and
only cases with identical birth and diagnosis address were included.

The statistical programs Microsoft Excel 2021® (Microsoft Corporation, One Microsoft
Way, Redmond, WA 98052-6399), R® version 4.1.1, STATA® version 16 (StataCorp LLC,
4905 Lakeway Drive, College Station, TX 77845 USA), and the geographic information
system QGIS® version 3.4.4 were used. The tests conducted in this paper were found to be
statistically significant if the p-value was less than 0.05.

3. Results
3.1. Descriptive Analysis

Table 1 shows the children’s characteristics selected for goals 2 and 3. A total of
2526 cases and 15,156 controls were included. The most relevant group were ALL cases
with 2015 subjects (79.8%), followed by AML with 401 cases (15.9%). Regarding the sex
distribution, all subgroups presented a similar number of boys and girls. Nevertheless,
as far as the age at diagnosis, AML cases were younger than ALL subtype cases and the
overall sample.

Looking at the sensitivity analysis, we were able to identify at least two thirds of the
cases (1737; 68.8%) with the same address at birth and diagnosis. The majority of their
characteristics were similar to the general group of cases except their traffic exposure, which
was higher.

Table 1. Childhood leukaemia—cases and sensitivity group and controls’ characteristics.

Characteristics Controls
(n = 15,156)

Cases
(n = 2526)

ALL
(n = 2015) p Value a AML

(n = 401) p Value a
Same

Address
(n = 1737)

p Value a

Sex, n (%)
Boy 9346 (55.1%) 1391 (55.1%) 1118 (55.5%) 217 (54.1%) 937 (56.0%)
Girl 6810 (44.9%) 1135 (44.9%) 897 (44.5%) 0.802 # 184 (45.9%) 0.763 # 764 (44.0%) 0.561 #

Age at diagnosis,
median (IQR) X 4 (5) 4 (4) 0.126 ¥ 3 (6) <0.001 ¥ 4 (5) 0.574 ¥

Activity rate,
mean (SD) 76.61 (5.29) 76.33 (5.50) 76.2 (5.6) 0.417 * 76.7 (5.0) 0.218 * 76.6 (5.34) 0.073 *

SES, mean (SD) 1.03 (0.14) 1.04 (0.13) 1.04 (0.14) 0.706 * 1.04 (0.13) 0.785 * 1.04 (0.13) 0.748 *
AADT, mean (SD) 698 (650) 640 (650) 632 (645) 0.685 * 661 (658) 0.555 * 714 (679) <0.001 *
Histologic subtype,

n (%)
ALL x 2015 (79.8%) 1375 (79.2%)
AML x 401 (15.9%) 287 (16.5%)



Int. J. Environ. Res. Public Health 2023, 20, 2506 5 of 11

Table 1. Cont.

Characteristics Controls
(n = 15,156)

Cases
(n = 2526)

ALL
(n = 2015) p Value a AML

(n = 401) p Value a
Same

Address
(n = 1737)

p Value a

CML x 28 (1.1%) 19 (1.1%)
Other specific

leukaemia x 48 (1.9%) 31 (1.8%)

Non-specific
leukaemia x 34 (1.3%) 25 (1.4%) 0.978 #

a p value from main group of cases compared to leukaemia subtypes and sensitivity group. # Chi-square test for categor-
ical variables, * Student’s t-test, ¥ Wilcoxon’s test. Abbreviations: SD—standard deviation, ALL—acute lymphoblastic
leukaemia, AML—acute myeloblastic leukaemia, CML—chronic myeloblastic leukaemia, IQR—interquartile range.

3.2. First Objective: Traffic Exposition and Childhood Leukaemia Incidence

The logistic regression model showed an increase of the childhood leukemia incidence:
for every 100 AADT, the incidence rises by 1.1% (95% CI: 0.58–1.61%). Results from the
non-linear model, as seen in Figure 2, in which we counted in all possible cases and all
newborn records, showed a growing trend starting from protective values to risk values at
around 400 AADT. At 550 AADT value the effect of traffic exposure as a non-lineal variable
started to be significantly linked with a childhood leukaemia incidence increment.
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Figure 2. Overall childhood leukaemia exposure to traffic, measured in terms of AADT. Graphical
representation of adjusted non-linear regression model for sex, year of birth, SES, and AR. s(AADT)
represents AADT smooth effect on childhood leukaemia incidence. Blue dashed lines represent lower
and upper 95% CI. Orange dashed line represents 550 AADT on the x-axis.

3.3. Second Objective: UGS Exposure and Childhood Leukaemia Incidence

Table 2 shows the ORs for total leukaemia, ALL, AML, and sensitivity group UGS
exposure at 500 m. Model estimations showed a decreased tendency: higher UGS levels
presented lower childhood leukaemia incidences with respect to the UGS exposure refer-
ence group. Looking at individual results, the lowest and statistically significant value for
all samples was that associated with the highest level of UGS exposure, Q5 (OR = 0.63;
95% CI = 0.54–0.72). The ALL subtype showed similar results compare to overall cases.
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Table 2. Results of the UGS analysis for overall childhood leukaemias, ALL and AML subtypes, and
identified cases with same address at birth and diagnosis. Adjusted models for sex, year of birth, SES,
and activity rate.

Childhood Leukaemias ALL Subtype AML Subtype Same Address

Cases/Controls
(n)

Adjusted
OR (95% CI)

Cases/Controls
(n)

Adjusted
OR (95% CI)

Cases/Controls
(n)

Adjusted
OR (95% CI)

Cases/Controls
(n)

Adjusted
OR (95% CI)

UGS.Q1 658/3031 1 523/3031 1 105/3031 1 394/3031 1

UGS.Q2 497/3031 0.74
(0.65–0.84) 407/3031 0.77

(0.67–0.88) 76/3031 0.71
(0.52–0.96) 364/3031 0.91

(0.78–1.06)

UGS.Q3 464/3032 0.69
(0.61–0.78) 385/3032 0.73

(0.63–0.84) 60/3032 0.55
(0.40–0.77) 337/3032 0.84

(0.72–0.98)

UGS.Q4 482/3030 0.72
(0.63–0.82) 364/3030 0.69

(0.59–0.80) 93/3030 0.85
(0.64–1.14) 350/3030 0.87

(0.74–1.01)

UGS.Q5 425/3032 0.63
(0.54–0.72) 336/3032 0.63

(0.54–0.74) 67/3032 0.61
(0.44–0.84) 292/3032 0.72

(0.61–0.85)

OR and 95% CI for each quintile (Q) compare to the reference group (Q1 = lowest exposure to UGS). Abbreviations:
UGS—urban green space, OR—odds ratio, CI—confidence interval, ALL—acute lymphoblastic leukaemia, AML—acute
myeloblastic leukaemia, SES—socioeconomic status.

Looking at the AML subtype and those children with the same address at birth and
diagnosis moment, we saw some difference. Despite the AML subtype quintiles presenting
lower OR values compared to Q1, they did not shape a trend. Its lowest value was that
associated to Q3 (OR = 0.55; 95% CI = 0.40–0.77). Children whose addresses were the same
at birth and diagnosis time presented similar results and trend compared to all samples but
with slightly higher results.

3.4. Third Objective: Traffic and UGS Exposure Effects on Childhood Leukaemia Incidence

To explore this point, we selected those children living in urban areas whom AADT
was equal or higher than 550. Secondly, traffic exposure was categorized into five levels
using the controls traffic exposure values in which Q1 represented the lowest level and
reference group.

Table 3 shows the ORs for this analysis. As we can see, traffic exposure was related
with higher childhood leukaemia incidence rates for any of the developed models. They
showed a growing tendency effect. Looking at the main childhood leukaemia group, the
highest and statistically significant one was that associated with Q5, the highest level of
traffic exposure (OR = 1.40; 95% CI = 1.12–1.76). Comparing these results with the ALL
subtype and those children with no change address ones, we observed a small incidence
increment. On the contrary, AML subtype results presented lower incidence values.

Table 3. Traffic exposure and UGS exposure ORs extracted from the final adjusted regression model
for overall childhood leukaemia, ALL and AML subtypes, and identified cases with same address at
birth and diagnosis results. Adjusted models for sex, year of birth, SES, and activity rate.

Childhood Leukaemias ALL Subtype AML Subtype Same Address

Quintile Cases/Controls
(n)

Adjusted
OR (95% CI)

Cases/Controls
(n)

Adjusted
OR (95% CI)

Cases/Controls
(n)

Adjusted
OR (95% CI)

Cases/Controls
(n)

Adjusted
OR (95% CI)

TE.Q1 159/1359 1 120/1359 1 28/1359 1 110/1359 1

TE.Q2 212/1359 1.34
(1.08–1.67) 173/1359 1.45

(1.14–1.85) 33/1359 1.17
(0.71–1.97) 152/1359 1.38

(1.07–1.79)

TE.Q3 197/1360 1.25
(1.00–1.57) 164/1360 1.38

(1.08–1.78) 26/1360 0.93
(0.54–1.59) 160/1360 1.46

(1.13–1.89)

TE.Q4 195/1358 1.25
(1.00–1.57) 147/1358 1.26

(0.98–1.62) 36/1358 1.27
(0.77–2.12) 155/1358 1.41

(1.10–1.84)

TE.Q5 216/1360 1.40
(1.12–1.76) 169/1360 1.47

(1.14–1.89) 36/1360 1.23
(0.76–2.12) 177/1360 1.63

(1.26–2.10)
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Table 3. Cont.

Childhood Leukaemias ALL Subtype AML Subtype Same Address

Quintile Cases/Controls
(n)

Adjusted
OR (95% CI)

Cases/Controls
(n)

Adjusted
OR (95% CI)

Cases/Controls
(n)

Adjusted
OR (95% CI)

Cases/Controls
(n)

Adjusted
OR (95% CI)

UGS.Q1 195/1359 1 156/1359 1 33/1359 1 149/1359 1

UGS.Q2 190/1359 0.95
(0.77–1.18) 151/1359 0.95

(0.75–1.20) 28/1359 0.84
(0.50–1.41) 151/1359 0.99

(0.78–1.26)

UGS.Q3 215/1359 1.07
(0.87–1.32) 170/1360 1.06

(0.84–1.34) 33/1359 0.99
(0.60–1.63) 163/1359 1.07

(0.84–1.36)

UGS.Q4 199/1359 0.99
(0.80–1.23) 155/1358 0.97

(0.77–1.24) 36/1359 1.07
(0.65–1.75) 161/1359 1.05

(0.83–1.34)

UGS.Q5 180/1360 0.90
(0.72–1.12) 141/1360 0.89

(0.70–1.14) 29/1360 0.87
(0.51–1.46) 130/1360 0.86

(0.66–1.10)

OR and 95% CI for each quintile (Q) compare to the reference group (Q1 = lowest exposure). Abbreviations: TE—traffic
exposure, UGS –urban green space, OR—odds ratio, CI—confidence interval, ALL—acute lymphoblastic leukaemia,
AML—acute myeloblastic leukaemia, SES—socioeconomic status.

Despite no significant result of UGS exposure, its effect did not disappear. There
seems to be slight similarities with the results obtained in Section 3.3: higher UGS exposure
levels have lower incidence values compared to the lowest exposition group. Finally, no
significant interaction between traffic exposure and UGS exposure was found in any of the
developed models.

4. Discussion

In this paper, we investigated if UGS near children’s residences could reduce the
traffic exposure effect on childhood leukaemia incidence. This research evidenced that, on
one hand, traffic exposure increased the incidence of this infant pathology while, on the
other hand, UGS was related to a reduction. Moreover, the effect for both exposure factors
seemed to be stronger at higher exposure levels. Nevertheless, we could not stablish an
interaction between them.

These results must be interpreted with caution because, to our knowledge, this is the
first study that takes in consideration these two environmental agents together in childhood
leukaemia incidence. Nevertheless, the individual results for each exposure factor are in
agreement with the prior research.

In relation to traffic exposure, in this study, we started with the methodology devel-
oped by Tamayo et al. to estimate childhood leukaemia incidence [29]. For this occasion,
we estimated the traffic exposure as a numeric and categorical variable in order to include
different forms of the potential effect. As we have seen, its relationship with childhood
leukaemia could be interpreted as a dose-response effect, since the highest ORs found were
those at the highest levels of traffic exposure. A recent systematic review by Filippini et al.
indicated a link between traffic-related air pollution, particularly exposure to benzene,
which is known to be a highly carcinogenic agent, and an increased risk of childhood
leukaemia [15,30].

Traffic exposure has been an important environmental issue studied within the last
decades. It is associated, among other things, with allergic diseases, lung disorders such
as asthma or lung function reduction [12,31,32]. The methodology applied to measure
this pollutant is quite heterogeneous. Different studies related it to measuring the NO,
NO2, benzene, or PM2.5 exposition level or estimating traffic density close to subjects’
residence [29,33]. Time window exposition was also contrasted [34]. Although many others
potential environmental factors, such as industrial pollution or indoor house pollutants,
were included as confounders in this association, the possible role of UGS has not been
considered until now.

Regarding our second exposure factor, increasing UGS has been stablished as one
fundamental goal to improve human health, with actions such as heat and pollution effects
reduction produced by traffic and buildings in city centres [35]. Greenspace impact on
health has been supported consistently. Specifically, UGS has been related to beneficial
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children outcomes [36–39]. Pathways linking to these gains could be organized in three
domains which are suggested to act together [40]. By extrapolating our methodology
used previously [24] for the rest of the provinces included, the results obtained in this
study reinforced the idea that UGS could be connected to a childhood leukaemia incidence
reduction. The available evidence is gradually expanding, so it is necessary to identify
more reliable mediators between UGS and leukaemia risk. Nevertheless, we could not
demonstrate that these urban spaces mitigate the harmful effect of traffic exposure over
leukaemia. This lack of interaction could also point to different mediating mechanisms.
Exposure to UGS seems to modulate the anticancer immune response by increasing mental
well-being by reducing cortisol levels, increasing production of natural killer cells by
exposure to phytoncides, and promoting healthy lifestyles, meanwhile decreasing exposure
to anthropogenic carcinogens [41,42].

Down below we list some limitations that should be taken into account when inter-
preting these results. Firstly, despite plants being able to reduce environmental pollutants
thanks to its physiological characteristics [43,44], as we have worked with land cover maps,
we could not take into account which plants types compound each UGS neither their health
condition. Secondly, we did not introduce other possible environmental confounders like
blue spaces. There is some evidence that blue spaces could reduce childhood leukaemia
incidence also [45]. Although its mechanism is not stablished yet, it hypothesized that they
could act in a similar way as green spaces [46]. In this occasion, we did not consider to
introduce them in the regression models due to the cities’ characteristics involved in the
study. The presence of these spaces is not similar in inland cities than coastal ones. Thirdly,
we have worked with two national childhood registries (RETI-SEHOP and Spanish Statisti-
cal Office Birth Registry) which have a huge amount of subjects recorded but they do not
include possible indoor or parental exposition and lifestyles data that could act as potential
confounders [3,7,47]. In addition, it was not possible to incorporate any information or
data regarding the time spend or the activities they engaged in while interacting with UGS

However, we tried to overcome some of these problems with a consistent number of
cases recorded along the country from 2000 to 2018. This has allowed us to confirm previous
traffic exposure and UGS results. Moreover, we have included two sociodemographic
covariates, SES and activity rate. SES is a factor related to childhood cancer or greenspaces
that has been studied and used as a potential modifier [48,49]. In a previous study, we
could observe that it was related with low childhood leukaemia incidence [24].

Finally, we tried to reinforce our study by including a sensitivity analysis to explore
the characteristics of those children whose home addresses were the same at birth and
at diagnosis time. According to official Spanish data, the likelihood of a child changing
their province of residence is estimated to be only 1% [50]. We could identify 1737 cases
with the same address at birth and at diagnosis, 68.8% of cases. The results obtained from
their models were close to the general case group so we could not identify any possible
difference between both groups.

5. Conclusions

The purpose of the present research was to investigate if UGS exposure could reduce
the traffic exposure effect on childhood leukaemia incidence. We have confirmed previous
findings about traffic and UGS exposure effects on this infant disease individually, nonethe-
less we found no evidence of their interaction. Despite this lack of interaction, the reduction
of traffic exposure and the increase of UGS exposure seem to be a worthy approach in order
to reduce childhood leukaemia.
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