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Abstract: The purpose of this research is (1) to investigate the relationship between crash severity
and the age and gender of the at-fault driver, the socio-economic characteristics of the surrounding
environment, and road conditions, and (2) to explain the probability of a bodily injury crash, including
fatality, with the alternative being a property damage only crash. In contrast to earlier research that
has focused on young and old drivers, age is considered here on its lifetime continuum. A logit model
is adopted and the gender and age of the at-fault drivers are part of the independent explanatory
variables. The unit of analysis is the individual crash. Since age is a continuous variable, this analysis
shows more precisely how age impacts accident severity and identifies when age has little effect.
According to the results, the type of vehicle, timing of the crash, type of road and intersection, road
condition, regional and locational factors, and socio-economic characteristic have a significant impact
on crashes. Regarding the effect of age, when an accident occurs the probability of bodily injury or
fatality is 0.703 for female drivers, and 0.718 for male drivers at 15 years of age. These probabilities
decline very slightly to 0.696 and 0.711, respectively, around 33 years of age, then very slightly
increase to 0.697 and 0.712, respectively, around 47.5 years of age. The results show that age affects
crash severity following a polynomial curve. While the overall pattern is one of a downward trend
with age, this trend is weak until the senior years. The policy implications of the results are discussed.

Keywords: crash severity; at-fault drivers; age and gender; socio-economic factors; built environment;
road conditions; logit model

1. Introduction

People tend to explain crashes with simple facts, such as a driver’s sex and age, and to
relate crash severity to the built environment. However, the demographic characteristics of
a driver in a car accident may have multiplier effects, for instance the fact that the driver is
20 years of age and male may lead to a higher-severity crash. Moreover, the surrounding
environment near a crash site may have different effects on crashes. The environment
represents primarily the built environment, infrastructure, or socio-economic characteristics
of a neighborhood or community. For example, for older drivers with less ability to cope
with high-density environments, complex situations may increase crash likelihood. On
the other hand, young drivers with less experience and judgment, may produce greater
crash incidence and severity in situations encountered more rarely, such as driving on a
slippery iced road. Hence, it is necessary to investigate the interactions between a driver’s
demographics and the surrounding environment in generating crashes of varying severity.

Regarding crash severity, crashes differ. Some are minor while others result in injury
or death. Many factors impact the severity of a crash. This research identifies the factors
that determine the severity of a crash once it has occurred, specifically the likelihood that it
is a bodily injury or fatal (BI) crash, as opposed to a property damage only (PDO) crash.
Unlike macro-level analyses that focus on the numbers of crashes in larger neighborhood
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units [1], micro-level analyses focus on an individual crash at a given location, such as
an intersection. Recent research includes the creation of buffers around the crash point in
order to investigate the direct surrounding environment.

It is not clear what variations in crash behavior would emerge if age appeared as a
continuous variable in explaining crashes, or if age was analyzed for smaller age groups
across the full age spectrum. As already noted, the disaggregate approach adds to the
number of variables beyond those of the aggregate model, down to the precise vehicle type,
driver condition including alcohol or drug use, and light, weather, and road conditions at
the precise crash location. While the literature has analyzed how young and senior drivers
differ from others, the classification of young and old drivers is somewhat arbitrary.

The literature, as summarized in Table 1, has looked at age as a factor in crash fre-
quency, but has limited itself to the young (usually 24 years of age and younger) and the
old (usually older than 65 or 70 years of age), and has contrasted their behavior with that
of the remaining population. It is not clear that the particular age intervals chosen in the
literature are appropriate, in the sense that behavior within the groups is homogenous
and behavior between age groups is different. Moreover, in past research it is often not
clear whether data pertain to all drivers involved in an accident or to drivers at fault in
an accident. The latter is a subset of the former. The database available for this research
provides information on drivers at fault. It is the characteristics of these drivers, the age,
gender of those who cause the accident, that matter in explaining the accident.

The goal of this research is to better understand the interactions between a driver’s
demographics and the surrounding environment in generating crashes of varying severity.
For this, the age and sex of the guilty driver are taken as proxies of a driver’s characteristics.
The focus is on the driver who is most responsible for a crash. Moreover, there are different
built environments in urban and rural areas. Therefore, the overall environment for drivers
and vehicles varies in these areas. The study area, in this research, provides enough
variability in the built environment to uncover the influence of built-environment factors
on crash severity.

The present approach is a micro analysis using logit modeling to estimate the likeli-
hood that an accident is severe, i.e., results in injury or death. In a departure from earlier
research, the focus is on the age and gender of the driver of the at-fault vehicle, and age is
taken as a continuous independent variable, encompassing young, old, and middle-aged
drivers. Other explanatory variables related to the crash, such as its location, vehicle
attributes, road features, weather, and time, are also used as they are derived from the
extensive crash reporting system. In addition, variables defined at the level of Traffic
Analysis Zones (TAZs) are also considered to account for the impacts of the socio-economic
characteristics of the neighborhood surrounding the crash location, including land uses.
The remainder of the paper is organized as follows: Section 2 describes data sources and
their processing and presents the modeling methodology. The results and their analysis
are presented in Section 3. Section 4 includes discussions related to the results. Section 5
concludes and outlines areas for further research.
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Table 1. Contents of the literature.

Models Variables Main Results Reference

Logistic model

Accident severity, namely, location, cause of
accident, etc.

Contributing factors to accident severity,
with data derived from a sample of
560 crashes in Riyadh, Saudi Arabia.

Location (intersection) is closely associated
with crash severity.

[2]

Hit-and-run crashes, driver characteristics,
vehicle types, crash characteristics, roadway
features and environmental characteristics.

Identifies the associated factors of
hit-and-run crashes in Singapore.

Male drivers, drivers aged between 45 and
69 years, two-wheel vehicles are more

associated with these crashes.

[3]

Road design elements (vertical and
horizontal curves) road access (bus stops,

public and private access lanes) and land use
(gas stations, parking places).

Contributing road characteristics to crashes
severity in Poland.

The type of shoulders on both sides of a
roadway, area type, pedestrian sidewalks,

and intersection significantly influence crash
severity.

[4]

Driver characteristics, road condition,
collision type, safety equipment usage, driver

ejection, alcohol involvement, speed limit.

Examines the relationship between crash
severity and the characteristics of gravel

roads, using data over 1996–2005 in Kansas.
Safety equipment usage, alcohol

involvement, speed limit, and driver-related
factors, have significant influences on crash

severity.

[5]

Educational attainment, median housing
value, gender and age, median housing

value, rurality percentage at the zip code
level.

Investigates whether the socioeconomic
characteristics of a driver-based residence zip

code have any relationship with the
likelihood of post-crash medical services.

[6]

Binary logit model

Wind data, overturning truck crash. Wind speed is a critical factor in overturning
freight vehicle crashes in Wyoming. [7]

Road (location, street, paving stretch, surface,
signposting), external environment (day of
week, weather, hour, season), driver (age,

gender, license), accident (crash type, vehicle,
dead).

It is found that male drivers are more likely
to be involved in fatal crashes in an

intersection crash than female drivers.
Drivers aged 65 years and above are more
likely to be involved in fatal intersection

crashes than other age groups. Drivers aged
below 45 years have lower probability to be

involved in a front/side collision.

[8]

Generalized logit
model

Railway features, highway features, crossing
features, traffic controls, and land use.

Key factors for crash severity at a railroad
grade crossing using logit analysis. The

number of daily trains and the presence of a
law enforcement camera can influence crash

severity.

[9]

Ordered mixed logit
model

Driver, traffic, crash-related and vehicle
characteristics.

Certain factors including tripped rollovers
can increase chances of fatal injury and

injuries can be sustained by moped riders.
[10]
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Table 1. Cont.

Models Variables Main Results Reference

Mixed logit model

Roadway characteristics, vehicle attributes,
and driver behavior.

The effect of the use of safety belts in single
and multi-occupant vehicles in Indiana.

Safety belt is associated with vehicle type,
gender, time, but these effects vary across the

population.

[11]

Average daily traffic per lane, average daily
truck traffic, truck percentage, interchanges

per mile and weather effects such as snowfall,
the number of horizontal curves, number of
grade breaks per mile and pavement friction.

Volume-related variables are good for
random parameters, while roadway-related
parameters are good fixed parameters for

these crashes.

[12]

Roadway characteristics, vehicle attributes,
and driver behavior.

The possible unobserved heterogeneity in
pedestrian injury severity caused by motor

vehicle crashes in North Carolina. Darkness,
truck, freeway, and age of pedestrians can

increase the possibility of fatal injury in
pedestrian-related crashes.

[13]

Roadway-surface conditions, driver’s age,
gender.

Drivers in different age and gender groups
perceive and react to road-surface conditions

in different ways, which may result in
varying crash severity.

[14]

Driver characteristics (age, gender.), vehicle
attributes, and roadway characteristics (light

condition,).

Driver injury severity in single-vehicle
crashes in California, focusing on the

heterogeneous effects of age and gender.
Male driver, drunk driving, unsafe speed,

older driver, driving older vehicle and
driving in darkness without streetlights can

increase the probability of fatal crashes.

[15]

Traffic volume, distance of the crash to the
nearest ramp, and detailed driver’s age,
vehicle types, and sides of impact, etc.

At-fault driver’s influential factors on crash
severity on urban freeways in Florida. Age,
traffic volume, distance of the crash to the
nearest ramp, vehicle type, side of impact,

and percentage of trucks are important.

[16]

Manner of collision, motorcycle rider and
non-motorcycle driver and vehicle actions,

roadway and environmental conditions,
location and time, motorcycle rider and

non-motorcycle driver and vehicle attributes,
etc.

Adopts mixed logit models to investigate the
effects of crash factors on crash severity.

Non-uniform effects of rear-end collisions,
roadway speed limit, type of area, riding

season, motorcyclist’s gender, light
conditions, roadway surface conditions,
helmet use influence on crash severity.

[17]

Multinomial logit
model

Environmental factors, roadway conditions,
vehicle characteristics, and rider attributes.

Investigates the influential factors on crash
severity (five levels) in single-vehicle

motorcycle accidents, addressing the need of
multinomial logit formulation.

[18]

Driver characteristics (age, gender.),
single-vehicle accidents involving passenger

cars.

The effect of driver age and gender on crash
injury severity in single-vehicle crashes.

There are significant different behavioral
issues between genders in different age

groups

[19]

Roadway characteristics, accident types,
weather conditions, etc.

Weather condition is frequently associated
with roadway safety. [20]
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Table 1. Cont.

Models Variables Main Results Reference

Road characteristics, vehicle attributes, and
driver behavior.

Crash injury severity and influential factors
(crosswalk spacing, presence of both

horizontal and vertical curves), vehicle type,
signal timings, alcohol, gender, light

condition, weekend.

[21–24]

Pedestrian age, male driver, intoxicated
driver, traffic sign, commercial area, darkness

with or without streetlights, sport-utility
vehicle, truck, freeway, two-way divided
roadway, speeding-involved, off roadway,

motorist turning or backing, both driver and
pedestrian at fault, and pedestrian only at

fault, etc.

Develops heteroskedastic logit analysis to
investigate the influential factors associated

with the injury severity of pedestrians in
motor-vehicle crashes in North Carolina.

Pedestrian age can increase the probability of
fatal injury and it grows more pronounced

with increasing age past 65 years.

[25]

Monetary cost factors, time cost factors,
throughputs, airports, etc.

In terms of the methodology, it adopts a
multinomial logit model. It shows that

reducing air cargo connecting time at an
airport via adequate investment in capacity
is important in terms of saving time costs.

[26]

Standard
multinomial logit
and mixed logit

models

Roadway characteristics (intersection and
non-intersection), vehicle attributes, and

driver characteristics (bicyclist, wearing a
helmet, drugs, alcohol).

Finds that (1) driving under the influence of
drugs or alcohol, (2) striking the side of the

bicycle, and (3) crashes involved with a
heavy-duty truck can increase the likelihood
of severe injuries from motor vehicle crashes

at intersections and non-intersection.

[27]

Multinomial logit
model and latent
class logit model

Single-vehicle crashes on rural roads.

Uses multinomial logit model and latent
class model at the same time, finding that
vehicle age and surface condition (such as
dry, wet, or icy) do not significantly impact

driver injury severity.

[28]

Ordered probit
model

Road characteristics, vehicle attributes,
driver behavior, and driver characteristics.

Uses ordered probit models for crash injury
severity analysis to examine the factors that

affect the risk of different injury levels
sustained under various types of crashes

including two-vehicle crashes, single-vehicle
crashes, motorcycle, pedestrian, etc.

[29–34]

Bayesian ordered
probit models

Driver’s characteristics, vehicle type, and
roadway conditions, etc.

Introduces Bayesian ordered probit models
and compares the results with those of

ordered probit models. When the sample
data size is small, the Bayesian ordered

probit model can produce better prediction
performance than the ordered probit model.

[35]

Multinomial probit
model

Gender of the motorcyclist, speeding, use of
alcohol and/or drugs, helmet use, being
involved in a single-vehicle crash or at a

non-intersection location, horizontal curves,
graded segments, major roadway.

Finds that being a female motorcyclist,
excessive speeding, use of alcohol and/or

drugs, and riding without a helmet
significantly increases fatality and severe

injury in terms of in a single-vehicle crash, at
a non-intersection location, on horizontal

curves or graded segments, and major
roadways.

[36]
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Table 1. Cont.

Models Variables Main Results Reference

Multinomial logit,
ordered probit, and

mixed logit

Environmental factors, vehicle attributes,
and driver characteristics.

Uses three commonly used methods,
multinomial logit, ordered probit, and mixed

logit, to investigate the effects of
under-reported crash data. Fatal crashes

must be the baseline severity for the MNL
and ML models to minimize the bias and the
variability of a model. The rank for the crash

severity must be from fatal to property
damage only in a descending order for the

ordered probit models.

[37]

Ordered probit
model

Impact of vehicle, occupant, driver, and
environmental characteristics.

Investigates the influential factors of large
truck crash severity using ordered probit

models. Finds that the likelihood of fatalities
and severe injury rises with the number of
trailers, while it falls with the truck length

and gross vehicle weight rating.

[38]

Ordered probit,
ordered logit, and
multinomial logit

model

Time, emergency service arrival time, crash
location, primary crash factors, weather,

radius of curvature, vertical grade, type of
vehicle at fault, driver age.

The time between midnight and 6:00 a.m.;
driving while drowsy; median violation; car

versus car collision; car versus people
collision; car only collision; two or more

related vehicles involved; van are the factors
increasing risk of severe accident. Time

between 6:00 A.M. and noon; ramp; toll gate;
vehicle defects; obstacles and poor road

conditions; rainy or snowy weather are the
factors decreasing risk.

[39]

Spatial analysis and
negative binomial

regression

Roadway characteristics and spatial/land
use, vehicle attributes, and driver

characteristics.

Incomplete sidewalks and high crosswalk
density are associated with pedestrian crash

risk. People perceive a lower risk near
university libraries, stadiums, and academic

buildings.

[40]

Multivariate models
Spatial/land use, transit access, commercial

access, and population density, built
environment and design characteristics.

Examines both risk exposure and injuries
sustained in child pedestrian-vehicular
crashes in the vicinity of public schools.

There is a significant association with several
built-environment and design characteristics.

[41]

Generalized ordered
probit model

Environmental characteristics on the severity
of injuries sustained in pedestrian–vehicle

crashes

It is found that women pedestrians tend to be
injured less frequently than male pedestrians;

children have an increased likelihood of
injuries; older persons are more likely to be

fatally injured in pedestrian–vehicle crashes.

[42]

Generalized linear
model and

negative binomial
model

Pedestrian crashes and demographic
(population and household units) and

socio-economic characteristics (mean income
and total employment), land use), and

accessibility to public transit systems, road
network characteristics (the number of lanes,

speed limit, presence of median, and
pedestrian and vehicular volume).

Population, transit stops, and pedestrians
can increase pedestrian crashes. On the other

hand, single family, urban residential
commercial and neighborhood service can

lower pedestrian crashes.
Demographic, socio-economic, land use, and

road data are better predictors than traffic
data. Buffers of 0.5 mile yield better

estimates for all and low activity
intersections, while 1 mile buffers yield better

estimates for high activity intersections.

[43]
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Table 1. Cont.

Models Variables Main Results Reference

Visual inspection of
Google Street View

and logit model

Presence of sidewalks, buffers between the
road and the sidewalk, street lighting,

number of travel lanes and the presence of
medians, traffic controls at intersections, and

posted speed limits.

Lack of sidewalks, buffers, high-speed roads,
roads with six or more lanes, lack of traffic
lighting, speed are associated with severity
of pedestrian casualties. Age of pedestrians

can cause more severe casualties.

[44]

Machine learning
techniques Survey data

In terms of Work-related Musculoskeletal
Disorders (WMSDs), it is found that several

risk factors (involvement in physical
activities, frequent posture change, exposure
to vibration, egress/ingress, duty breaks, and

seat adaptability issues) influence the
frequency of pain of drivers.

[45]

Multinomial logit
model and

discrete choice
model

Mode choice preference data collected from
airport passengers (540 observations).

Discrete choice model optimization
algorithms using Excel is proved to be

efficient in managing model tasks.
Maximum likelihood method is an optimal
method for estimating the coefficients of the
variables. Newton Raphson is one of the best

algorithms, while the worst performed
algorithm is the Steepest Ascent (SA)

method.

[46]

Review

Presents a complete review regarding
analytical methodologies of crash injury

severity models and approaches in highway
accident research.

[47]

2. Materials and Methods
2.1. Data

The data characterize the Central Ohio Region (part of the Columbus Metropolitan
Area (CMA)), which includes Delaware, Fairfield, Franklin, Madison, Licking, Pickaway,
and Union counties, and the City of Columbus, the capital of Ohio and the 15th largest U.S.
city. According to the 2010 Census, its total population was 1,654,374. The Traffic Analysis
Zone (TAZ) is selected as the geographical unit. The seven counties consist of 2052 TAZs.
However, crash data are not available for some peripheral areas, hence only the area in
yellow on Figure 1 is selected for this analysis. It is made up of 1805 TAZs and covers 87%
of the area of the seven counties.

About 284,611 crashes have occurred over 2006–2011 in the seven counties, 535,385 units
(cars, motorcycles, etc.) were involved in these crashes, and 704,883 people were affected
by them. The crash database was obtained from the Ohio Department of Public Safety
(ODPS), and includes crash information, vehicle information, and people information. As
the focus is on crashes where a vehicle and its drivers are at fault, such crashes are first
extracted from the database, leading to the selection of 161,925 individual crashes. Figure 2
displays their spatial distribution. In addition to crash severity (fatalities, injuries, and
property damages), a wide range of crash attributes are extracted from the ODPS database,
such as at-fault driver’s sex and age, crash time, driving conditions, weather, and road
conditions. The TAZ within which the crash took place is identified by overlaying the crash
point locations with the TAZ map, using a Geographical Information System (GIS).
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Figure 2. Individual crashes in the study area over 2006–2011.

Socio-economic and built-environment data were obtained from several sources, are
defined at the TAZ level, and are grouped into six categorizes as described below.

1. Regional and Locational Factors

These variables characterize the general crash location: urban versus rural, distance to
the CMA center, and inclusion in the Mid-Ohio Regional Planning Commission (MORPC)
transportation planning area. These data were obtained from MORPC. Infrastructure and
surrounding driving conditions vary across these locations.

2. Socio-Economic Factors
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These variables characterize population, employment, income, school enrollment, and
housing. These data are all derived from MORPC and the 2010 Census of Population and
Housing.

3. Land-Use Factors

Six land-use variables are considered: Agricultural, Commercial, Residential, Public
Space, Industrial, and Undeveloped. These data were obtained from MORPC, which
processed parcel-level data from County Auditors’ databases, are closely related to trans-
portation flows generation and attraction.

4. Circulation and Network Factors

Public transit variables include numbers of bus stops and railroad crossings. Traffic
flow variables include traffic volumes estimated with data obtained from ODOT, the
Central Ohio Transit Authority (COTA), and the Delaware Area Transit Authority (DATA).
Measures of car use, such as vehicle miles traveled per household, were derived from the
National Household Travel Survey (NHTS).

5. Physical Environment Factors

These variables include number of bars, average age of buildings, area of historic
districts, and size of shopping centers. These data were obtained from County Auditors’
databases and the National Register of Historic Places.

2.2. Modeling Methodology

Several types of models have been used in transportation choice research, such as
the logit model [2–6], binary logit model [7,8] which uses a binary dependent variables
(e.g., yes/no, pass/fail, win/ lose, etc.), ordered mixed logit model, which uses a discrete
and ordinal dependent variable with more than two outcomes (e.g., customer satisfaction
rating, etc.), mixed logit model [11–17], which assumes that the parameters vary from one
individual to another, multinomial logit model [18–26], which uses a discrete and nominal
dependent variable with more than two outcomes (e.g., red/blue/green, etc.), discrete
choice model [48], which explain a choice from a set of two or more discrete alternatives.
This research adopts the logit model to investigate how age impacts accident severity and
to uncover when age has little effect, using age as a continuous variable.

The dependent variable Y is binary, set equal to 1 if the crash is BI-type, and to 0
if it is PDO-type. Fatal and injury crashes are regrouped as bodily injury (BI) crashes
because of the small number of fatal crashes. The independent variables can be grouped
into two groups of vectors: (1) variables specific to the individual crash, and (2) variables
characterizing the TAZ where the crash took place.

The categories of crash-specific variables are:

• X1: age and gender of the at-fault driver;
• X2: vehicle type;
• X3: timing of crash;
• X4: crash location;
• X5: road condition;
• X6: other crash factors.

The categories of TAZ-related variables are:

• Z1: regional and locational;
• Z2: socio-economic;
• Z3: land use;
• Z4: circulation and network;
• Z5: physical characteristics.

The general form of the probability model is then:

P (Y = 1) = F (X1, X2, X3, X4, X5, X6, Z1, Z2, Z3, Z4, Z5) (1)
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In order to assess the factors in the surrounding environment that can affect the
probability of being injured or dead in a crash, a logit model is formulated:

Pr(Y = 1) =
exp(α + ∑6

i=1 βi + ∑5
j=1 γjZj)

1 + exp(α + ∑6
i=1 βiXi + ∑5

j=1 γjZj)
(2)

where,

α: constant;
βi: coefficient for categories of crash-specific variables;
γj: coefficient for categories of TAZ-related variables;
Xi: categories of crash-specific variables;
Zj: categories of TAZ-related variables.

3. Results
3.1. Descripctive Statistics

Descriptive statistics for the crash-specific variables used in the logit model are pre-
sented in Table 2. Descriptive statistics for the TAZ-level selected variables are presented in
Table 3.

Table 2. Descriptive statistics of the selected individual crash variables.

Category Variable Description Mean Std Dev Minimum Maximum

Crash Severity Bodily
Damage

If the crash resulted in injury
damage or fatality then = 1, else = 0 0.296 0.457 0 1

Sex MD If driver is male = 1, if not = 0 0.574 0.494 0 1

Age

Age Driver’s age 36 16 16 105

Age2 Driver’s age2 1575 1460 256 11,025

Age3 Driver’s age3 80,391 112,918 4096 115,7625

Type of Vehicle

Compact If type of unit is sub-compact,
compact then = 1, else = 0 0.172 0.377 0 1

MidSize If type of unit is midsize then = 1,
else = 0 0.329 0.47 0 1

FullSize If type of unit is full size then = 1,
else = 0 0.101 0.301 0 1

Van If type of unit is mini-van or van
then = 1, else = 0 0.081 0.273 0 1

SUV If type of unit is SUV then = 1,
else = 0 0.156 0.363 0 1

Pickup If type of unit is pickup then = 1,
else = 0 0.1 0.3 0 1

Truck

If type of unit is single unit truck,
trailer, truck tractor, truck trailer

with double short or long, converter
dolly, semi-trailer, fifth wheel,

tractor with triples then = 1, else = 0

0.042 0.201 0 1

Motorcycle If type of unit is motorcycle then = 1,
else = 0 0.007 0.083 0 1

Bus
If type of unit is school bus, church

bus, public bus, or other bus
then = 1, else = 0

0.006 0.079 0 1
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Table 2. Cont.

Category Variable Description Mean Std Dev Minimum Maximum

Time

Afternoon If time is between 12 pm and 5 pm
then = 1, else = 0 0.362 0.481 0 1

Peak Time1 If time is between 7 am and 9 am
then = 1, else = 0 0.111 0.315 0 1

Peak Time2 If time is between 5 pm and 7 pm
then = 1, else = 0 0.164 0.37 0 1

Season

Summer If date is June or July or August
then = 1, else = 0 0.245 0.43 0 1

Winter If date is December or January or
February then = 1, else = 0 0.261 0.439 0 1

Day of Week Friday If day of week is Friday then = 1,
else = 0 0.18 0.384 0 1

Crash Location

Intersection_
4ty

If crash occurred on four-way
intersection, T-intersection and
Y-intersection then = 1, else = 0.

0.422 0.494 0 1

Intersection_
roundabout

If crash occurred on roundabout
then = 1, else =0. 0.003 0.052 0 1

Ramp If the crash occurred on the ramp
then = 1, else = 0 0.043 0.203 0 1

Driveway If the crash occurred on the
driveway then = 1, else =0 0.037 0.189 0 1

Curve If road contour is curved then = 1,
else = 0 0.084 0.277 0 1

Light Condition

Ice If road condition is ice or snow
then = 1, else = 0 0.06 0.238 0 1

Dark
If light condition is lighted roadway,
roadway not lighted and unknown
roadway lighting then = 1, else = 0

0.229 0.42 0 1

Speed Speed 45
If the crash occurred on the road
under posted speed 45 then = 1,

else = 0
0.527 0.499 0 1

Other Crash
Factors

Work zone If the crash occurred within a work
zone then = 1, else = 0 0.013 0.114 0 1

Alcohol If the driver was influenced by
alcohol then = 1, else = 0 0.049 0.216 0 1

Drug If the driver was influenced by
drugs then = 1, else = 0 0.011 0.102 0 1

Pedestrian If pedestrian was involved in the
crash then = 1, else = 0 0.004 0.064 0 1
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Table 3. Descriptive statistics of the selected TAZ-level variables.

Variable Description Mean Std Dev Minimum Maximum

Urban If the TAZ is urban = 1, if not = 0 0.85 0.357 0 1

Mile_ Distance to center of Columbus
(mile) 9.978 8.25 0.073 44.466Columbus

Popdensity Population/TAZ area (acre) 5.181 5.788 0 47.043

Hhinc10 Household income 2010 52,079.21 25,292.19 8785 161,377

Empretsrv1 Retail goods employment 2010 113.915 196.609 0 2124

WHITE_P % of Whites in the TAZ 0.717 0.269 0 1

Punder14 % of population under 14 0.184 0.079 0 0.442

P5064 % of population between 50 and 64 0.177 0.07 0 1

POver65 % of population over 65 0.116 0.1 0 1

Agriculture % of agricultural land use 0.137 0.275 0 1

Residential % of residential land use 0.346 0.271 0 0.962

Built_age Built age of construction in the TAZ
where the crash occurred 44.307 23.371 5 509.25

HistoricD If the crash occurred in historic
districts = 1, if not = 0 0.021 0.143 0 1

Shop_acre Area of Shopping Centers 3.432 9.085 0 76.859

3.2. Results of Logit Model

The relationship between each potential explanatory variable and the dependent
variable was first investigated with one-variable logit models. Variables with at least a 10%
significance level were retained. Next, these variables were combined into a unique logit
model, and only those variables significant at the 10% level were retained. The estimated
parameters for the selected logit model are presented in Table 4.

The following analyses focus on the model in Table 4, which includes 43 explanatory
variables, all except four significant at the 0.01% level.

Table 4. Logit estimation results.

Variable DF Estimate Standard Error Wald Chi-Square Pr > ChiSq

Intercept 1 1.0766 0.094 130.3 <0.0001

Crash-Related Factors

AG 1 −0.0134 0.006 5.26 0.0219

AG2 1 0.000344 0.0001 6.64 0.01

AG3 1 −0.00000285 0.00000092 9.46 0.0021

MD 1 0.1269 0.012 116.73 <0.0001

Compact 1 −0.3152 0.031 102.1 <0.0001

MidSize 1 −0.331 0.03 124.17 <0.0001

FullSize 1 −0.3033 0.033 84.89 <0.0001

Van 1 −0.3295 0.034 95.49 <0.0001

SUV 1 −0.39 0.031 157.35 <0.0001

Pickup 1 −0.2699 0.033 68.94 <0.0001

Motorcycle 1 −2.9743 0.093 1032.12 <0.0001

Bus 1 0.3928 0.092 18.15 <0.0001
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Table 4. Cont.

Variable DF Estimate Standard Error Wald Chi-Square Pr > ChiSq

PeakTime1 1 0.0619 0.021 8.91 0.0028

PeakTime2 1 0.0821 0.017 22.38 <0.0001

Afternoon 1 0.033 0.015 4.6 0.032

Summer 1 −0.0612 0.014 20.06 <0.0001

Winter 1 0.153 0.014 118.38 <0.0001

Friday 1 0.0422 0.015 8.37 0.0038

Intersection_4ty 1 −0.2163 0.012 306.18 <0.0001

Intersection_roundabout 1 1.1475 0.152 56.7 <0.0001

Ramp 1 0.1664 0.029 31.92 <0.0001

Driveway 1 −0.0542 0.031 3.07 0.0799

Curve 1 −0.1925 0.021 85.77 <0.0001

Ice 1 0.2259 0.04 32.04 <0.0001

Dark 1 −0.0551 0.017 11.18 0.0008

Speed45 1 0.4173 0.013 1040.73 <0.0001

Work zone 1 0.1944 0.05 14.92 0.0001

Alcohol 1 −0.4581 0.027 288.72 <0.0001

Drug 1 −0.4678 0.053 77.93 <0.0001

Pedestrian 1 −3.3078 0.132 630.66 <0.0001

TAZ- Related Factors

Urban 1 0.0936 0.022 18.55 <0.0001

Mile_Columbus 1 0.00788 0.001 51.49 <0.0001

Popdensity 1 0.0133 0.001 79.92 <0.0001

Hhinc10 1 0.00000086 0.0000003 8.38 0.0038

Empretsrv1 1 0.000258 0.00004 47.4 <0.0001

WHITE_P 1 0.233 0.028 71.55 <0.0001

Punder14 1 −0.6121 0.086 50.64 <0.0001

P5064 1 −0.5742 0.092 38.95 <0.0001

POver65 1 −0.3184 0.06 28.07 <0.0001

Agriculture 1 −0.2358 0.036 42.54 <0.0001

Residential 1 −0.1655 0.03 30.7 <0.0001

Built_age 1 −0.00087 0.0003 9.29 0.0023

HistoricD 1 0.2065 0.045 20.93 <0.0001

Shop_acre 1 0.00145 0.001 3.71 0.0539

3.3. Age and Gender of the Culpable Drivers

Both the AG and MD variables were initially significant, with a negative and positive
sign, respectively. As the AG variable is continuous, higher-order terms were introduced,
and both the square (AG2) and cube (AG3) of AG also turned out to be very significant.
However, cross-products between these variables and MD turned out insignificant, and
were discarded. In order to better assess the effect of AG, the polynomial function F made
of the three age-related variables in Table 4 is analyzed, with:

F= −0.0134AG + 0.000344AG2 − 0.00000285AG3 (3)
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In order to assess the variations in F, its first-order derivative is computed:

dF
dx

= −0.0134 + 0.000688AG− 0.00000855AG2 (4)

The derivative has a value of zero at the following two values of AG:
AGlow = 33.06
AGhigh = 47.41.
The value AGlow corresponds to a minimum, and the value AGhigh to a maximum

in the F curve, as illustrated in Figure 3. Equation (3) represents the “Female” curve. The
“Male” curve is obtained by adding the coefficient 0.1269 to Equation (3).
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For both male and female drivers, F declines slightly from AG = 15 to AG = 33.06,
then increases very slightly to AG = 47.41. From that point on, F declines precipitously.
However, while the variations in F are a reflection of the variations in the probability of a
crash being BI-type, they are not the same, and it is necessary to compute these probabilities
for the same AG range. To do so, it is necessary to select values for all the other variables
appearing in Table 3. For the sake of simplicity, all the other independent variables are set
at their mean values. The simplified probability functions are then:

(1). Male Drivers

Pr(Y = 1|AG) =
exp

(
−0.0134 ∗AG + 0.000344 ∗AG2 − 0.00000285 ∗AG3 + 1.0697

)
1 + exp

(
−0.0134 ∗AG + 0.000344 ∗AG2 − 0.00000285 ∗AG3 + 1.0697

) (5)

(2). Female Drivers

Pr(Y = 1|AG) =
exp

(
−0.0134 ∗AG + 0.000344 ∗AG2 − 0.00000285 ∗AG3 + 0.9968

)
1 + exp

(
−0.0134 ∗AG + 0.000344 ∗AG2 − 0.00000285 ∗AG3 + 0.9968

) (6)

The corresponding probability curves are presented in Figure 4.
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At age 15, the probability of the crash BI is 0.703 for female drivers, and 0.718 for male
drivers. These probabilities decline very slightly to 0.696 and 0.711, respectively, around
age 33.06, then very slightly increase to 0.697 and 0.712, respectively, around age 47.41.
From that point on, the two curves first decline very slightly up to age 70, after which
the decline accelerates. At age 80, the female and male probabilities are 0.661 and 0.677,
respectively, and at age 90 they are equal to 0.622 and 0.639, respectively.

The above results are somewhat surprising, as one would have expected more differ-
entiated probabilities. While the BI crash probability is highest for the very young drivers
(15–20), it is not very different from the probabilities for adulthood years. As expected, the
probability declines significantly for senior drivers, but mostly in late years. In summary,
except for these very senior drivers, age does not appear to strongly affect the probability
for a crash to be of the BI-type.

The crash literature has heavily focused on driver age as influencing crashes, and
in particular how age affects the likelihood of crashes among teenage and senior drivers.
However, the present results differ in at least two ways: The analysis looks at all age groups
in a continuous manner, and hence can identify the age at which crash incidence changes.
In the literature, the cut-off points for the young- and old-age cohorts are assumed rather
than being the result of an analysis. Second, the literature does not explicitly deal with
drivers at fault, and hence it is difficult to identify the extent to which a particular age
group is involved in accidents or causes accidents as faulty party. In a general way, the
present results confirm some of the findings in the literature. They suggest that over the
middle age range, crash probabilities do not change much and hence the literature is correct
in focusing on the young and the old, for which severe crash probability differs. Further,
the literature suggests that male drivers are at a greater risk of BI accidents and women are
more involved in non-fatal crashes [49,50]. This is confirmed by this study.

3.4. Type of Vehicle

The benchmark is a mix of trucks, taxi, emergency, motorhome, equipment, and other
vehicles, as well as trains. Accidents in which at-fault drivers drive compact, mid-size, or
full-size vehicles are less likely to result in BI than those involving benchmark vehicles.
Similar results hold for vans, SUVs, pickup trucks, and motorcycles. However, bus-type
vehicles have a positive sign, which indicates that they are more likely than the benchmark
vehicles to generate BI crashes. The effect of vehicle type on accident severity has not yet
been much studied in the literature. An exception is [42], which considers the special case
of pedestrian crashes and finds that emergency vehicles and motorcycles/mopeds have
a positive impact, and trucks, vans, and buses a negative impact on such crashes. These
results are somewhat counterintuitive. The present results have much greater generality as
they do not focus only on pedestrian crashes.
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The result for motorcycles is interesting. The coefficient (−2.97) is much larger (in
absolute term) than those for all the other vehicle-type variables. Usually, riding a motor-
cycle is considered more dangerous than riding a car. Motorcyclists are not protected by
the body shell of a car or other safety attributes, such as seatbelts or airbags. The driver’s
body is directly exposed to the impact of a car or obstacle. The results suggest that if
the motorcyclist is the culpable driver in a crash, body injuries are less likely than if the
driver of a car were the at-fault driver. While this seems counterintuitive, there are possible
explanations. First, BI crashes are not limited to accidents in which the at-fault driver
suffers injuries. Much of the time it is others, passengers in the vehicle of the at-fault driver,
pedestrians, or passengers in other vehicles, that suffer injury. Comparing the vulnerability
of at-fault drivers is therefore besides the point. It is the individual vulnerability and the
number of all participants in an accident that matters. Hence the result can be explained,
all else being equal, if the number of participants in a crash caused by a motorcycle were
smaller than the number caused by a car. The same is true, again all else being equal, if the
vulnerability of participants other than the crash-causing driver is smaller in a crash caused
by a motorcycle than by a car. The number of crash participants is likely to vary between
the two types of accidents. Given the greater instability of 2-wheel vehicles over 4-wheel
vehicles, motorcycles are more prone to accidents that involve only the motorcycle. These
types of accidents would automatically fault the motorcyclist. However, quite a number of
such accidents may not result in injury, as the driver anticipates the accident.

3.5. Timing of Crash

Seasonal variables are associated with the type of crash. If a crash occurs in summer,
the odds of a BI crash are smaller than in spring or autumn (benchmark seasons). On the
other hand, winter increases the odds of a BI crash. In summer, driving conditions may
be better than in other seasons in the Central Ohio Region due to the summer break in
schools and colleges. The summer break lessens traffic congestion and may calm traffic.
Driving during the winter season increases the probability of a BI crash. Ice, slippery roads,
and low temperatures may affect a driver’s physical conditions, resulting in worse vehicle
maneuverability.

The results also show that driving on Friday may lead to more BI crashes. Friday is the
end of the week, which may make people more relaxed, and drivers less attentive. People
may participate in parties or other nightly events, which may also contribute to more BI
crashes.

With respect to time of day, driving during morning peak hour (7:00–9:00 am), night
peak hour (5:00–7:00 pm) and from 12:00 pm to 5:00 pm increases the likelihood of a crash to
be BI-type. The morning and evening rush hours, and to some extent the lesser peak hours
of the lunch break, are characterized by congestion. Drivers frequently change lanes, do not
keep a minimum distance to other cars, and encounter difficult situations when entering
and exiting highways or turning on multi-lane arterial roads. The literature indicates that
these conditions raise accident rates, and it is not surprising that they raise the rate of BI
crashes. Morning and evening rush hours also take place at least in part during twilight
and dawn hours when visibility is reduced. See [51] for results on this effect.

3.6. Type of Road and Intersection

The benchmark cases include 5-point intersections, crossovers, railways, shared paths,
not an intersection, and others. Compared with the benchmarks, 4-way intersections and
driveways are less likely to lead to BI crashes, whereas roundabouts and ramps are more
likely to do so.

At 4-way intersections, drivers generally must stop their car or reduce speed before
turning or proceeding ahead, and this caution leads to less BI crashes. The higher likeli-
hood of BI crashes at roundabouts may be due to less visibility of other cars entering the
roundabout. The results imply that when a crash occurs, it is more likely to be BI-type than
at other intersections. However, overall, the number of crashes may be much lower and
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hence the incidence of BI crashes at roundabouts is lower than at other intersections. The
results indicate that ramps increase the likelihood that a crash is BI-type. Vehicles at high
speed on the highway need to reduce their speed abruptly or need to change lane suddenly
to enter the exit ramp. A ramp with a sharp curve and a 25 m/h speed limit or steep slope,
may make it difficult to control the vehicle. Using a ramp to enter a highway may also be
dangerous, particularly if high-speed vehicles on the highway do not provide some leeway
for the entering cars. Crashes that occur at driveways are more likely to be PDO crashes
due to the low speed of the vehicle entering or exiting the driveway.

3.7. Road Conditions

Road shape can be an influential factor regarding the type of crash. When the road
contour is curved, whether level or grade, a BI crash is less likely, possibly because of
the need to reduce the driving speed. The results also show that road conditions may be
influential factors. A road covered by ice increases the odds of a BI crash. The benchmark
includes all other conditions (dry, wet, snow, etc.). This result is likely related to the difficult
maneuverability of cars under icy road conditions. Moreover, ice conditions may overlap
with other conditions, such as rain or snow, which can reduce the visual field. Drivers often
inadequately compensate for such difficult conditions, perhaps because these conditions
are not always recognizable, because compensation is not feasible, or because of a lack of
experience with these conditions. Snow in southern states will likely result in much greater
accident severity than snow in Canada. Several studies confirm the positive effect of bad
weather on crashes, for instance [42] for vehicle–pedestrian crashes and [52] for crashes
resulting in injury or fatalities.

In contrast to expectations, poor light and visibility conditions do not necessarily con-
tribute to crash severity. Darkness decreases the odds of bodily injury crashes. Apparently,
this is yet another situation when drivers may compensate by driving more cautiously or
at a reduced speed, limiting accident severity even if accident likelihood rises. The authors
of [51] suggest that the smaller the daylight minutes during rush hours, the greater the
number of crashes.

3.8. Alcohol, Drug, and Work Zone

The results indicate that alcohol- and drug-related crashes are more likely to be PDO
than BI crashes. This is quite an unexpected result, but there might be a possible explanation:
when drivers are influenced by alcohol or drugs, there are more chances that a crash will
happen, but since they are mentally and physically exhausted under the influence, they
may drive more slowly and in zigzag, hitting objects and properties. Moreover, surprisingly,
pedestrian-related crashes are more PDO than BI-type. However, in such pedestrian-related
crashes, the pedestrian is not the at-fault party, and it may be that the driver, trying to avoid
a pedestrian, may swerve suddenly and hit property rather than the pedestrian.

Finally, accidents in work zone areas are more likely to result in BI. Workers operate
under dangerous conditions, where they can be struck by cars. Inexperienced or incautious
drivers may run over the work zone. Driving lanes are often narrow, and may change in
unexpected ways, which makes it difficult for drivers to fully adjust their driving. There is
also asymmetry of traffic participants, as workers must work in the immediate vicinity of
traffic, yet lack protection.

3.9. Regional and Locational Factors

An increasing distance from downtown Columbus increases the likelihood of a crash
being BI. The closer to downtown, the greater the level of congestion and the slower the
traffic. While accidents may be more frequent closer to downtown, the likelihood that they
result in injury declines. This holds despite the greater asymmetry in street participants,
and in particular the greater presence of vulnerable pedestrians. More complex signage,
more pedestrians, and more law enforcement officers may lead to more careful driving. The
urban dummy variable has a positive and significant coefficient. In contrast to expectations,
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an urban environment raises the odds of a BI crash. In urban areas, there are many
attractions which can capture drivers’ attention in contrast to rural areas, and this may lead
to more serious crashes.

3.10. Socio-Economic Factors

Population density, retail service employment, household income, and the proportion
of Whites, all increase the likelihood for a crash to be BI-type. Denser areas with a lot
of commercial activities may be more difficult to drive in, increasing the likelihood of BI
crashes. It is not clear why a large share of Whites and higher household income increase
the likelihood of BI crashes. Unexpectedly, when a neighborhood has a high proportion
of young (Age < 14) or older (Age > 50) residents, the likelihood that an accident is of
BI-type declines. Both younger and older residents are more vulnerable than middle-age
adults, particularly as pedestrians. The young are less familiar with traffic dangers, older
residents react more slowly, and both young and old often act impulsively and without
proper precaution, so the result is unexpected. There are a number of possible reasons,
though all remain speculative without additional data. As elsewhere, drivers in potentially
vulnerable neighborhoods may overcompensate, resulting if not in fewer accidents, at
least in accidents that are less often BI-type. Neighborhoods with preponderance of young
or senior populations may differ from others in ways not captured by other physical
neighborhood characteristics, making them safer in terms of BI. Future research will have
to identify these reasons.

3.11. Land-Use

The results show that crashes in predominantly agricultural and residential areas
are less likely to be BI-type. There may be less traffic in agricultural areas, hence less
opportunities for severe accidents. Residential areas require lower speeds and more stops,
which reduces the likelihood of BI crashes.

3.12. Neighborhood Physical Factors

The results show that physical neighborhood characteristics are associated with the
possibility of a crash being the BI-type. The average age of buildings has a negative sign.
Older neighborhoods may require more careful driving, leading to less BI crashes. However,
the Historic District variable has the opposite effect, for which there is no clear explanation.
The size of shopping centers has a positive effect on the odds that an accident is BI-type.
This can be attributed to the difficulty of driving in such areas.

4. Discussion

This research tried to identify the variables that determine whether a crash results in
Bodily Injury (BI) or Property Damage Only (PDO). BI crashes are of interest because they
are generally more serious and costly than PDO crashes. The analysis focused on driver
attributes, physical neighborhood characteristics, neighborhood resident and employment
populations, and other factors such as road and weather condition. It adds significant detail
to driver and vehicle attributes, and crash-site and weather conditions. One finding is that
age affects crash severity following a polynomial curve. While the overall pattern is one
of a downward trend with age, this trend is weak until the senior years. Among vehicle
types, bus-type vehicles significantly increase the probability of a crash being BI, while
motorcycles have the opposite negative effect. The results indicate that seasonal, weekly,
and daytime variables are associated with the probability of BI crashes. Crashes that occur
in summer are less likely to be BI crashes, while those in winter are more likely to be so. In
terms of day of the week, driving Friday contributes to a crash being BI-type. Regarding
the time of day, driving during morning and night rush hour increases the probability of a
crash being BI-type.

The type of road and road conditions are also important factors for crash severity.
Crashes that occur at 4-way intersections and driveways are less likely to be BI-type. Ramps
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and roundabouts have the opposite effect. Driving on icy roads is more likely to result in
crashes being BI-type. Unexpectedly, driving under poor light conditions has the opposite
effect. Among other factors influencing the likelihood of a crash being BI-type, alcohol and
drugs have a negative effect, whereas work zones have a positive one.

Regional and locational factors, such as the distance to the center of the city of Colum-
bus and the urban character of a TAZ positively and significantly impact the likelihood of
a crash being BI-type. Neighborhood socio-economic conditions also matter. The higher
the proportion of residents under 14 and over 50, the lower the likelihood of a crash being
BI-type. Higher population density and larger retail service employment have the opposite
effect. Two land uses, agricultural and residential, are negatively associated with BI crashes.
Finally, the likelihood of a BI crash increases at lower posted limits, particularly less than
45 mph.

The research has shown that TAZ socio-economic characteristic have a significant im-
pact on crashes. Yet not much is known about the mechanisms by which they affect crashes.
Three such mechanisms are suggested, the effects that TAZ socio-economic conditions have
on (i) the local composition of drivers at fault, (ii) the density and type of street activities in
its area, and (iii) the built environment. However, some of the variables, such as the share
of younger or older residents or the share of the White population, can influence accidents
through all three mechanisms, and it is not clear which is most important. Indeed, we do
not know the extent to which TAZ residents are also TAZ drivers at fault, or the extent to
which TAZ residents are involved in crashes in their own neighborhood. Additional data
may permit to shed light on these questions.

5. Conclusions

The modeling approach explained crash severity by combining explanatory variables
related to the neighborhood (TAZ) of the crash with variables related to individual driver
behavior, vehicle characteristics, and crash environment, such as weather, time of day,
visibility, and road curvature. One contribution of this approach was to identify the age
effect on crash severity. In approximate terms, the likelihood that a crash is severe does not
change much for at-fault drivers between the age of 25 and 55, suggesting that limiting the
study of age effects to the young and old, plus a single group in between may be sufficient
for most purposes. The model is used to explain the probability of a bodily injury crash,
including fatality, with the alternative being a property damage only crash. Because the
age of the at-fault driver is taken as a continuous independent variable, it is possible to
assess the lifetime impact of age, for both male and female drivers. According to the results,
when an accident occurs, the probability of a bodily injury or fatal crash is 0.703 for female
drivers, and 0.718 for male drivers at 15 years of age. These probabilities decline very
slightly to 0.696 and 0.711, respectively, around 33 years of age, then very slightly increase
to 0.697 and 0.712, respectively, around age 47.5 years of age. The results also confirm
suggestions in the literature that males are more aggressive drivers and take greater risks.
Male drivers of all ages are more likely to produce a crash leading to injury or death than
female drivers.

Many variables that impact crashes and crash severity are beyond the control of
planners or transport engineers. Even these variables may generate policy implications.
For example, crashes are more likely in urban than rural areas, and crashes diminish with
distance from the city center. While beyond control, they suggest transporting planners
that, given limited budgets, it is wise to invest scarce safety resources in urban areas and
close to the city center rather than in more distant rural areas. They also suggest the need to
better understand just exactly what lies behind the differences in crash incidence. The most
obvious reason is the higher traffic volume and the greater population and employment
densities in urban than rural areas. As these variables were controlled for, other urban
attributes must be the reason and will have to be investigated.

The research conducted in this study suggests numerous avenues for follow-up. The
database developed for this research has the potential for a wide range of follow-up studies.
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One aim of the research was to introduce the at-fault driver into the analysis of crashes, as
opposed to other crash-involved drivers. While the research succeeded in this aim, future
research should analyze how the two types of analysis differ. The database allows for an
analysis of crash-involved drivers, crash at-fault drivers, and the residual drivers that are
involved but not at-fault. Fault is rarely quite clear-cut. Rear-end crashes, for example, are
always taken to be the fault of the rear-ending vehicle, though the behavior of the front
vehicle often contributes to this type of crash. It would be of interest to see whether there is
a significant difference between these sets of drivers, and how they differ. This would also
help in interpreting existing studies that have mostly focused on crash-involved drivers.

This research has some limitations that need to be addressed in future research. First,
the data cover the period 2006–2011. Changes in vehicle safety standards, improvements
in road infrastructure (e.g., roundabouts), changes in local enforcement, and expanded
driver and pedestrian education may have since modified the roles of the various factors
considered in this study. In particular, the COVID-19 pandemic may have influenced the
overall environment for drivers, pedestrians, and traffic conditions. In this change context,
it is noticeable that road fatalities in the U.S. have increased from 30,000 in 2011 to 36,000 in
2020 “https://www-fars.nhtsa.dot.gov/Main/index.aspx (accessed on 24 January 2023)”.
Second, more spatial attributes need to be considered by adopting more advanced spatial
analysis techniques.
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