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Abstract: Agricultural eco-efficiency is an important indicator used to measure agriculture’s high-
quality and sustainable development. Therefore, this paper uses the EBM-Super-ML method with
strong disposability of undesired output to calculate Chinese agricultural eco-efficiency and uses a
geographical detector to measure the driving force of the factor. The research conclusions are mainly
reflected in three aspects. Firstly, from the perspective of eco-efficiency changes, the overall mean
value of agricultural eco-efficiency increased by 3.5%, and the regional heterogeneity is significant,
with the fastest growth in the eastern region. Secondly, the results of driving force analysis show
that the main driving factors of agricultural eco-efficiency divergence are capital inputs, total carbon
emissions, labor inputs, agricultural film residues, fertilizer use, and pesticide residues, with driving
forces of 0.43, 0.37, 0.34, 0.31, 0.28, and 0.20, respectively. Finally, from the perspective of eco-efficiency
improvement potential, the mean value of output improvement potential is 5%, and the input factor
is 7%. Among the non-desired outputs, the reduction rate of agricultural films can reach 40%. Among
the input factors, labor input has the highest potential for intensive use, while agricultural machinery
has a negative effect. Therefore, strengthening the development of the agricultural service industry
is of great significance to improve the utilization rate of mechanical equipment and reduce the
undesired output of agriculture.

Keywords: agricultural carbon emissions; agricultural ecological efficiency; strong disposability;
factor driver force; promotion potential

1. Introduction

Since the reform and opening in 1978, the Chinese agricultural economy has developed
rapidly. The total output of grain, meat, and aquatic products accounted for about 20%,
25%, and 33% of the corresponding supply in the world in 2017, but the application amount
of chemical fertilizer, mulching films, and pesticide increased by 6.6 times, 5.3 times and
2.3 times, respectively [1]. According to the First National Pollution Source Census Bulletin
(2010), the three main pollutants, chemical oxygen demand (COD), total nitrogen (TN), and
total phosphorus (TP) emitted by agricultural pollution sources in China reached 1324.09,
270.46, and 284.7 thousand tons, respectively, accounting for 43.7%, 57.2%, and 67.3% of the
total. Agricultural pollution has become the largest source of pollution. The huge pollution
challenges brought by the development of the agricultural economy need to be solved
urgently, which is also an important research goal of this paper.

The agricultural production mode depends on the high input of production factors,
which leads to the aggravation of agricultural non-point source pollution. [2]. In addition,
the utilization rate of agricultural resources in China is relatively low; the utilization rates
of chemical fertilizer and pesticides were 37.8% and 38.8% [3], respectively. The total
utilization rate of livestock and poultry manure was about 60%, and the recovery rate of the
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agricultural film was less than 2/3 in 2018. It shows that China’s agricultural growth mainly
depends on the intensive input of production factors. For this reason, the government has
paid more attention to the development of ecological agriculture [4] and issued a series of
policies [5] to provide strong support for the healthy and sustainable development of the
national economy and society.

Many research studies have quantified the performance of agricultural eco-efficiency [6].
A branch of related research is the concept of agricultural eco-efficiency. The sustainability
of agriculture can be well represented by “eco-efficiency”, which is defined in agricul-
tural research as the ratio of the economic value added by agricultural production to
the environmental impact [7], and can also be understood as sustainable intensification.
Agro-ecological efficiency reveals changes in the interactions between agro-ecosystems
and man–land systems. Measuring eco-efficiency provides important information for
policy-makers to formulate policies focusing on sustainable management and efficient
use of natural resources in the agricultural sector, providing important indicators for
decision-makers to formulate economic development strategies [8].

There are also related studies examining the performance of agricultural eco-efficiency.
The existing studies mainly adopted the ratio method, life cycle assessment (LCA) [9],
ecological footprint method, stochastic frontier analysis (SFA) [6] and data envelopment
analysis (DEA) [1,6]. SFA and DEA are the two most used methods [9], among which the
most used DEA indices include the super-efficiency model, directional distance function
(SBM) [10], mixed distance function (EBM) [11], dynamic panel data efficiency, and so
on [12].

The third is the study of efficiency evaluation. The existing literature mainly discusses
the indicators of agricultural resource allocation efficiency, agricultural joint production
efficiency, evolution characteristics of efficiency and other aspects [13]. The analysis results
showed that the characteristics of agricultural eco-efficiency in China were unbalanced. On
the one hand, due to differences in economic development levels and resource endowments,
there are obvious regional differences and spatial agglomerations in China’s agricultural
ecological efficiency [13]. On the other hand, the main reasons for the low efficiency of AEE
are excessive agricultural machinery, land sown area and agricultural carbon emissions [13].

The fourth is the driver of efficiency. The existing literature mainly uses the geographic
detector method to analyze the driving force of efficiency, and the analysis results show
that the widely used regional stratification methods have insufficient explanation for the
spatial differentiation of agricultural ecological efficiency. The hierarchical method of factor
efficiency has a high degree of explanation for spatial differentiation. Excessive agricultural
machinery, land input and excessive agricultural carbon emissions are important reasons
for the low efficiency of agricultural ecology [7].

In conclusion, the existing literature mainly focuses on measuring and analyzing the
spatial–temporal evolution characteristics of agricultural eco-efficiency. It rarely explores
the causes of agricultural eco-efficiency (AEE) loss by combining the slack of agricultural
input factors and output insufficiency [14]. Therefore, we use the Strong-Disposability-
EBM Super-Efficiency Undesirable Malmquist Productivity Index to estimate the AEE,
probe feature factor-driving forces, and improve potential in China. The main research
contents are as follows. Firstly, we establish an EBM-super-efficiency ML model from the
strong disposability perspective of agricultural pollution to study the spatial and temporal
differences of AEE and its improvement targets, which provide a theoretical basis for
analyzing agricultural eco-efficiency. Secondly, we explore the factor-driving forces and
the interaction of significant factors that affect the heterogeneity of AEE. Thirdly, our work
analyzes the inefficiency of input and output factors from two perspectives of slackness and
redundancy to explore the improvement potential of AEE in China, which has important
theoretical and practical implications for promoting sustainable agricultural development.

This article is characterized by three aspects. The first is the measurement of carbon
emission indicators. This paper comprehensively considers the shortcomings of the exist-
ing literature in calculating agricultural carbon emissions, and selects four main emission
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sources, including land ploughing, modern agricultural production, and methane (aquacul-
ture and cultivation). Land tillage before farming will lead to the release of carbon dioxide
adsorbed in the soil again. The use of a large number of mechanical and fossil products
(fertilizers, pesticides, etc.) in modern agricultural production will directly produce green-
house gases. In addition, this paper measures the carbon emissions of major livestock and
poultry breeding in China and the carbon emissions of early rice and late rice. The second
is the method of measuring agricultural ecological efficiency. Based on the theory of joint
production, there are not only expected outputs in the production process of agriculture,
but also undesired outputs such as non-point source pollution and carbon emissions, which
are different from the non-expected outputs of industry, which have strong disposability
characteristics, so the paper chooses the strong disposability EBM-super-efficiency model.
The ML model selects a fixed reference method with a base period of 2009, which makes the
measurement results more comparable. The third is an in-depth analysis of the calculation
results. The analysis of model measurement results is not in-depth enough, the analysis
of inefficiency is less, and there is little analysis of the improvement of elements, so the
analysis of this paper has important reference significance.

2. Method

Agricultural eco-efficiency is the ratio of the economic value added by agricultural
production to the consequences of environmental impact [15]. DEA method is the most
commonly used for AEE evaluation [16]. Compared to the SFA model, the DEA method
ignores the influence of random errors and can overcome the impact of non-technical factors
on the frontier production function [17]. DEA method has some advantages, including
simultaneous processing of multiple input–output elements and nonparametric processing
of effective boundaries. Obtaining the current output level at a lower input level is more
conducive to achieving the goal of sustainable agricultural development [18]. This paper
controlled the state of economies of scale, orientation, disposability of elements, and
production frontier functions. The work uses the EBM-super-ML index to measure the AEE
of various regions in China and further analyze driving forces of spatial differentiation and
the improvement potential for AEE.

2.1. EBM Super-Efficiency Model

Tone and Tsutsui proposed the EBM (epsilon-based measure) model. It is a hy-
brid model that includes two types of distance functions: radial and SBM. The non-
point source pollution and carbon emission in agricultural production are counted as
unexpected outputs.

Evaluation of agricultural eco-efficiency should consider not only the growth of agri-
cultural economic benefits but also undesirable outputs (bad outputs) such as non-point
source pollution and carbon emissions generated during agricultural production. Unlike
industrial production, these undesirable outputs are characterized by strong disposability.
Therefore, the study selects the strong disposability non-expected output EBM distance
function model. The model’s projection direction of the evaluated DMU is to increase good
output and reduce bad output.

Referring to the setting of the model by Wang, the super-efficiency EBM model has four
inputs, one expected output, and four unexpected outputs. In the planning formula, max
represents the strong effective frontier of the disposability of undesirable output. Thirty
provinces are recorded as decision-making units as xij, in period t (t = 1, . . . , T). There are
k (k = 1, . . . , 30) DMUs, each decision-making unit has m input X = (x1, x2, · · · , xm)∈ Rm

+,
Yr = (r = 1, 2, . . . , n)∈ Rn

+ and J non-expected output Yj = (j = 1, . . . , j) ∈ Rj
+, X = {xij} ∈

RM × N, Y = {yij} ∈ RM × N, and X > 0, Y > 0, respectively, are input and output matrices.
The production possibility set of the model indicates that under the given input

condition, the good output can be reduced or the bad output can be increased. This
production possibility set means that bad output can be increased indefinitely with a
given input, which means strong disposability of bad output. Here, the model is called
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the strong disposable non-expected output EBM distance function model. The difference
between strong disposability and weak disposability in linear programming is that strong
disposability uses the inequality sign and weak disposability uses the equal sign. The
production possibilities set and model settings are as follows.

ρ∗ = max
θ − εx ∑4

i=1
W−i S−i

xik

ϕ + εy ∑r=1
W+

r S+
r

yrk
+ εb ∑

j
p=1

Wb−
p Sb−

p
bpk

(1)

s.t. ∑k
j=1, j 6=jo xijλj + S−i = θXik, i = 1, 2, 3, 4

∑k
j=1, j 6=jo yrjλj − S+

r = ϕyrk, r = 1

∑2
p=1 bpjλj + Sb−

p = ϕbpk, p = 1, 2, 3, 4

λj ≥ 0, S−i , S+
r , Sb−

p ≥ 0

The production possibilities set:

S = {(x, y) : x ≥ Xλ, y ≤ Yλ, b ≥ Bλ}

where ρ* is the best efficiency under the condition of constant return to scale. θ is the
planning parameter of the radial part. εx, εy is key parameter. Satisfy 0 ≤ εx, εy ≤ 1. W−i

is the importance of input indicators, it meets
4
∑

i=1
W−i = 1; xik and yrk are the i inputs and

the r outputs of decision-making of DMUk. S−i is the relaxation of input element i. ϕ is the
output expansion ratio. S+

r is the relaxation variable of the expected output of class r. Sb−
p is

the relaxation variable of p-type unexpected output. W+
r , Wb−

p is the weight of both indices.
bpk is the p unexpected output of DMUk, q is the number of unexpected outputs, j is the
DMU, λj is the linear of combination coefficient. j0 represents the super-efficiency value of
DMUj on the new effective frontier excluding DMUjo when the commented decision unit
is DMUjo.

The work used the EBM function to calculate agricultural ecological efficiency, taking
into account the strong disposability of unexpected outputs such as land non-point source
pollution and carbon emission, and set the intensive potential of expected output and
unexpected output to 1:1; more consideration is given to the emission reduction potential
of unexpected output, which is different from the model setting in most literatures, and the
conclusions are quite different.

2.2. ML Index

The Malmquist index is usually used to analyze the panel data of observed values at
multiple time points. Färe first used the DEA method to calculate the Malmquist index (MI).
Further, it is decomposed into technical efficiency change (EC) and technical change (TC),
commonly used to analyze productivity changes and the effect of technological efficiency
and technological progress on productivity change. Chung introduced the directional
distance function into the Malmquist index to deal with unexpected output, called the
Malmquist–Luenberger (ML) index [19]. The core is to solve the problem of unexpected
output. The Fixed Malmquist index takes the single-phase front of a fixed period as the
reference front for calculating MI (t− 1, t) in each period [19]. The MI and its decomposition
efficiency model are as follows:

Mt
g

(
xt

k, yt
k, xt−1

k , yt−1
k

)
=

Dg
k
(
xt

k, yt
k
)

Dg
k

(
xt−1

k , yt−1
k

)
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EC =
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(
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k, yt

k
)
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)
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) ·
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(
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(
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(
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)
 = EC·TC (2)

where x and y are the input index and output index, respectively. xt
k represents the input

vector of the k region in year t. yt
k represents the vector of agricultural output for the k

region in year t; θ represents the technical efficiency index; Dt
k represents the distance

function of the production point in year t in reference to the technology Tt in year t.

2.3. Geographical Detector

The geographic detector method can measure the spatial heterogeneity of variables.
The detection results mainly include two aspects: one is to test the most considerable strati-
fied heterogeneity of a single variable and driving factors causing the spatial differentiation.
The other is to test the coupling of the spatial distribution of two variables to detect possible
causal relationships between two variables [19]. The methods of differentiation and factor
detection, and interaction detection are as follows:

Spatial Difference and Factor Detection. This method uses the power determinant
value indicator to measure the degree to which the spatial differentiation of the dependent
variable is affected by the spatial differentiation of the independent variables [4]. By
introducing the power determinant value q(X|{h}), we explore the driving factors of AEE.
The larger the corresponding q value, the greater the explanation degree of the spatial
differentiation of the dependent variable. The study sets the AEE as dependent variable Y
and the driving factor X = {Xh} (h = 1, 2, . . . , l; l is the number of partitions of the factor). Xh
represents the different partitions of factor X, the dependent variable Y, and the factor. The
X layers are superimposed to represent the determining force of factor X on the dependent
variable Y. The q value can be represented by the Formula (3).

q = 1− ∑L
h Nhσh

2

Nσ2 = 1− SSW
SST

; SSW = ∑L
h Nhσh

2, SST = Nσ2 (3)

where N is the number of units in the entire study area, Nh is the number of units contained
in the h-th subregion of factor X, σ2 represents the variance of Y values in the entire study
area, and σh

2 is the variance of Y in the h-th subregion of the driving factor X. SSW and SST
are the sum of the variances of the sampling units in each sub-area and the total variance
of the sampling units in the whole area, respectively. q indicates that the driving factor X
explains 100 × q% of the spatial distribution of Y, and the value range is [0, 1].

To compare whether the cumulative variance of each subregion is significantly differ-
ent from that of the entire study region, the F statistic is shown in Equation (4).

F = N−L
L−1

q
1−q ∼ F(L− 1, N − L; λ)

λ = 1
σ2 [∑

t
h=1 Y2

h −
1
N
(
∑t

h=1
√

NhȲh)
2] (4)

where, λ is the non-centrality parameter, Ȳh is the mean of the subrange.
Interaction Detection. Interaction detection is used to measure the degree of inter-

pretation of the dependent variable Y when there is an interaction between independent
variables or whether the effects of these independent variables on the dependent variable
Y are independent of each other. The detection results represent that risk factors X1 and X2
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(and more X) interact with the response variable Y. The types of interactions between the
two independent variables on the dependent variable are shown in Table 1.

Table 1. The type of interaction of two independent variables on the dependent variable.

Basis of Judgment Interaction

q(x1∩x2) < Min(q(x1), q(x2)) Non-linear weakening
Min(q(x1), q(x2) < q(x1∩x2) < Max(q(x1), q(x2)) Single non-linear enhancement

q(x1∩x2) < Max(q(x1), q(x2)) Double enhancement
q(x1∩x2) = q(x1) + q(x2) Independence
q(x1∩x2) > q(x1) + q(x2) Non-linear enhancement

3. Variables and Data
3.1. Input and Output Indicators

The optimal agricultural production efficiency must consider both agricultural pro-
duction increase and emission control [20]. Most literature believes that the selection of
output variables should include expected and unexpected output [21]. From the C-D
production function perspective, input factors mainly include labor force, land, capital,
and technology [22]. The expected output of agriculture consists of the gross output value
of agriculture, forestry, animal husbandry, and fishery, which measures the economic
benefits and overall results [23]. Unexpected agricultural production mainly comes from
the excessive input or inefficient utilization of some production factors. The statistics of
agricultural pollution mainly include COD and TN and P emissions [24]. Therefore, as
Table 2 shows, the unexpected output in this paper comprises fertilizer residue, pesticide
residue, agricultural film residue, and carbon emission of agricultural products.

Table 2. Evaluation index and explanation of AEE.

Index Indicator Category Index Selection Variables and Description

Input

Labor Primary industry labor force People engaged in agriculture, forestry, animal
husbandry, and fishery (Ten thousand people)

Land The total area sown to crops The total sown area of various crops (Ten thousand mu)

Capital Agricultural intermediate
consumption

The value of goods and services consumed in
agricultural production and operation (One hundred

million yuan)

Technology Total power of agricultural
machinery

Farming, forestry, animal husbandry, fisheries of all
kinds of power machinery power sum (Kilowatts)

Output

Expected Output Agricultural Production
∑(The total output of an agricultural product in the

current year × the production price of that agricultural
product) (One hundred million yuan)

Unexpected output Non-point source pollution

Fertilizer × Loss coefficient (Million Tons)

Pesticide × Loss coefficient (Ton)

Agricultural Film × Residual rate (Ton)

Carbon Emission Planting, Breeding, Fishery comprehensive index
(Million Tons)

3.2. Calculation Method of Carbon Emission Index

Agricultural greenhouse gases include CH4 and N2O from agricultural land, animal
intestinal fermentation, and manure management [25]. According to the unit survey and
assessment method, agricultural carbon emissions mainly come from petrochemical prod-
ucts such as chemical fertilizers and pesticides, agricultural irrigation, tillage, agricultural
machinery power, and methane emissions from animal husbandry and breeding produc-
tion [26]. The work calculates agricultural carbon emissions from three aspects: input of
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agricultural materials [27], carbon emissions from crop planting, and animal husbandry.
The calculation formula is as follows:

ACE = ∑n
i=1 Ei × δi = ∑n

i=1(C + CH4crop + N2Ocrop + N1i + N2i) (5)

C = ∑6
i=1 Ci = ∑6

i=1 Xi·hi (6)

CH4crop = ∑n
i=1 Si × αi (7)

N2Ocrop = ∑n
i=1 Si × βi + Pi × γi + Qi × δi (8)

N1i = Days_alivei ×
Mi
365

(9)

N2i = Ci + Cit−1/2 (10)

In formula, ACE is total hydrocarbon emission, Ei is the consumption of class ith
energy. δi is the carbon emission coefficient of class ith energy.

In Formula (6), Ci is the carbon emission of agricultural supplies, Xi is the amount
of each carbon emission source, hi is the carbon emission coefficient of each carbon
emission source.

In Formulas (7) and (8): CH4crop is the total annual methane emission of the planting
industry. Si is the sowing area of the crop, αi is the methane emission coefficient per unit
area of the crop. N2Ocrop is the annual emission of nitrous oxide from the planting industry,
βi is the yearly emission background flux of nitrous oxide per unit area of the crop. Pi is the
annual total amount of nitrogen fertilizer applied to the crop, and γi is the nitrous oxide
emission coefficient of the crop. Qi is the total annual application amount of compound
fertilizer for the crop, δi is the nitrous oxide emission coefficient of compound fertilizer for
the crop.

In Formulas (9) and (10), N1i is the annual average feeding number of livestock with
a slaughter rate greater than 1. Mi is the annual slaughter number of ith livestock. N2i is
the average yearly feeding number of livestock with a slaughter rate less than 1. Ci, C(it−1)
represent the year-end stock of livestock.

3.3. Data Sources

Referring to most kinds of literature, the original data of model indicators come from
yearbooks, such as the Chinese Rural Statistical Yearbook, the Chinese Agricultural Eco-
nomic Yearbook, and the annual statistical report of Chinese rural management, from 2009
to 2019. According to the availability and integrity of data, we chose generalized agricul-
ture as the research object, including 30 provinces and autonomous regions of the Chinese
mainland, and excluded incomplete data from Hong Kong, Macao, Taiwan, and Tibet.
The provincial administrative region division method was approved by the State Council
in 2000 and divided the 30 local regions into East, Central, and West. The missing data
of individual samples are processed by the interpolation method. It was adjusted to the
constant price-output value in 2009 to eliminate inflation.

3.4. Descriptive Statistics

As Figure 1 shows, land area indicators are most concentrated, while pesticide residue
indicators are scattered. To understand the relative difference between the indicators, we
measure the standard deviation to reflect the fluctuation of the unit means in Table 3.
Among them, the coefficient of variation of the land area is the largest at 1.19. It shows
that the land input of the primary industry varies significantly between different provinces.
The coefficient of variation of each indicator is relatively stable, around 0.8, indicating
differences on the one hand, while the fluctuations are similar.
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Table 3. Descriptive statistics of input–output indicators from 2009 to 2018.

Index Max Min Median Mean Var

input

labor 1981.30 9.10 576.75 733.49 0.72
land 138,532.90 263.30 15,183.75 20,743.87 1.19

capital 4366.70 48.70 1139.80 1291.02 0.72
technology 13353.00 94.00 2536.30 3318.74 0.88

output

fertilizer 465.47 4.75 119.11 125.06 0.76
pesticide 84,521.50 892.00 28,212.25 28,901.66 0.75
agrfilm 32,296.50 107.00 6060.90 8038.75 0.83

CO2 65,389.51 84.84 14,876.24 19,293.99 0.83
chanzhi 5272.50 100.80 1670.55 1842.79 0.69

Distribution of CO2. As Figure 2 shows, from the regional distribution of average
agricultural CO2 emissions, Beijing, Tianjin, Hainan, Ningxia and Chongqing have lower
emissions, while Henan, Hunan, Sichuan, Yunnan, Inner Mongolia and Hebei have high
emissions. The emission values of Jilin, Beijing, Tianjin, Henan, Shandong and Fujian are in
a downward trend, and the emission values of Xinjiang, Qinghai, Heilongjiang, Yunnan,
Inner Mongolia, Guizhou and Jiangsu are increasing.
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4. The AEE Calculation Results

The paper used Maxdea8.0 to measure the agricultural ecological efficiency in China,
and analyzed the results of the time and space distribution. The time distribution trend is
analyzed from the population mean and kernel density distribution. The spatial distribution
trend is analyzed from regional mean and cluster distribution.

4.1. Timing Characteristics of AEE

According to the model estimation result of the ML index, the MI is comprehensive
efficiency and mainly refers to AEE in the paper. Its decomposition efficiency includes EC,
TC, and SE. Among them, the EC is technical efficiency, TC is technical progress, and SE is
scale efficiency. As shown in Figure 3, the mean value of AEE was more significant than
one from 2010 to 2018, and the overall growth was in a state of development. Among them,
the fluctuations in 2010–2015 were relatively small and relatively large in 2016–2018. The
fluctuation range of EC is relatively tiny, and the SE average fluctuates wildly. The average
value of MI is affected by TC and declined from 2017 to 2018.
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4.2. The AEE Kernel Density Distribution

As shown in Figure 4, in the representative years from 2010 to 2018, the wave peak’s
MI, EC, SE position is unchanged, and in some years with small wave peaks, a high–high
and low–low agglomeration phenomenon appears. The peak position of the TC wave
is unstable, and the low–low aggregation is more evident in 2016 and 2018. From the
kurtosis point of view, the AEE was relatively concentrated in 2010, and inefficient and
ultra-efficient units accounted for a relatively low value. The peak value in 2016 was the
smallest, with multiple peaks, indicating that the efficiency value had multiple convergence
points. Numerical values are relatively scattered; there is no significant change in the width
of kurtosis during the study period, indicating that the differences between provinces did
not change significantly.
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4.3. The AEE Spatial Distribution

The mean efficiency value can reflect the sample’s overall trend, and different regions
have different characteristics [28]. We analyzed the Chinese spatial pattern AEE in mean
scale and agglomeration distribution aspects [29]. According to the fluctuation range of the
efficiency value, we divided China’s agricultural total factor productivity into four types:
rapid growth (<1.2), increase (1–1.2), decrease (0.8–1), and rapid decline (>0.8). As shown
in Figure 5, the trend of aggregation of efficiency values is relatively apparent, and the
efficient development of different regions is different. In 2018, the provinces with lower MI
in the western region saw rapid growth in SE and TC, while EC fell rapidly, and in-depth
analysis is needed. The eastern region is economically developed, and the MI of most
provinces are in a state of growth, but the SE and TC values are low; the scale efficiency SE
in the central region is better than others, and the TC is decreasing. From the average point
of view, the provinces in the high-efficiency group are located in the eastern and western
regions. In contrast, some provinces in the northeast, west, and central regions are mainly
in the middle and low-efficiency groups, consistent with the conclusions of Fang [30].
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5. Spatial Stratified Heterogeneity

The analysis results of agricultural eco-efficiency showed significant spatio-temporal
differences in agricultural eco-efficiency in different regions of China. Therefore, we further
used geographic detectors to identify the leading factors affecting the spatial differentiation
of agricultural eco-efficiency and their interactions to explore the main factors affecting the
spatio-temporal differentiation of agricultural eco-efficiency.

5.1. Index Setting and Data Processing

Concerning the relevant literature, the input–output factors in agricultural production
in each province were taken as driving factors to investigate the driving factors and forces
of spatial differentiation of agricultural eco-efficiency [6,13]. The hierarchical processing
was carried out and discretized into type variables, and each driving factor’s single-factor
influence degree and multi-factor interaction on AEE were measured. The driver setting
and its discrete classification results are shown in Table 4.
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Table 4. Driver setting and its discrete classification results.

Index
Affecting Factors Classification

Driving Factors Variable Declaration Symbolic Representation Number Categories Method

input

labor people engaged in agriculture x1 4

quantile

technology total power of agricultural machinery x2 4
land the total area sown to crops x3 5

capital Agricultural intermediate consumption x4 5
fertilizer consumption x5 5

agricultural diesel consumption x6 5
pesticide consumption x7 3

agricultural film consumption x8 5

output

expect output agricultural production x9 4

unexpected output

fertilizer loss x10 4
pesticide loss x11 4

agricultural film residual x12 7
carbon emission x13 7

5.2. Factor Driver Force

This paper calculates the driving force of each factor on the spatial differentiation
of AEE from 2009 to 2018. So that the determinative power of each driving factor on the
spatial differentiation of AEE can be compared over time, we select the result of 2010, 2012,
2014, 2016, and 2018. The calculation results are shown in Table 5.

Table 5. Influencing factors and driving forces of spatial differentiation of AEE.

Driving Factor 2010 Order 2012 Order 2014 Order 2016 Order 2018 Order Mean

x1
0.334 **
(0.042) 3 0.385 **

(0.021) 2 0.192
(0.234) 8 0.378 **

(0.021) 2 0.431 ***
(0.008) 3 0.34

x2
0.099

(0.500) 9 0.075
(0.666) 12 0.179

(0.283) 9 0.143
(0.430) 9 0.245

(0.122) 8 0.15

x3
0.092

(0.688) 10 0.210
(0.289) 6 0.280

(0.155) 4 0.173
(0.390) 8 0.164

(0.418) 12 0.18

x4
0.297

(0.132) 4 0.384 *
(0.051) 3 0.473 **

(0.016) 1 0.435 **
(0.027) 1 0.553 ***

(0.004) 1 0.43

x5
0.213

(0.281) 5 0.259
(0.188) 4 0.300

(0.127) 2 0.293
(0.136) 5 0.339 *

(0.086) 4 0.28

x6
0.057

(0.918) 11 0.076
(0.758) 11 0.229

(0.246) 5 0.194
(0.331) 4 0.310

(0.116) 9 0.17

x7
0.011

(0.861) 13 0.051
(0.519) 13 0.133

(0.196) 12 0.087
(0.336) 13 0.260 **

(0.043) 5 0.11

x8
0.195

(0.326) 6 0.203
(0.306) 7 0.171

(0.395) 10 0.101
(0.650) 11 0.163

(0.421) 13 0.17

x9
0.057

(0.786) 12 0.115
(0.445) 10 0.210

(0.219) 6 0.207
(0.235) 7 0.252

(0.114) 6 0.17

x10
0.185

(0.220) 7 0.125
(0.384) 9 0.104

(0.475) 13 0.095
(0.501) 12 0.229

(0.138) 11 0.15

x11
0.104

(0.524) 8 0.153
(0.240) 8 0.208

(0.112) 7 0.280 **
(0.046) 6 0.250 *

(0.069) 7 0.20

x12
0.305

(0.426) 2 0.234
(0.486) 5 0.165

(0.701) 11 0.344
(0.178) 3 0.479 *

(0.070) 2 0.31

x13
0.560 **
(0.042) 1 0.673 ***

(0.004) 1 0.288
(0.501) 3 0.107

(0.930) 10 0.236
(0.635) 10 0.37

Note: The q statistic is used to measure the main influence factor of the dependent variable Y, and the decisive
power of the explanatory variable X. In this table, p values in parentheses are used to test whether the q value is
significant. *, **, *** indicate significance at the 10%, 5%, and 1% levels, respectively.

Based on the horizontal factor comparison results, labor input and capital investment
have the most prominent driving force effect on AEE. Total carbon emissions, pesticide
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residues, fertilizer use, pesticide use, and agricultural film residues have significant driving
effects. Detailed conclusions are as follows.

First, the spatial driving force of labor input is generally on the rise. In 2010, the
explanatory power of labor input on the spatial differentiation of AEE was 0.334, which rose
to 0.431 in 2018. It shows that the ability of labor input to explain the spatial differentiation
of agro-ecological efficiency is getting stronger and stronger. Second, the value of the
spatial driving force of capital investment is on the rise, rising from 0.384 in 2012 to
0.553 in 2018, which indicates that in 2018, the ability of capital investment to explain the
spatial differentiation of China’s agricultural ecological efficiency reached 55.3%. Thirdly,
the spatial driving force values of chemical fertilizer and pesticide use show an upward
trend year by year, and the explanatory power was 33.9% and 26.0% in 2018. Fourth, the
spatial driving force of pesticide residues passed the significance test since 2016. In 2018,
the spatial driving force was 26%, increasing the spatial differentiation of agricultural
ecological efficiency. Fifth, the agricultural film residue passed the significance test in 2018,
and the driving force value was 0.479, which significantly improved compared with 0.305
in 2010. This change shows that the impact of agricultural film residue on the spatial
difference of agricultural eco-efficiency is becoming more and more significant. Sixth, the
spatial driving force value of total carbon emissions passed the significance test from 2010
to 2012, and the spatial driving force value in 2012 was 0.673, but it has not passed the
significance test since 2014. The impact shows an inverted “U” trend, which is closely
related to the implementation of the country’s energy conservation and emission reduction
policies and sustainable development strategies.

5.3. Factor Interaction Effect

Through factor detection analysis, it was found that there were six factors with an
average driving force exceeding 20%. Therefore, this paper analyzes the interaction of
factors affecting the spatial differentiation of agricultural eco-efficiency. The comprehensive
effect of the two factors will improve the explanatory power of the spatial differentiation of
agricultural ecological efficiency. Even-numbered years are used as research samples for
analysis, and the detection results, as Table 6 shows.

Table 6. Interactive detection results of spatial differentiation of AEE.

Interaction Factor
2010 2012 2014 2016 2018

q Type q Type q Type q Type q Type

x1∩x4 0.635 NE 0.662 NE 0.595 NE 0.703 DE 0.656 DE
x1∩x5 0.84 NE 0.906 NE 0.891 NE 0.864 NE 0.849 DE
x1∩x11 0.774 NE 0.792 NE 0.718 NE 0.64 NE 0.816 NE
x1∩x12 0.99 NE 0.825 NE 0.832 NE 0.678 NE 0.858 NE
x1∩x13 0.89 NE 0.868 NE 0.887 NE 0.864 NE 0.736 NE
x4∩x5 0.861 NE 0.791 NE 0.814 NE 0.821 DE 0.761 DE
x4∩x11 0.688 NE 0.47 NE 0.615 NE 0.838 NE 0.723 NE
x4∩x12 0.78 NE 0.709 NE 0.959 NE 0.878 NE 0.848 NE
x4∩x13 0.834 NE 0.753 NE 0.817 NE 0.686 NE 0.551 NE
x5∩x11 0.746 NE 0.577 DE 0.567 DE 0.495 DE 0.65 DE
x5∩x12 0.852 NE 0.83 NE 0.76 DE 0.709 NE 0.717 DE
x5∩x13 0.684 NE 0.685 NE 0.79 NE 0.768 NE 0.712 DE
x11∩x12 0.343 NE 0.578 DE 0.589 DE 0.466 NE 0.366 NE
x11∩x13 0.66 NE 0.561 NE 0.489 NE 0.394 NE 0.347 NE
x12∩x13 0.889 NE 0.774 NE 0.806 NE 0.736 NE 0.517 NE

Note: NE is a non-linear enhancement, and DE is a two-factor enhancement.

From the detection results in Table 4, it can be seen that during the sample period,
the spatial driving force values obtained from the interaction of driving factors all showed
different degrees of improvement. From the perspective of action types, 83% of the interac-
tion types among the dominant factors are a non-linear enhancement, and the non-linear
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effects of each factor in the observed sample gradually weaken. The two-factor effect has
gradually increased and significantly increased in 2018. In the observation sample, the
factor effects of labor input and fertilizer use exceeded 0.8. In 2018, there were two-factor
effects, indicating that the production method using manual operations will use more
fertilizers. In 2010, the non-linear interaction between labor and agricultural film residues
was 0.99, and the non-linear interaction with carbon emissions was 0.89. The non-linear
interaction between agricultural film residues and total carbon emissions was 0.89. In
2012, the non-linear interaction between capital investment and agricultural film residues
was 0.96. In 2014, the non-linear effect of capital investment and agricultural film residue
was 0.96, and the non-linear effect of labor and fertilizer was 0.89. In 2016, the non-linear
effect of labor, fertilizer, and carbon emissions was 0.86, and the non-linear effect of capital
and agricultural film residue was 0.88. In 2018, the forces of labor and chemical fertilizers,
agricultural film residues, and capital and agricultural film residues all exceeded 0.85.

6. The Improvement Potential of AEE

Modern agricultural production improves economic benefits while destroying the
agricultural ecological environment and efficiency. It is reflected in the redundant input
of agricultural production factors and insufficient agricultural output. The degree of
AEE inefficiency is the potential improvement of agricultural ecological efficiency. The
improvement approach includes two aspects. One is to achieve the maximum agricultural
output under the premise of a given factor input and ecological environment impact;
the second is to use fewer agricultural production factors to achieve a given output. We
analyzed the situation of agro-ecological inefficiency from two aspects; one is the overall
distribution of ecological inefficiency, and the other is the redundancy and relaxation
of production factors. Therefore, the paper analyzed the situation of agro-ecological
inefficiency from two aspects; one is the overall distribution of ecological inefficiency, and
the other is the redundancy and relaxation of production factors.

6.1. Efficiency Decomposition

This section uses the factor inefficiency decomposition formula based on DEA to
investigate the improvement potential of agricultural eco-efficiency in China by region.
This paper considered strong disposability characteristics of non-desired outputs such
as land non-point source pollution and carbon emissions when measuring agricultural
eco-efficiency. The non-directed EBM function was adopted to set the intensive potential
expected, and the non-expected outputs as 1:1. The epsilon-based measure methods were
selected for calculation, and the emission reduction potential of non-expected output was
considered more. The utilization of each input factor in agricultural production is evaluated
by measuring the inefficiency and redundancy rate of input factors and output. The higher
the redundancy rate, the lower the input–output efficiency and the greater the intensive
utilization potential of input factors.

According to the measurement principle of agricultural eco-efficiency, the projection
value (target value) is the projection of the evaluated DMU on the leading edge. The relative
gap between the current value and the projection value represents the inefficiency of each
input and output of the DMU. The improvement value of an inefficient DMU includes two
parts: proportional movement and slack movement. The calculation formula is projection
value = original value + proportional improvement value + slack movement. Combined
with Cooper’s decomposition idea, the efficiency decomposition formula and inefficiency
decomposition formula of input–output elements are as follows:

ei =
xT

ik − s−i
xT

ik
, er =

yg,T
rk

yg,T
rk + s+r

, eq =
yb,T

qk − s−q

yb,T
qk

. (11)
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iei =
1

2m
s−i
xT

ik
, ier =

1
2(s1 + s2)

s+r
yg,T

ik

, ieq =
1

2(s1 + s2)

s−q
yb,T

qk

. (12)

where s−i , s+r , and s−q are relaxation variables of input, expected output and unexpected
output, respectively; ei, er, and eq represent the efficiency decomposition formula of input
factors, expected output and unexpected output, respectively, and iei, ier, and ieq represent
the inefficiency decomposition formula, respectively. The efficiency decomposition formula
obtains the efficiency level of each element, and the inefficiency decomposition formula
obtains the decomposition of the total inefficiency, reflecting the promotion potential of
each element to agricultural ecological efficiency.

6.2. The Overall Situation of AEE Inefficiency

Inefficiency is the main factor in measuring the improvement potential of AEE. As
shown in Figure 6, from 2009 to 2018, the overall ratio of agro-ecological inefficiency
was 0.7333. The average agricultural input factor inefficiency value was 0.0723, and the
average output inefficiency was 0.0515. In comparison, the proportion of input factors was
unbalanced. It is the main reason for China’s agricultural ecological efficiency decline. The
inefficiency value of input factors fluctuates wildly, reaching the maximum inefficiency
value of 0.3257 in 2016. The inefficiency value of output factors fluctuates little. It is
generally on a downward trend, which reflects that China attaches importance to the
high-quality development of the agricultural industry and the protection of AEE in recent
years. The efficiency measurement results show that the inefficient regions are mainly
located in the western region, including Gansu (0.7569), Shanxi (0.8944), Jilin (0.9620), and
Heilongjiang (0.9932).
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6.3. Factor Redundancy

The unreasonable factor configuration structure is an important reason for inefficiency.
Through the redundant analysis of input–output factors, it is of great significance to further
explore the improvement potential of AEE.

Redundancy of input factors. As shown in Figure 7, from 2009 to 2018, the average
intensive utilization potential of the primary industry’s labor force, land, intermediate
consumption, and total mechanical power was 3.89%, 1.18%, 0.54%, and 0.36%. It indicates
that the potential for intensive utilization of the labor force in agricultural production is
significant, with the redundancy ratio exceeding 20% in 2016. The second is the land, with
the redundancy ratio exceeding 30% in 2016. It is necessary to reduce land input or improve
the intensive use of other input factors to improve the land output rate [31].

Redundancy of expected output. As shown in Figure 8, from 2009 to 2018, considering
carbon emissions and non-point source pollution of petrochemical supplies, the mean value
of the target output value changed slightly, rising first and then falling. In 2018, it was
somewhat higher than in 2009, with a growth rate of 8.31%. The average real output value
showed a yearly rise, with a growth rate of 91.71%. As shown in the figure, the slack of the
real output value keeps increasing, and the actual output value is much higher than the
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projection value, with the adjustment range rising from 45.2% to 158.89%. It is necessary
to adjust the input proportion of production factors appropriately, improve the quality of
agricultural products [32], and transition from quantity growth to quality improvement.
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Redundancy of unexpected output. Unexpected output indicators include carbon
emissions and non-point source pollution of petrochemical products.

Total carbon emissions. As shown in Figure 9, during the research period of the DMU,
the average value of national total carbon emissions from 2009 to 2018 generally increased
first and then decreased, which has a great relationship with the country paying more
attention to environmental factors this year. All regions should focus more on agricultural
ecological production and green development [33]. China has shown a trend of continuous
emission reduction. In 2015 and 2018, the emission value was less than the target value and
achieved a carbon balance.
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Non-point source pollution. As shown in Figure 9, the emission reduction pressure
for agricultural film residues is high and consistent with the analysis of the factor drivers,



Int. J. Environ. Res. Public Health 2023, 20, 2397 17 of 20

which require significant reductions except for 2018. The stress of reducing pesticide
residues is low. The sample analysis period is less than the target value, related to the
nation attaching great importance to pesticide residues and ensuring food safety. The
loss of chemical fertilizer is relatively sound, and the pressure of reducing emissions is
relatively tiny.

7. Conclusions
7.1. Conclusions

In this paper, we constructed an EBM-super-ML index model to measure the AEE of
30 regions in China under the strong disposability constraints of unexpected output and
used the geographic detector method to measure the driving factors and the interaction of
significant factors of eco-efficiency. The main conclusions of the research are as follows.

Firstly, this paper measures the ecological efficiency of China’s agriculture, the result
shows that the mean value of AEE fluctuates around 1 overall, but fluctuates greatly in
2016 and 2017, and returns to stability in 2018. Among them, the overall efficiency (MI)
fluctuated greatly in 2016 and declined in the following two years, and the main reason for
this phenomenon is that technological changes (TC) showed a large technological regression
in 2017. In general, the economically developed eastern region has higher technological
efficiency (EC) and there is higher technological progress (TC) in the western region.

Secondly, this paper analyzes the drivers of overall effectiveness (MI). Among them,
the analysis of single-factor driving factors showed that capital input, total carbon emissions,
labor input, agricultural film residues, fertilizer use, and pesticide residues were the main
drivers of agricultural ecological benefits, and the driving forces were 0.43, 0.37, 0.34, 0.31,
0.28, and 0.20, respectively. The interaction analysis shows that the two-factor driving effect
shows a gradual trend of strengthening. Labor and capital inputs, fertilizer use, fertilizer
and pesticide residues, agricultural film residues, and carbon emissions all contribute to
the growth of AEE. At the same time, labor use factors significantly affect the impact of
pesticides, agricultural films and carbon emissions on AEE. Capital investment significantly
affects the impact of pesticide residues, agricultural film residues and carbon emissions on
AEE. Therefore, rational allocation of labor resources and capital input plays an important
role in reducing undesired output and improving agricultural ecological efficiency.

Thirdly, we analyze the improvement potential of AEE in China. Most scholars believe
that inefficiency is a major factor in measuring the potential for improvement in AEE. The
calculation results show that the proportion of agricultural ecological inefficient units in
China is 0.07, mainly from the western region. The mean output inefficiency was 0.0515,
of which the mean average inefficiency in seven regions exceeded 0.05, which can appro-
priately reduce the expected yield and reduce the undesired output to improve ecological
efficiency under the constraints of environmental indicators. The average inefficiency of
input factors was 0.0723, and the average value of nine regions exceeded 0.05, so adjusting
the input structure of agricultural production and improving the efficiency of resource
allocation between regions played an important role in improving ecological efficiency.

Fourthly, the paper provides a relaxation analysis of input and output factors. The
results show that among the input factors, the intensive utilization potential of labor is the
largest, followed by the input of land factors. To a certain extent, the input of agricultural
machinery is not conducive to improving the ecological efficiency of agriculture. The
actual value of the expected output is much higher than the target value, and the degree
of relaxation is increasing year by year. Among the unexpected output index, the greatest
degree of relaxation was in agricultural film. The recycling and treatment of agricultural
film should be strengthened.

7.2. Discussion

Based on the above conclusions, we can make some suggestions on the following
aspects. First, the improvement of Chinese agricultural economic efficiency mainly depends
on the input of production factors [34]. However, under the constraints of environmental
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indicators, this extensive farming method is not conducive to the sustainable development
of agriculture. Therefore, adjusting the input structure of agricultural production factors,
especially the proportion of labor input, can not only adjust the proportion of fossil prod-
ucts, but also reduce undesired agricultural output and improve the level of sustainable
agricultural development.

Second, we should also take into account the balanced development between regions,
and the analysis results of the improvement potential show that in the economically
developed eastern region, it is mainly manifested in the inefficiency of input factors,
especially the degree of agricultural mechanization, representing the level of modern
agricultural development which has adversely affected the improvement of ecological
efficiency. Therefore, strengthening the development of agricultural service industries, such
as agricultural cooperative economic organizations, can improve not only the efficiency
of agricultural machinery, but also the efficiency of resource allocation between regions,
which plays an important role in improving the ecological efficiency of China’s agriculture.

Third, the large use of agricultural film in the western region is the main cause of
non-point source pollution. Therefore, promoting environmentally friendly agricultural
technology innovation, using degradable agricultural film and pesticide packaging, ap-
plying bio-organic fertilizer or planting green manure instead of chemical fertilizer, can
significantly reduce the level of non-point source pollution.

Fourth, economically developed regions pay more attention to green agricultural
production [29] within the selected indicators and research scope, and the carbon emission
level is significantly lower than that of less developed regions, which has good reference
significance for regions with greater carbon emission reduction pressure.

7.3. Limitations and Future Research Directions

Due to space constraints, this study only analyzed agricultural eco-efficiency and its
improvement potential. In the next article, we will further analyze the threshold effect and
mediating effect of labor, machinery, and other factors with greater influence, and analyze
the heterogeneity and spatial effect of eco-efficiency.
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