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Abstract: This study aimed to analyze the impact of hosting large events on the spread of pandemics,
taking Tokyo Olympics 2020 as a case study. A risk assessment method for the whole organization
process was established, which could be used to evaluate the effectiveness of various risk mitigation
measures. Different scenarios for Games participants and Japanese residents during the Tokyo
Olympics were designed based on the infection control protocols proposed by the Olympic Com-
mittee and local governments. A modified Wells–Riley model considering the influence of social
distance, masking and vaccination, and an SIQRV model that introduced the effect of quarantine
and vaccination strategies on the pandemic spread were developed in this study. Based on the two
models, our predicted results of daily confirmed cases and cumulative cases were obtained and
compared with reported data, where good agreement was achieved. The results show that the two
core infection control strategies of the bubble scheme and frequent testing scheme curbed the spread
of the COVID-19 pandemic during the Tokyo Olympics. Among Games participants, Japanese local
staff accounted for more than 60% of the total in positive cases due to their large population and most
relaxed travel restrictions. The surge in positive cases was mainly attributed to the high transmission
rate of the Delta variant and the low level of immunization in Japan. Based on our simulation results,
the risk management flaws for the Tokyo Olympics were identified and improvement measures were
investigated. Moreover, a further analysis was carried out on the impact of different preventive
measures with respect to minimizing the transmission of new variants with higher transmissibility.
Overall, the findings in this study can help policymakers to design scientifically based and practical
countermeasures to cope with pandemics during the hosting of large events.

Keywords: COVID-19; Tokyo Olympics; risk assessment; preventive measures; large event

1. Introduction

The COVID-19 pandemic has threatened human health, the economy, and society
in many countries [1–3] since 2019. COVID-19 has brought widespread interference
to sporting events, with the majority of them coming to a standstill or being played
without spectators [4]. The 2020 Summer Olympic and Paralympic Games in Tokyo
were postponed until July 2021 [5]. Large-scale vaccine deployment was expected
to signal the end of the pandemic by 2021. However, by 1 July 2021, only 14.6% of
the total population in Japan was fully vaccinated [6], which was far lower than the
estimated threshold of 70% needed to achieve herd immunity [7]. The emergence of
new SARS-CoV-2 viruses made the situation even worse, since the new variants were
more transmissible, especially the Delta variant [8]. Due to the exponential rise in
confirmed cases, the fourth emergency state was declared in Tokyo only two weeks
prior to the Olympics [9,10], which lasted from 12 July to 30 September. Facing these
foreseen challenges, the delayed Tokyo Olympics was successfully held from 23 July to
8 August 2021. With only 41 athletes and 822 non-athlete personnel testing positive for
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COVID during the Tokyo Olympics and Paralympics [11], the Games were reported to
be safe for participants and Japanese residents.

The successful hosting of the Tokyo Olympics benefited from the infection control
strategies applied at the events, among which the frequent testing scheme and bubble
scheme played an important role in curbing the spread of COVID-19 [12,13]. The bubble
scheme includes a series of measures to separate participants from the general public.
During the first 14 days after entering Japan, foreign personnel were prohibited from
using public transportation [14]. With respect to the frequent testing scheme, athletes were
required to undergo daily SARS-CoV-2 PCR testing. Other personnel received regular PCR
tests at different frequencies depending on their levels of contact with athletes [14]. Extra
behavioral rules and preventive measures applied for the Games participants are listed in
Table 1 [14]. No spectators were allowed to attend the Olympics except at some remote
locations outside Tokyo. COVID-19 vaccination was encouraged but not mandatory for
all Games participants [15]. It was found that more than 80% of the participants were
fully vaccinated [16], although the vaccination rate for local residents was only 14.6%. For
the local residents, some preventive suggestions were proposed, such as refraining from
non-essential outings [9].

Table 1. Infection control measures implemented during Tokyo Summer Olympics in 2021 [14] (In-
ternational Olympic Committee Tokyo 2020 playbooks).

Intervention Measures Personnel Measures Applied

Daily temperature monitoring for 14 days Athletes, officials, media Prior to arriving and during stay in Japan
Submission of COVID negative test Athletes, officials, media Before arrival

Quarantine for 3 days Athletes, officials, media After arrival
Official accommodation Athletes, officials, media During stay in Japan

Use of game designated transportation Athletes, officials, During stay in Japan

media During the first 14 days after entering
Japan

Daily antigen COVID test Athletes During stay in Japan

Considering the Tokyo Olympics as a unique case, this study aimed to assess the risk of
mass gathering events by taking the preventive and control measures into account based on
the establishment of a risk-based approach. Multiple infection risk models were developed
to provide quantitative evaluations of the risk level of infectious disease transmission, such
as the susceptible-infected-recovered (SIR) model, the environmental exposure model and
the logistic model [17]. The SIR model [18] estimates the temporal evolution of the infection
risks in a population, which is useful for assessing preventive measures (e.g., quarantines and
vaccination) [19]. To forecast trends in COVID-19 infection, many scholars have extended the
SIR model to the time-dependent SIR model, SEIR model, SEIRD model, etc. [20–24]. The
time-dependent SIR model with time-varying transmission and recovery rates was developed
by Chen et al. [20] to predict the spread of COVID-19. Prasad et al. proposed a QSIR method by
introducing a compartment of quarantine based on the SIR model [22], and the optimal control
method was applied to estimate the parameters. Singh et al. [23] presented a generalized SIR
(GSIR) model, which is a comprehensive model that incorporates multiple waves of daily
positive cases.

While SIR-type models are suitable for simulating large-scale behaviors of a pandemic
with respect to time, the environmental exposure model can evaluate the infection risks from
individual pathways through the integration of pertinent source–environment–receptor
pathways [25]. Among the environmental exposure models, the Wells–Riley model is
commonly used to assess the risk of SARS-CoV-2 infection [26,27], where the quantum is
identified as the minimum dose of airborne virus to cause infection [28]. The infection risk
in the Wells–Riley model depends on the exposure time, ventilation, and initial proportion
of infected individuals [29–31]. Xu et al. [30] evaluated the impact of preventive measures,
such as increased ventilation and air filtration, on reducing the infection risk of COVID-19
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in U.S. schools. Sun et al. [32] developed a modified Wells–Riley model by introducing two
critical indices—social distancing probability and ventilation effectiveness. Their model can
help to quantitatively evaluate the impacts of social distancing and ventilation on curbing
virus transmission. Hence, appropriate prediction models should be selected and modified
to accommodate the different scenarios involved in the Tokyo Olympics.

The aim of this study was to establish a feasible risk assessment method to evaluate the
effectiveness of preventive measures and use it to provide suggestions for the government
to host a safe large event under the pandemic crisis. First, based on actual conditions at
the Tokyo Olympic Games, various scenarios and models were developed according to
a series of risk mitigation measures proposed by the International Olympic Committee
(IOC) and Japanese government. The proposed Wells–Riley model and SIQRV model were
used to predict the transmission of COVID-19 during the Tokyo Olympics. By comparing
the predicted results with the actual data, the ability of our risk assessment method to
evaluate the effectiveness of prevention measures on the pandemic was verified. Second,
according to the simulated results, the risk management flaws of the Tokyo Olympics were
identified, and several improvement countermeasures were proposed, such as applying
different behavior rules for Japanese staff, increasing the frequency of testing for media
personnel, and enhancing quarantine and immunization levels for residents. Lastly, we
used the risk assessment method to evaluate the effectiveness of various control measures
that may be implemented during a future large event, and thus suggested scientific and
effective strategies for hosts to safely organize future large events.

2. Methods

The level of risk to the city from existing hazards and threats can be affected by a
large event; conversely, the city’s current level of risk can influence the level of risk from
event activities, either positively or negatively. In this study, the risk interdependency profile
presented by the pandemic between the host city of Tokyo and the event, namely the Olympic
Games, was explored. The risk profile of the event refers to infection risk inside the bubble
among Olympic-related personnel, and the risk profile of the host city refers to the infection
risk outside the bubble among the Japanese residents in Tokyo. The risk involved in the
bubble scheme needs quantitative assessments to evaluate the effectiveness of risk mitigation
measures adopted during the event. The case design for the bubble scheme and the models
used for the risk evaluation are introduced in detail in the following subsections.

2.1. Base Case Design for the Bubble Scheme

To account for the activities and locations, we classified the individuals in Tokyo into two
categories, namely Olympic-related personnel (participants in the Tokyo Olympic Games)
and Japanese local residents. Olympic-related personnel included athletes, Olympic officials,
media personnel and Japanese local staff (including volunteers, service staff, etc.). On the
basis of the reported data, the total number of athletes participating in the Tokyo Olympic
Games was 11,656, coming from about 200 countries around the world. The number of
foreign Olympic officials and media totaled about 16,000. Given that the exact number of
local staff was not available, it is assumed to be 30,000 in this study. Depending on the
bubble scheme, two categories of areas were classified, including the “inside the bubble”
areas and “outside the bubble” areas. The “inside the bubble” areas included the official
accommodations, competition venues and Olympics Village, whereas shopping and visitor
areas and the citywide region belonged “outside the bubble”. Two kinds of transport were
involved: public transport (subway services) and dedicated transport (specialized buses).

Based on the prevention and control protocols implemented by the IOC and Japanese
government, various scenarios for individuals in different groups were designed. Their
activities, routes and transportation are illustrated in Figure 1. For the simulation involving
Olympic-related personnel, the simulation time was the period of the Tokyo Olympic
Games, lasting 16 days (from 23 July to 8 August). In order to explore the infection risk
brought to the society by the Games, the overall infection trend for Japanese residents in the
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citywide region of Tokyo was simulated for 14 weeks (from 28 June 2021 to 3 October 2021).
In addition, several assumptions were made in the scenario design: (1) Athletes were not
allowed to travel outside the Olympic Village and competition venues; (2) in addition to
locations inside the bubble, Olympic officials could also travel to shopping and visitor areas
by taking designated transportation; (3) media personnel had to comply with the 14-day
quarantine restrictions at the beginning of the simulation. As a result, they were permitted
to travel using public transportation; (4) Japanese local staff could freely enter and exit the
bubble through public transportation; (5) Japanese local residents not associated with the
Games were not allowed to enter or exit the bubble.
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Figure 1. The routes and activities of different groups of people during the simulation period.

In accordance with the behavioral rules presented above, the schedule and routes for
different groups of Games-concerned personnel are further illustrated in Figure 2. Each
symbol represents a specific group of persons, location or type of transportation. The
risk of infection during a person’s stay in different locations and using different modes
of transportation over a day can be estimated by predictive models. Considering the
differences in each scenario, several distinct risk evaluation methods were adopted to
assess the risk inside and outside the bubble, as listed in Table 2. Owing to the suitability
of SIR-type models for simulating large-scale behaviors of a pandemic with regard to
time, the SI model was chosen to predict the daily COVID-19 transmission rate in the
competition venues and shopping and visitor areas. Given that infected Games-associated
personnel were tested frequently and isolated immediately once they tested positive, we
used the SI model, which did not include a compartment for recovered patients. For
the confined indoor environments of transportation modes, the Wells–Riley model was
applicable to evaluate the infection risk among passengers by taking into account factors
such as ventilation, exposure duration, social distancing and the protective effect of masks.
Additionally, in order to assess the societal level of risk related to hosting the event, a
reliable SIQRV model was constructed to estimate the overall infection trend for residents
in the citywide region of Tokyo. The impacts of the infection control strategies of quarantine
and vaccination were introduced into the SIQRV model. It should be noted that the spread
of disease at official accommodations and the Olympic Village were not considered, since
these locations were places where people stayed at night.
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Table 2. The models used for different scenarios.

Location Exposure Time per Day Personnel Model

Competition Venue 6 Athletes, Olympic officials SI
Competition Venue 10 Local staff, Media SI

Shopping and Visitor areas 10 Athletes, Media, Olympic
officials, Japanese residents SI

Public transport 1.5 Media, Japanese residents Wells–Riley
Dedicated transport 1 Athletes, Olympic officials Wells–Riley

Citywide region / Japanese residents SIQRV

2.2. Prediction Model Used Inside the Bubble

For the activities of Games-associated personnel in the base case, the number of people
moving from n-th location to m-th location is defined as Wnm. The numbers of passengers in
different states (susceptible or infected) moving from the n-th location to the m-th location
are quantified as,

Snm = SnWnm/Nn (1)

Inm = InWnm/Nn (2)

where Sn, In, Nn are the number of susceptible people, infected people and all people who are
involved in the n-th location, respectively. The SI model is governed by Equation (3), which is
used for the prediction of epidemiological dynamics of COVID-19 at different locations

dS
dt

= −βIS/N,
dI
dt

= βIS/N (3)

where S and I are the number of susceptible people and infected people, respectively; β is
the transmission rate; N is the total number of occupants; t is the time. Then, the analytic
solution of the SI model can be obtained as:

I =
N(

1 +
(

N
I0
− 1
)
∗ exp(−βt)

) (4)

where I0 is the number of initial infectors. The transmission rate was estimated ac-
cording to a real case of COVID-19 clustered infection that occurred on the “Z22”
train [33]. At least 35 passengers aboard a train that set out from Lhasa in the Tibet
autonomous region on 15 August 2022 and arrived in Beijing on 17 August 2022 tested
positive for COVID-19 [33]. The train, Z22, had 10 stops during its over 40 h journey.
Then, the transmission rate β was estimated as 0.089 per hour, and this value was used
in the SI model in our study.
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The Wells–Riley model was adopted to predict the transmission trend of the virus
in the public and designated transportation cabins. The basic Wells–Riley equation is
presented as below:

P = 1 − exp
(
− I0qpt

Qm/N

)
(5)

where P is the probability of infection; I0 is the number of initial infectors; p is the pulmonary
ventilation rate of susceptible people (m3/h); t is the exposure time (h); Qm is the fresh air
volume per person (m3/h·per); q is the quanta generation rate (h−1). Sun et al. [32] introduced
a social distance index Ds into the Wells–Riley to study the effect of social distancing, which
represents the correlation between the statistical probability of droplets containing virus and
the distance they travel.

Ds = (−18.19ln(d) + 43.276)/100 (6)

where Ds is the social distance index, and d represents the social distance (m). Taking
the filtering effect of masks into account, a mask index EM is defined, representing the
effectiveness of masks in mitigating the risk of infection among susceptible people. Wearing
a mask can diminish both the amount of virus exhaled by an infected person and the amount
of virus inhaled by a susceptible person. The mask index is expressed as:

EM = (1− f IηI)(1− fSηS) (7)

where EM is the mask index, and ηI , ηS are the filtration efficiency for exhalation and
respiration, respectively. f I , fS are the proportion of infector and susceptible individuals
wearing masks. On the basis of previous studies, both filtration efficiencies of the masks
were assumed to be 50% [34]. To further consider the protective effect of vaccination, we
extended the Wells–Riley model by introducing the vaccination index v, which represents
the influence of vaccination on the infection risk reduction. The vaccination index can be
represented as:

v = (1− fvve) (8)

where v is the vaccination index, ve is the effectiveness of the vaccination, and fv is the
proportion of individuals who are vaccinated. Based on the vaccination data in Japan as of
July 2021, the values of fv for the Japanese residents and Olympic-related personnel were
assumed to be 0.25 and 0.85, respectively. The protection efficiency of vaccination was set
as 0.7 in this study.

The Wells–Riley model was modified as Equation (9) through the integration of social
distance, mask and vaccination indices:

P = 1 − exp
(

DsEMv
qptI0

Qm/N

)
(9)

The infection probability p presented as Equation (9) was calculated for the indoor
scenarios. As the quanta emission rate q is an unknown quantity that depends on many fac-
tors, a wide range (14 h−1 to 1190 h−1) for the SARS-CoV-2 virus was suggested or derived
from data reported in the previous literature [35–37]. Similarly, the quanta generation rate
for COVID-19 used in this study was estimated from the case of the “Z22” train. The social
distance and fresh air volume per person were estimated based on the designed regulations
(Table 3). The proportion of individuals wearing masks and the vaccination rate for the
population on the train were set as 40% and 60%, respectively. Consequently, the quanta
generation rate was calculated to be 452 h−1.
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Table 3. Parameters of confined indoor environment used in the Wells-Riley model.

Scenario Number of
Seats Length (m) Width (m) Social

Distance, d (m)
Ventilation Rate,
Qm/N (m3/h·per)

Duration, t
(h)

“Z22” train cabin
(TB10621-2009) 85 25 3.3 0.99 20 40.5

Public transportation
(long bus) (GB9673-1996) 60 13.7 2.55 1.0791 25 1.5

Designated
transportation (subway)

(GB50157-2003)
100 22 3 0.81 20 1

2.3. Prediction Method Used for Citywide Region

Due to the hosting of the Tokyo Olympic Games, some intervention strategies were
implemented by the Japanese government for the residents outside the bubble, such as quar-
antine, vaccination and travel restrictions. To analyze the epidemic dynamics of COVID-19
among residents in Tokyo, we constructed a SIQRV model based on the SIR model by
considering the impact of preventive measures. In the SIQRV model, two new compart-
ments were added to the SIR model. The generalized flow chart of the SIQRV compartment
model is presented in Figure 3. Q is the quarantine compartment, representing individuals
who are quarantined. V is the vaccination compartment, representing the fully vaccinated
people. We assume that the population acquired immunity immediately after vaccination.
Differential equations of the SIQRV model are as follows:

dS
dt

= −βIS/N − ∆Nvve + ξV (10)

dI
dt

= βIS/N − γI − µI (11)

dR
dt

= γI + γQ (12)

dQ
dt

= µI − γQ (13)

dV
dt

= ∆Nvve − ξV (14)

where S, I, Q, R, and V represent the numbers of susceptible, infected, quarantined,
removed and vaccinated population, respectively. γ is the removal rate (1/γ represents the
average infectious period), µ is the quarantine rate, ∆Nv is the number of newly vaccinated
people per day, ve is the effectiveness of the vaccination, and ξ is the period of immunity.
The total population N is considered to remain constant:

S + I + Q + R + V = N (15)Int. J. Environ. Res. Public Health 2023, 20, 2408 8 of 23 
 

 

 
Figure 3. Generalized flow chart of SIQRV compartment model. 

The basic reproduction number 0R  of the SIQRV model was calculated according 
to the next-generation matrix method [38] for compartmental models. Setting F  to be the 
emergence rate of newly infected people in the compartments, let V +  be the transfer rate 
of individuals entering the compartment through all other routes, and V −  be the transfer 
rate of individuals out of compartment, V V V− += − . The matrix of F  and V  for all of 
the compartments in our model is obtained as: 

         
         
          
       

/

0
   

0

0

IS N I
I

F

β μ
μ

− 
 
 
 =
 
 
 
 

, 

             
             

         
       

v e

v e

I
Q

V IS N N v V
I Q
N v V

γ
γ

β ξ
γ γ

ξ

 
 
 
 = + Δ −
 

+ 
 −Δ + 

 (16)

Define 
    
  

0
( )

0   0 
Y

DF x  
=  
 

0 , 
3 4

 0     
    

( )DV
Z
J J

x
 

=  
 

0  where Y  and Z  are the m × m ma-

trices defined by: 

0( )i

j

F
Y x

x
 ∂

=  
∂  

, 0( )i

j

V
Z x

x
 ∂

=  
∂  

, 1 , .i j m≤ ≤  (17) 

Let the right-hand side of Equations (10)–(14) equal zero; the disease-free equilibrium 
point ( )0 0 0   , 0, 0, 0    ,x S V=  is obtained, where 0S , 0V  are the number of susceptible and 
vaccinated people at the disease-free equilibrium point 0x . They satisfy the conditions of 

0 0S V N+ =  and 0 /v eV N v ξ= Δ . Then, the value of 0S  can also be calculated. Applying 
the Fréchet derivatives to F  and V  at 0x , we obtain 

       0

                0

S
Y N

β μ

μ

 − =   
 

0
, 

     0
   0   

Z
γ

γ
 

=  
 

  (18)

then, 

( )1 0
0

S NR FV
N

β μρ
γ

− −
= =  (19) 

where ( )ρ ⋅  is the spectral radius of a matrix, 0R  represents the expected number of new 
infections generated in the total population by one typical infector before his/her recovery 
[39]. If 0 1R > , the number of infections is likely to increase and there will be an outbreak, 
and if 0 1R < , the number of infections is likely to decline and there will be no outbreak. 
Since 0S  is related to the parameter of 0V , the 0R  is not a constant but a variable that 
depends on the initial fully vaccinated proportion of the population initialV . 

The proportion of Japanese residents who were newly vaccinated each day relative 
to the population was obtained from the website “Our World in Data. Coronavirus 
(COVID-19) Vaccinations”. [6]. Setting the search interval as the simulation period from 

Figure 3. Generalized flow chart of SIQRV compartment model.



Int. J. Environ. Res. Public Health 2023, 20, 2408 8 of 22

The basic reproduction number R0 of the SIQRV model was calculated according to
the next-generation matrix method [38] for compartmental models. Setting F to be the
emergence rate of newly infected people in the compartments, let V+ be the transfer rate
of individuals entering the compartment through all other routes, and V− be the transfer
rate of individuals out of compartment, V = V− − V+. The matrix of F and V for all of the
compartments in our model is obtained as:

F =


βIS/N − µI

µI
0
0
0

, V =


γI
γQ

βIS/N + ∆Nvve − ξV
γI + γQ

−∆Nvve + ξV

 (16)

Define DF(x0) =

(
Y 0
0 0

)
, DV(x0) =

(
Z 0
J3 J4

)
where Y and Z are the m × m

matrices defined by:

Y =

[
∂Fi
∂xj

(x0)

]
, Z =

[
∂Vi
∂xj

(x0)

]
, 1 ≤ i, j ≤ m. (17)

Let the right-hand side of Equations (10)–(14) equal zero; the disease-free equilibrium
point x0 = (S0, 0, 0, 0, V0) is obtained, where S0, V0 are the number of susceptible and
vaccinated people at the disease-free equilibrium point x0. They satisfy the conditions of
S0 + V0 = N and V0 = ∆Nvve/ξ. Then, the value of S0 can also be calculated. Applying
the Fréchet derivatives to F and V at x0, we obtain

Y =

(
βS0
N − µ 0

µ 0

)
, Z =

(
γ 0
0 γ

)
(18)

then,

R0 = ρ
(

FV−1
)
=

βS0 − µN
γN

(19)

where ρ(·) is the spectral radius of a matrix, R0 represents the expected number of new
infections generated in the total population by one typical infector before his/her recov-
ery [39]. If R0 > 1, the number of infections is likely to increase and there will be an
outbreak, and if R0 < 1, the number of infections is likely to decline and there will be no
outbreak. Since S0 is related to the parameter of V0, the R0 is not a constant but a variable
that depends on the initial fully vaccinated proportion of the population Vinitial.

The proportion of Japanese residents who were newly vaccinated each day relative to
the population was obtained from the website “Our World in Data. Coronavirus (COVID-19)
Vaccinations” [6]. Setting the search interval as the simulation period from 28 June 2021 to
3 October 2021, we acquired the proportion of fully vaccinated people and daily COVID-19
vaccine doses administered in Japan. The proportion of fully vaccinated people in Japan at
the beginning of the simulation period (on 28 June 2021) was obtained as 11%. The average
number of daily vaccine doses administered during the simulation period was calculated to be
1.12%. Since people were fully vaccinated only after two doses of vaccines were administered,
it is assumed that about 0.56% of the total population were newly vaccinated each day during
the simulation period.

3. Results
3.1. Base Case
3.1.1. Prediction of COVID-19 Cases among Olympic-Related Personnel in the Bubble System

Based on the reported data, the number of daily COVID-19 positive cases during
the Olympics was extracted from the OG website [11]. A total of 436 Olympic-related
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personnel tested positive from 1 July to 8 August. Among the 436 positive cases, 87 were
identified as pre-Olympics (1 July to 22) and 349 as during-Olympics (23 July to 8 August)
cases [11]. However, 82,246 Japanese residents in Tokyo were confirmed positive during the
same period, equal to 0.59% of the total population in Tokyo. Given that the infection rates
associated with the Olympics were much lower than that in Tokyo, the implementation
of preventive and control measures was considered to be relatively successful in reducing
infection risk inside the bubble.

Based on the risk assessment methods introduced in Section 2, the numbers of positive
cases for different groups of Games-associated personnel inside the bubble were predicted.
The parameters used in the simulation are listed in Table 4. Algorithm 1 presents the
detailed simulation procedure in the form of pseudocode. Figure 4 presents the comparison
of predicted results and actual data for daily confirmed cases. The predicted temporal trend
was generally consistent with that of the actual data. The cumulative number of confirmed
cases among Games-associated personnel during the studied period was calculated to
be 399, which varied 14.3% from the actual number of infections. It reveals that the
design of the base case and the prediction model used in this study were applicable to the
transmission of COVID-19 inside the bubble. In terms of the simulation results, the number
of daily positive cases decreased sharply after a four consecutive days of increases. This
variation was due to the different testing frequencies among Games-concerned personnel.
The frequent COVID-19 testing scheme was found to be an effective countermeasure to
contain the spread of the pandemic.

Algorithm 1. Simulation procedure for the Olympic-related personnel

1: Input model parameters: S0, I0, β, ft, δ for each scene
2: Initialization: t = 0 (Day) begin of the simulation time
3: repeat
4: Calculate the number of newly infected cases in each scene using the corresponding model.
5: Obtain the number of cumulative cases among each type of Olympic-related personnel after
one day.
6: Calculate the remaining undetected infected cases based on the parameter of nucleic acid test
frequency ft and detection accuracy δ

7: Update the number of I0, S0 for each scene
8: t = t + 1
9: until t = 16, the end of the simulation time
Output: The number of newly infected cases for each day and the number of cumulative cases for
the whole simulation time.

Table 4. The parameters used in the simulation for different roles of individuals.

Personnel
Classification

Frequency of
COVID-19 Tests

(ft)

Detection
Accuracy (δ)

Initial Vaccination
Rate (Vinitial)

Vaccine
Protection

Coefficient, (ve)

Masking Rate,
(fI,fs)

Athletes 1 test/1 day 80% 85% 70% 90%
Olympic officials 1 test/2 days 80% 85% 70% 90%

Media 1 test/4 days 80% 85% 70% 90%
Local staff 1 test/2 days 80% 85% 70% 90%

Japanese residents - - 25% 70% 75%

Figure 5 shows the predicted cumulative number and daily number of positive cases
among each population with different roles. One can see that the cumulative number of
cases presented a linear growth trend rather than exponential growth (Figure 5a), which was
attributed to the implementation of specific risk mitigation measures. The total numbers of
infected athletes, Olympic officials, media and local staff were predicted to be 18, 83, 96 and
202, respectively. Due to the most stringent travel restrictions and the most frequent testing
requirements, only 18 athletes were estimated to have been infected, which was close to the
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reported and confirmed number of 21 cases [12]. As illustrated in Figure 5b, the daily number
of cases for athletes was calculated as 0, 1 or 2. This may deviate from the actual situation
due to the simplification of our model, which could not forecast clusters of infections among
athletes. With regard to the numbers of cumulative and daily confirmed cases, it can be found
that Japanese local staff accounted for more than 60% of positive cases. This resulted from
the largest population of Japanese local staff and the longest contact times between them and
other populations. Additionally, although the Olympic officials were tested (once every 2 days)
more frequently than media personnel (once every 4 days) in the base case, our results indicate
that more Olympic officials were infected compared with media personnel. This is because
Olympic officials always traveled together by taking designated transportation, which was
likely to result in cluster infections. On the other hand, media personnel mainly traveled by
public transportation alone or in small groups, yielding a relatively lower infection risk.
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In the base case, the virus may have been brought out of the bubble, given that the
activities of shopping, visiting and using public transit were allowed for a some of the
Olympic-related personnel. The number of residents infected by the Olympic-related person-
nel was predicted to reflect the infection risk leaking out of the bubble, as shown in Figure 6.
The average vaccination rate for the population was assumed to be 25% for the residents
during the Olympics. Due to the continuous flows of people in the shopping and visiting
scenarios, it was assumed that the transmission rate β was twice that in the case of the “Z22”
train. The total number of infected residents was estimated to be 1667, with 1214 positive
cases generated in the public transportation scenario and 453 cases in the shopping and
visiting scenario. Therefore, the average number of daily positive cases for residents could be
calculated as about 104, which represented a very small percentage compared to the reported
daily number of positive cases (an average of 3804 confirmed cases were reported per day
in Tokyo during the Olympics [24]). Our results provide evidence that the hosting of the
Olympic Games had no direct effect on local transmission of COVID-19 among residents.
In addition, it can be noticed that the risk of infection was greater in the scenario of public
transportation than in the scenario of shopping and visiting. Given that the range of activities
was not limited among the local staff, a large proportion of infected residents were infected
by local staff on public transport.
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3.1.2. Prediction of COVID-19 Cases among Japanese Residents in the Citywide Region

In contrast to the quite low proportion of positive cases in the bubble system, the
spread of COVID-19 among the citywide population of Tokyo was completely the opposite.
On 1 July 2021, there were approximately 673 new cases of COVID-19 in Tokyo; nevertheless,
a record increase in cases was reported during the Olympics. The city witnessed a surge
in daily COVID-19 cases and continued to struggle with an upward trend in the 2 weeks
after the Games. By 13 August, the daily number of confirmed cases in Tokyo reached an
alarming peak of more than 5773. As of 28 August, the number of daily cases started to
decrease, with only 82 reported cases by 12 October 2021 [11].

As stated in Section 2.3, the SIQRV model was constructed in this study to predict
the citywide spread of the COVID-19 pandemic in Tokyo under the impacts of preven-
tive strategies for quarantine and vaccination. The study period was from 28 June to
3 October 2021 (98 days in total) and covered the period of the Olympics. Based on the
method introduced in Section 2.3, the proportion of fully vaccinated people Vinitial on
28 June 2021 was set as 11%. The proportion of people who were newly vaccinated each
day relative to the population was 0.56%. Thus, the value of parameter ∆Nv (defined
as the number of newly vaccinated people per day) could be obtained as 78,176 for the
citywide region of Tokyo. The initial numbers of susceptible, infected, and vaccinated
individuals used for the simulation were obtained from the reported data.

Since the percentage of confirmed cases infected by the Delta variant (i.e., variant B.1.617.2)
increased from 21.5% (28 June to 4 July) to 94.0% (23 August to 29 August) [12], it was
considered as the main variant transmitted during the Olympics in this study. The estimated
basic reproduction number R0 of new infections with the Delta variant ranged between 6
and 7, which indicated that it was three times more infectious than the original COVID-19
strain [40,41]. The transmission rate of the Delta variant could be estimated to be 0.6 to 0.7. The
parameter settings for the base case are displayed in Table 5. Generally, the quarantine strategy
was always adjusted once every 2 weeks in the actual situation. Thus, the value of quarantine
rate µ in the SIQRV model was varied every 2 weeks to match the predicted results with actual
data. Then, the most appropriate value of µ could be obtained for different times.



Int. J. Environ. Res. Public Health 2023, 20, 2408 13 of 22

Table 5. Parameter settings for SIQRV model in base case.

Parameters Default Value Reference

β 0.6~0.7 [42]
γ 0.1 [42]
ve 0.7 [42]
ξ 1/60 [42]

R0 6~7 [42]
∆Nv 78,176 [6]

N 13,960,000 [6]

Figure 7 depicts the comparison between the predicted results and the reported data
for daily confirmed cases. As there was always a delay between the timing of case detections
and timing of the underlying infections, the number of confirmed cases reported 7 days
later was regarded as the number of infected cases on that day. Moreover, the 7-day average
number of reported positive cases was also plotted in the figure to better reflect the overall
trend in COVID-19 cases. One can see that the trend for the predicted results was generally
consistent with that for the actual data, especially in the period from 12 August to 1 October.
The difference between the predicted and actual results was identified quantitively. Since
the number of daily reported positive cases may depend on some objective factor, such as
the number of people receiving a COVID-19 test, the accuracy of the test, etc., we calculated
the difference between the predicted and actual results for the cumulative number of weekly
positive cases. The mean relative error in the cumulative number of positive cases per
week between the two results was calculated to be 10.7%. This difference was considered
to be acceptable due to some assumptions and simplifications made in the SIQRV model.
Additionally, the predicted total number of cumulative cases during the simulation period
was 203,543, which agreed well with the actual results. The good agreement suggests that
the surge in positive cases in Tokyo mainly resulted from the high R0 of the Delta strain,
while the hosting of the Tokyo Olympics was not responsible for that.
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To calculate the critical threshold of the quarantine rate µc from Equation (14), let
R0 < 1, which yields

µ ≥ βS0 − γN
N

= µc (20)
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We obtained µc = 0.36, 0.4, and 0.44 for different transmission rates of β = 0.6,
0.65, and 0.7, respectively. The variation in quarantine rate µ with time under different
transmission rates was explored, as demonstrated in Figure 8. Only the quarantine rate
for the first 2 weeks was lower than the critical threshold (shown by the dotted line).
Since Tokyo entered its fourth emergency state from the third week, the value of the
quarantine rate increased correspondingly due to the stricter quarantine strategies. It
can be observed that the value of the quarantine rate generally increased over time. This
was attributed to the variation in the strength of the quarantine strategy, which was
adjusted dynamically according to the corresponding pandemic situation. Under the
assumption that the detection accuracy was equal to δ = 0.8, the frequency of COVID-19
tests for residents ( ft = µ/δ) could be estimated as one test every 1.5–3 days. Our
prediction model proved to be useful for analyzing the temporal trend in the stringency
of preventive measures (i.e., detection, quarantine).
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3.2. Analysis of Improved Measures for Tokyo Olympics

The different scenarios involved in the Tokyo Olympic Games and intervention mea-
sures adopted during the Games were studied in the base case presented in Section 3.1.
Further analysis was carried out to demonstrate the extent of achievable infection risk
reduction levels by implementing improved preventive measures. The improved measures
consisted of two categories, one for Olympic-related personnel and the other for residents.

3.2.1. Control Measures for Olympic-Related Personnel

As demonstrated in Section 3, only 0.46% of all Olympic-related personnel [12] tested
positive during the Games. The containment of COVID-19 spread among Olympics-related
personnel was associated with accurate organization measures for the Games. The results
here show that frequent COVID-19 testing played a vital role in curbing the spread of
COVID-19 and that the behavioral rules involved in the bubble system also helped reduce
the infection risk. However, there were still some risk management flaws that posed
an increased risk for Olympics-related personnel: (1) Local staff could freely enter and
exit the bubble using public transportation; (2) media personnel were allowed to use
public transportation and participate in activities not associated with the Games; (3) the
frequency of COVID-19 testing for media personnel was relatively low. To address the
above management flaws, two improved infection control measures were proposed and
investigated. (1) Measure A: Local staff are required to live in official accommodations
and take designated transportation. (2) Measure B: The frequency of COVID-19 testing for
media personnel is increased from one test every 4 days to one test every 2 days.
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The predicted numbers of COVID-19 cases under the implementation of Measure
A and Measure B are presented in Figure 9. When applying Measure A, the predicted
total number of positive cases for Olympic-related personnel was 600, and the numbers of
cases for athletes, Olympic officials, media personnel and local staff were 25, 115, 97, and
363, respectively (Figure 9a). The total number of residents infected by Games-associated
personnel was estimated to be 1160 (Figure 9c), a 30% decrease compared with the base case.
Overall, although the implementation of Measure A reduced the number of cases among
residents to some extent, there were 201 more Olympic-related individuals infected. This is
because Measure A diminished the infection risk for residents outside the bubble, while
promoting transmission of the virus inside the bubble. Additionally, providing designated
transportation and official accommodations imposed an additional financial burden on
the host country. Consequently, Measure A was not a good countermeasure to optimize
risk management for the Tokyo Olympics considering the balance between safety and the
economic aspects.
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As illustrated in Figure 9b, when applying Measure B, the total number of positive
cases among Olympic-related personnel decreased to 256, and the numbers of cases among
athletes, Olympic officials, media personnel and local staff became 17, 94, 42, and 103,
respectively. It can be seen that the numbers of cases among both media personnel and
local staff were halved. The number of positive cases among residents decreased to 931,
representing a reduction of 45% compared to the base case. The simulation results suggest
that increasing the frequency of COVID-19 testing for media personnel from one test every
4 days to one test every 2 days contributed to suppressing transmission of the virus within
the bubble system. Therefore, it was quite important to ensure frequent COVID-19 testing
for all Games-concerned personnel, and Measure B proved to be feasible and effective for
improving the risk management of the Games.

3.2.2. Control Measures for Japanese Residents

Although the surge in positive cases was mainly attributed to the high transmission
rate of the Delta variant and the low level of immunization among Japanese residents, the
increase in the quarantine rate over time also facilitated curbing the spread of COVID-19.
Two improved infection control measures are proposed here with respect to quarantine and
vaccination. (1) Measure C: The quarantine rate is increased above the critical threshold,
ensuring R0 < 1 throughout the study period; (2) Measure D: The initial vaccination rate
for the population is increased from 11% to 30% with an interval of 5%. The settings for
other parameters are the same as those in the base case (Table 5).

Figure 10a,b presents the variation in COVID-19 cases under the implementation of
Measure C (applying quarantine rate µ ≥ 0.4, larger than the threshold of 0.36). To achieve
the expected quarantine rate, the frequency of testing for residents should be maintained
with at least one test every 2 days. When applying Measure C, the total numbers of
cumulative cases during the studied period decreased sharply, by 41.62%, 77.85% and
92.18%, respectively, for the conditions of µ = 0.4, 0.42, 0.45 compared to the base case
(Figure 10b). One can see that the trend in cumulative positive cases per week was different
from that of the base case (Figure 10a). This is because the quarantine rate in the base
case was varied ever 2 weeks in the range of 0.332–0.472, while it remained constant when
Measure C was applied. For the conditions of µ > 0.4, the number of cumulative cases per
week decreased after experiencing small growth, which could prevent a sudden surge in
the number of infected cases. Compared with the base case, applying Measure C could
help relieve pressure on healthcare systems and enhance their emergency response and
resilience to a great extent [43]. In general, the implementation of Measure C, i.e., with more
stringent testing and a quarantine strategy, would be favorable to avoid mass infections
within a short period.

Figure 10c,d shows the predicted results under the application of Measure D, with
different initial vaccination rates of 15%, 20%, 25%, and 30%. The simulation results for
the base case (11% initial vaccination rate) are depicted for comparison. With higher
initial vaccination rates, the number of cases decreased to a large extent, indicating that a
more-vaccinated population could control the pandemic transmission. Further, under the
assumption that society and hospitals accepted <500 newly infected persons per day during
the Games, we propose a cumulative number of cases per week of <3500 as a benchmark
for the suppression of infection. To achieve this goal, the initial vaccination rate should
be increased to at least 30%, with the number of cases per week lower than 5000 and the
total number of cases smaller than 30,000. The results reveal that a high immunization rate
prior to the event is essential for the containment of COVID-19. Therefore, it is imperative
to enhance the initial vaccination rate among the population before hosting a large event
during a pandemic crisis.
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3.3. Analysis of Preventive Measures for Future Large Events

Under the conditions of a global pandemic, it is of paramount importance to develop
scientifically based and practical risk management measures tailored to different events
and scenarios to ensure the safety of all involved in a high-profile public event. Due to the
successful implementation of preventive measures during the event, there is no doubt that
the hosting of the Tokyo Olympics was exemplary for future large events. However, the
appearance of new strains and breakthrough infections among fully immunized or vaccinated
people will pose challenges for future large events. For example, a new variant Omicron
(variant B.1.1.529) was first discovered in November 2021. With more than 50 mutations,
Omicron has the ability to increase transmissibility, develop resistance to therapeutic agents,
and partially evade existing herd immunity [16]. Previous studies suggested that the basic
reproduction number of the Omicron variant ranges from 5.5 to 24, with an average number
of 9.5 [44], which is higher than that of the Delta variant and the original SARS-CoV-2 virus.
The effectiveness of different infection control measures on the transmission of Omicron was
explored using the methods proposed in this study, thus providing detailed risk management
recommendations for event organizers and local governments.

To ensure that the reproduction number R0 for Omicron variant is smaller than 1, the
critical threshold of the quarantine rate is µc = 0.62. Figure 11a,b shows the predicted results
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for cumulative cases per week and total positive cases at a quarantine rate of 0.6 to 0.75,
where the initial vaccination rate remains consistent with the base case. When the quarantine
rate equals 0.6, there is an unprecedented spike in positive cases in a short time, with a total of
2,660,000 infections and over 70,000 cases of infection per day. This surge would overwhelm
the health care system with thousands of people waiting for isolation and/or treatment. It
can be concluded that keeping the quarantine rate below the critical threshold is not feasible
for suppression of the pandemic. An acceptable infection rate can be achieved (cumulative
number of cases per week <3500 as a benchmark) only when the quarantine rate is equal to
0.75. This means that daily COVID testing needs to be conducted for the whole population.
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Figure 11c,d demonstrates the simulation results under the condition of an initial vac-
cination rate increasing from 20% to 80%, where the quarantine rate is kept at 0.45. When
the initial vaccination rate is increased from 20% to 60%, the infection risk still remains at a
high level, with a cumulative total of more than 2,000,000 cases. However, when the herd
immunity threshold of 80% is reached, the number of positive cases decreases sharply due
to the small population of susceptible people. The results suggest that transmission in a
pandemic can be reduced to a very low level if an immunization rate of 80% is achieved. In
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reality, though, the Omicron variant has spread more rapidly than the simulation results
due to its combination of increased transmissibility and greater immune escape ability.
Consequently, previous strategies adopted during the Tokyo Olympics are not applicable to
the transmission of the Omicron variant. Specifically, more stringent quarantine and vacci-
nation strategies should be combined to deal with new variants with higher transmissibility
during a large event.

4. Discussion

A set of risk assessment methods were developed and used to evaluate the effective-
ness of preventive measures, helping to provide suggestions for improving risk manage-
ment measures for both the Tokyo Olympic Games and future large events. The simulation
results indicated that the bubble scheme and frequent COVID-19 testing for Olympic-
related personnel both played a vital role, which resulted in a relatively low risk level in the
bubble system. However, as the risk level in the citywide region of Tokyo was high, some
improvement countermeasures were proposed to mitigate the infection risk. Adopting
a more stringent quarantine strategy with a quarantine rate of greater than 0.4 helps in
preventing mass infections in a short period of time, thus reducing pressure on healthcare
systems. To increases the quarantine rate, more rooms and empty hotels should be prepared
as temporary facilities for patients with mild or asymptomatic infection who need to isolate
but do not require hospital treatment. Sufficient staff should be trained to provide services
for the people isolated in quarantine. In addition, ensuring a high rate of vaccination before
the hosting of the Games will help curb the spread of COVID-19 to a great extent.

Although the hosting of Tokyo Olympics was considered to be successful under the
public health challenge, banning spectators and international travelers caused massive
financial losses for the organizers. It is estimated that the Tokyo Olympics may had
suffered a loss of $800 million in ticket sales. In future international sporting events, a
suitable balance between safety and economic aspects should be achieved. For instance,
allowing fully vaccinated people and international travelers and preserving proper safety
guidelines will minimize economic losses incurred by the host country as well as ensure
safety. Moreover, since an international sporting event is expected to result in an increased
risk of accidents, injuries, and infectious diseases, it is critical for the host government and
hospitals to develop and implement a massive casualty preparedness plan to improve their
emergency response and resilience. The capacity of hospitals and health institutions should
be reinforced given the potential for mass infection. Extra precautionary measures can
also be adopted for future large events, such as having a sufficient workforce, providing
appropriate training for medical staff, and offering multi-language services to eliminate the
language barrier.

While this study provided some quantitative results, it had several limitations. First,
the parameters used for the simulation were estimated according to the case of the “Z22”
train and previous studies. Actually, the parameters were supposed to vary under different
scenarios, making it difficult to obtain their accurate values. This limitation may result in
deviations of our simulation results. Second, the areas in the host city were classified into
several rough categories. Difference between the competition venues, accommodations
and shopping areas were not considered. Third, the scenario design for the population
with different roles was simplified to be the same every day. Due to the lack of specific
schedules for the Olympic-related personnel, variation in daily travel scenarios was not
taken into account. Fourth, since the Delta variant was regarded as the main variant
transmitted during the Olympics, the virus parameters for the Delta variant were used in the
simulation. Actually, multiple variants were transmitted during the Games, including the
Alpha variant, Gamma variant and others. These variants have different viral parameters
such as transmissibility, illness severity, and immune evasion, which should be taken into
consideration in further research. Fifth, the lack of economic analysis may have influenced
the evaluation of the impacts of prevention strategies. Economic losses incurred by the
host country due to a public health crisis should be further investigated. Despite these
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limitations, a quantitative assessment of the infection risk profile in the bubble system under
the implementation of preventive measures during the Tokyo Olympics was accomplished.
Additionally, improvement measures for the Games were proposed and discussed. These
findings can better support strategies to prevent and/or reduce the negative effects of a
pandemic crisis on a high-profile public event.

In conclusion, it is necessary to perform more detailed research on the relations
between the transmission dynamics of different variants, human behavior, large events,
vaccinations, and intervention measures. More data about real cases should be collected to
calibrate the parameters used for the simulation. Moreover, the balance between security
and economic aspects for host countries needs to be investigated further, especially in light
of the impending emergence of new variants.

5. Conclusions

In this paper, the impact of a large event on the spread of the COVID-19 pandemic
was investigated by treating the Tokyo Olympics as a unique case. A set of risk assessment
methods for all stages of the Games was established, including the modified Wells–Riley
model and SIQRV model. The method was used to predict the spread of COVID-19 in
the bubble system and evaluate the effectiveness of different infection control strategies
adopted during the event. The predicted numbers of daily new cases and cumulative cases
for Olympic-related personnel and Japanese residents were compared with actual data,
yielding good agreement. Our results indicate that local staff, as the largest group with
the longest exposure duration, accounted for the largest proportion of total positive cases
among Games-concerned personnel. The public transport scenario was more likely to bring
the infection risk out of the bubble compared to the shopping scenario. The predicted
results for citywide positive cases suggest that the intensity of the quarantine strategy
increased over time since Tokyo entered its fourth emergency state. Moreover, the surge in
positive cases in Tokyo was mainly attributed to the high transmission rate of the Delta
variant and low level of vaccination, while the hosting of the Games was not responsible
for that.

Based on our simulation results, risk management flaws during the Tokyo Olympics
were identified, and some countermeasures for improvement were proposed. The achievable
level of reduced infection risk under the implementation of improved preventive measures
was investigated. The results show that increasing the frequency of COVID-19 testing for
media personnel from one test every 4 days to one test every 2 days would reduce the number
of positive cases among Olympic-related personnel and residents by more than 45%. Offering
designated transport and official accommodations is not a good measure for improvement,
as it reduces the infection risk for residents outside the bubble while facilitating transmission
of the virus inside the bubble. Applying a high quarantine rate of >0.42 and a large initial
vaccination rate of 30% would allow achievement of an acceptable level of infection risk
(cumulative number of cases per week <3500 as a benchmark), thus preventing a sudden
surge and helping to relieve pressure on healthcare systems.

For the safe organization of future high-profile public events, a further analysis was
carried out on the impact of different preventive measures on the spread of the COVID-19
pandemic, taking into account the spread of the new Omicron variant. Since the Omicron
variant has higher transmissibility and greater immune escaping ability, the previous
measures adopted during the Tokyo Olympics are no longer applicable. We propose
that more stringent quarantine (with a quarantine rate higher than 0.7) and vaccination
strategies (with initial an vaccination rate higher than 80%) should be adopted to curb the
transmission of the Omicron variant. Our results can help policymakers to design scientific
and effective strategies to host safe, secure and sustainable events under the pandemic
crisis. The trade-off between safety and economic activities should be investigated in a
future study.
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