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Abstract: Recycling organic wastes into farmland faces a double challenge: increasing the carbon
storage of soil while mitigating CO2 emission from soil. Predicting the stability of organic matter
(OM) in wastes and treatment products can be helpful in dealing with this contradiction. This work
proposed a modeling approach integrating an OM characterization protocol into partial least squares
(PLS) regression. A total of 31 organic wastes, and their products issued from anaerobic digestion,
composting, and digestion-composting treatment were characterized using sequential extraction
and three-dimension (3D) fluorescence spectroscopy. The apportionment of carbon in different
fractions and fluorescence spectra revealed that the OM became less accessible and biodegradable
after treatments, especially the composting. This was proven by the decrease in CO2 emission from
soil incubation. The PLS model successfully predicted the stability of solid digestate, compost, and
compost of solid digestate in the soil by using only the characterized variables of non-treated wastes.
The results suggested that it would be possible to predict the stability of OM from organic wastes
after different treatment procedures. It is helpful to choose the most suitable and economic treatment
procedure to stabilize labile organic carbon in wastes and hence minimize CO2 emission after the
application of treatment products to the soil.

Keywords: anaerobic digestion; composting; soil; organic matter; stability; soil application

1. Introduction

Spreading animal excrements, crop residues, food wastes, and other organic wastes
on the farmland to fertilize the soil and enhance soil carbon storage has been an agricul-
tural practice for centuries [1–3]. However, the direct spreading of non-treated wastes
requires careful control since they mainly consist of labile organic matter (OM), which
is not recalcitrant enough to decompose [4]. The decomposition of labile OM in the soil
risks releasing excess ammonium and toxic compounds, e.g., phenolic compounds and
ethylene, which can hinder plant growth [5–7]. The application of immature organic matter
can result in inhibited seed germination, root destruction, suppressed plant growth, and a
decrease in oxygen concentration and redox potential [8,9]. Moreover, the labile OM leads
to a “priming effect” in the soil and multiplies CO2 emissions from the soil [10,11]. Only
stabilized OM can bring a net accumulation of soil carbon storage in the long term [12].

Anaerobic digestion (AD) and composting are typical biological treatments of organic
wastes [13]. The demand for renewable energy has stimulated the boom of AD plants in re-
cent years and brought a huge amount of digestate. The solid part of raw digestate has been
used to replace fully or partially chemical fertilizers in many countries [14,15]. Nowadays,
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there is a growing market of more than 2 000 AD and 3 700 composting plants operational
in Europe [16]. However, there is an increasing awareness that the solid digestate needs to
be stabilized further via composting before soil application because of its phytotoxicity and
poor stability [17,18]. Thus, organic wastes are generally managed through four procedures:
(1) direct spreading; (2) AD-spreading (solid digestate); (3) composting-spreading; and
(4) AD-composting-spreading. To choose the most environmentally friendly management
practice, it would be ideal to predict the stability of OM spread into the soil following these
four procedures [19–22].

Various AD models have been developed, ranging from steady-state to complex dy-
namic models [23–25]. Although a large step forward has been made, a model capable of
predicting the properties of digestate is still absent [26,27]. Moreover, it is difficult to couple
an AD model to a composting or soil one since their inputs and outputs are different [28].
Dozens of indicators have been proposed in composting and soil fields [29]. However,
none of these could appropriately elucidate the stability of OM in the solid digestate [30].
Recently, a new OM characterization protocol consisting of sequential extraction and flu-
orescence analysis was proposed [31,32]. The apportionment of carbon (AC, percentage
of total carbon in the sample) in different fractions out of sequential extraction was used
to indicate the accessibility of OM to microorganisms, i.e., the OM in a readily extractable
fraction is more accessible than that in a poorly extractable fraction [33,34]. The 3D fluores-
cence spectra of the supernatant were used to indicate the complexity of soluble OM [35].
Using this characterization protocol, previous works predicted successfully the stability of
solid digestate [35,36].

This work proposes combining this OM characterization protocol with partial least
squares regression (PLS) modeling to predict the stability of OM in treatment products
originating from different waste treatment procedures, e.g., non-treated wastes, solid
digestate, compost, compost of solid digestate. A total of 31 organic wastes and their
treatment products were characterized using the characterization protocol. Three PLS sub-
models were developed for anaerobic digestion, composting, and soil, respectively. These
sub-models can be coupled according to users’ requirements to predict the non-mineralized
carbon (Cnm) of OM once applied to the soil.

2. Materials and Methods
2.1. Description of Samples

Non-treated organic wastes (n = 31), solid digestate (n = 23), and compost of solid
digestate and wastes (n = 34) were collected from farmlands, waste treatment plants, or
experimental pilot plants in France (Table 1). The solid digestate at the industrial scale was
directly collected at the output of the liquid/solid phase separation unit on site. The raw
digestate of AD at the pilot scale was also pressed and sieved to remove the liquid phase.
The compost was sieved at 20 mm to remove impurities and large woody tissues. Only the
fine fraction of compost (<20 mm) was collected.

Table 1. Composition of organic wastes and treatment products.

Sample Description Sample
(Solid Digestate or
Compost, Output)n (Non-Treated Waste, Input) Treatment Scale Phase

Separation

1 Poultry manure mixed with
straw (Manure1) AD 1: 41 ◦C, 70 days 2 Industry Solid phase Solid digestate of Manure1

(Manure1-D) 4

Composting: 56 days 3 Pilot Fine fraction
(sieved at 10 mm) Compost of Manure1 (Manure1-C) 5

2 Cow manure mixed with
straw (Manure2) Dry AD: 35 ◦C, 56 days Pilot Solid phase Solid digestate of Manure2

(Manure2-D)

3 Beef manure mixed with
straw (Manure3) Dry AD: 35 ◦C, 56 days Pilot Solid phase Solid digestate of Manure3

(Manure3-D)
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Table 1. Cont.

Sample Description Sample
(Solid Digestate or
Compost, Output)n (Non-Treated Waste, Input) Treatment Scale Phase

Separation

4
Cow and beef manure mixed

with straw (Manure4)
Dry AD: 35 ◦C, 29 days Industry Solid phase

Solid digestate of Manure4
(Manure4-D1)

Dry AD: 35 ◦C, 56 days Solid digestate of Manure4
(Manure4-D2)

5
Cow and beef manure mixed

with straw and hay
(Manure5)

Dry AD: 35 ◦C, 56 days Industry Solid phase Solid digestate of Manure5
(Manure5-D)

6
Centrifuged pig manure
mixed with horse fodder

(Manure6)
AD: 35 ◦C, 70 days Pilot Solid phase Solid digestate of Manure6

(Manure6-D)

7
Fine organic fraction of

household waste (Biowaste1)
Dry AD: 55 ◦C, 28 days Industry Solid phase Solid digestate of Biowaste1

(Biowaste1-D)

Composting: 50 days Pilot Fine fraction
(sieved at 10 mm) Compost of Biowaste1 (Biowaste1-C)

8
Fine organic fraction of

household waste mixed with
green wastes (Biowaste2)

AD: 55 ◦C, 21 days Industry Solid phase Solid digestate of Biowaste2
(Biowaste2-D)

Composting: 50 days Pilot Fine fraction
(sieved at 10 mm) Compost of Biowaste2 (Biowaste2-C)

9
Fine organic fraction of

household waste mixed with
green wastes (Biowaste3)

Dry AD: 55 ◦C, 21 days Industry Solid phase Solid digestate of Biowaste3
(Biowaste3-D)

10
Fine organic fraction of

household waste mixed with
green wastes (Biowaste4)

Dry AD: 37 ◦C, 28 days Industry Solid phase Solid digestate of Biowaste4
(Biowaste4-D)

11

Fine organic fraction of
household waste mixed with

green wastes and papers
(Biowaste5)

Dry AD: 53 ◦C, 20 days Industry Solid phase Solid digestate of Biowaste5
(Biowaste5-D)

12
Primary sludge mixed with
secondary sludge (Sludge1)

AD: 35 ◦C, 20 days
Pilot Solid phase

Solid digestate of Sludge1
(Sludge1-D1)

AD: 35 ◦C, 20 days Solid digestate of Sludge1
(Sludge1-D2)

AD: 35 ◦C, 20 days Solid digestate of Sludge1
(Sludge1-D3)

AD: 55 ◦C, 15 days Industry Solid phase Solid digestate of Sludge1
(Sludge1-D4)

13 Primary sludge mixed with
secondary sludge (Sludge2) AD: 37 ◦C, 20 days Industry Solid phase Solid digestate of Sludge2 (Sludge2-D)

14 Waste activated sludge
(Sludge3) Composting: 60 days Industry Fine fraction

(sieved at 10 mm) Compost of Sludge3 (Sludge3-C)

15 Wheat straw (Straw) Dry AD: 35 ◦C, 56 days Pilot Solid phase Solid digestate of Straw (Straw-D)
16 Corn stalks (Stalk1) Dry AD: 50 ◦C, 50 days Industry Solid phase Solid digestate of Stalk1 (Stalk1-D)

17
Mixture of sewage sludge,
green waste, branches, and

grass clippings (Mix1)

Composting: 14 days
Pilot

Fine fraction
(sieved at 10 mm)

Compost of Mix1 (Mix1-C1)
Composting: 42 days Compost of Mix1(Mix1-C2)
Composting: 84 days Compost of Mix1(Mix1-C3)

18
Mixture of sewage sludge,
green waste, branches, and

grass clippings (Mix2)

Composting: 14 days
Pilot

Fine fraction
(sieved at 10 mm)

Compost of Mix2 (Mix2-C1)
Composting: 42 days Compost of Mix2 (Mix2-C2)
Composting: 84 days Compost of Mix2 (Mix2-C3)

19
Mixture of sewage sludge,

green waste, branches, grass
clippings and pallet (Mix3)

Composting: 14 days
Pilot

Fine fraction
(sieved at 10 mm)

Compost of Mix3 (Mix3-C1)
Composting: 42 days Compost of Mix3 (Mix3-C2)
Composting: 84 days Compost of Mix3 (Mix3-C3)

20
Mixture of sewage sludge,

green waste, branches, grass
clippings and corn stalks

(Mix4)

Composting: 14 days
Pilot

Fine fraction
(sieved at 10 mm)

Compost of Mix4 (Mix4-C1)
Composting: 42 days Compost of Mix4 (Mix4-C2)
Composting: 84 days Compost of Mix4 (Mix4-C3)

21
Mixture of sewage sludge

and pallet (Mix5)

Composting: 14 days
Pilot

Fine fraction
(sieved at 10 mm)

Compost of Mix5 (Mix5-C1)
Composting: 42 days Compost of Mix5 (Mix5-C2)
Composting: 84 days Compost of Mix5 (Mix5-C3)

22
Mixture of sewage sludge,

branches, and grass clippings
(Mix6)

Composting: 14 days
Pilot

Fine fraction
(sieved at 10 mm)

Compost of Mix6 (Mix6-C1)
Composting: 42 days Compost of Mix6 (Mix6-C2)
Composting: 84 days Compost of Mix6 (Mix6-C3)
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Table 1. Cont.

Sample Description Sample
(Solid Digestate or
Compost, Output)n (Non-Treated Waste, Input) Treatment Scale Phase

Separation

23
Mixture of sewage sludge,
grass, and tree bark (Mix7)

Composting: 7 days
Pilot

Fine fraction
(sieved at 10 mm)

Compost of Mix7 (Mix7-C1)
Composting: 28 days Compost of Mix7 (Mix7-C2)
Composting: 70 days Compost of Mix7 (Mix7-C3)

24 Mixture of three sludge
digestate (Mix8-D) Composting: 60 days Industry Fine fraction

(sieved at 20 mm) Compost of Mix8-D (Mix8-D-C)

25
Mixture of sludge digestate,
grass and tree bark (Mix9-D)

Composting: 13 days
Pilot

Fine fraction
(sieved at 10 mm)

Compost of Mix9-D (Mix9-D-C1)
Composting: 30 days Compost of Mix9-D (Mix9-D-C2)
Composting: 70 days Compost of Mix9-D (Mix9-D-C3)

26
Mixture of manure, turf, fruit,

vegetable, and dietary fat
(Mix10)

AD: 35 ◦C, 75 days
Industry Solid phase

Solid digestate of Mix10 (Mix10-D1)
AD: 35 ◦C, 75 days Solid digestate of Mix10 (Mix10-D2)
AD: 55 ◦C, 75 days Solid digestate of Mix10 (Mix10-D3)

27 Corn stalks (Stalk2)
Shredded to <10 cm then
spread on the top of the

soil, 98 days
Farmland Fine fraction

(sieved at 20 mm) Residue of Stalk2 (Stalk2-98d)

28 Clover (Trifolium sp.) reaped
in December (Clover1)

— — — —
29 Clover reaped in Mars

(Clover2)

30 Vetch (Vicia sativa) reaped in
December (Vetch1)

31 Vetch reaped in Mars (Vetch2)
Sample Description Sample

n (Solid digestate, Input) Treatment Scale Phase
separation (Compost, Output)

1 Manure1-D Composting: 56 days Pilot Fine fraction
(sieved at 10 mm)

Compost of Manure1-D
(Manure1-D-C)

2 Biowaste1-D
Composting: 28 days Industry Fine fraction

(sieved at 20 mm)
Compost of Biowaste1-D

(Biowaste1-D-C1)

Composting: 50 days Pilot Fine fraction
(sieved at 10 mm)

Compost of Biowaste1-D
(Biowaste1-D-C2)

3 Biowaste2-D
Composting: 77 days Industry Fine fraction

(sieved at 20 mm)
Compost of Biowaste2-D

(Biowaste2-D-C1)

Composting: 50 days Pilot Fine fraction
(sieved at 10 mm)

Compost of Biowaste2-D
(Biowaste2-D-C2)

1 AD−anaerobic digestion. 2 Hydraulic retention time (HRT) of anaerobic digestion. 3 Duration of composting.
4 The mark “-D” implies it was a solid digestate. 5 The mark “-C” indicates it was compost.

2.2. Sequential Chemical Extraction

The sequential extraction consists of four steps with different chemical solutions
(extractants) [37,38]. The five fractions were named according to this sequence: Soluble
fraction from Particular extractable Organic Matter (SPOM), Readily Extractable Organic
Matter (REOM), Slowly Extractable Organic Matter (SEOM), and Poorly Extractable Or-
ganic Matter (PEOM). The fraction of Non-Extractable Organic Matter (NEOM) was left
in the precipitate after the sequential extraction. The AC in five fractions (SPOM_AC,
REOM_AC, SEOM_AC, PEOM_AC, and NEOM_AC) revealed the chemical accessibility of
carbon (OM).

The protocol is presented in Table 2. The fresh samples were first dried at 40 ◦C until
their mass losses were constant. The mass loss was considered constant once the mass loss
within 24 h was inferior to 0.5% of that of the previous 24 h. The dry samples were then
ground to powder (1.0 mm). Around 0.5 g of powder samples in duplicate were weighted
and extracted on a shaker (300 rpm). After extraction, the supernatant and precipitate
were separated by centrifugation at 18 600 g, 4 ◦C for 20 min after each agitation. The
supernatant was filtered at 0.45 µm (PTFE) and stored at −20 ◦C for further analyses. In
order to verify the reproducibility of the protocol, this sequential extraction was conducted
at least in triplicate for each sample.
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Table 2. Protocol of sequential extraction.

Extracted Fraction Extractant Volume of
Extractant Temperature Agitation Extraction Duration

and Repetition

SPOM 1 CaCl2 (0.01 M)

30 mL 30 ◦C
300 rpm.

horizontal

15 min × 4
REOM 2 NaCl/NaOH (0.01 M) 15 min × 4

Pre-treatment
HCl 1 h × 1

Ultra-pure water
(pH adjusted to 7.0) 5 min × 1

SEOM 3 NaOH (0.1 M) 4 h × 4
PEOM 4 H2SO4 (72%) 3 h × 2

1 SPOM—soluble fraction from particular extractable organic matter. 2 REOM—readily extractable organic matter.
3 SEOM—slowly extractable organic matter. 4 PEOM—poorly extractable organic matter.

2.3. Chemical Analyses

The total carbon content (TC) of the solid sample, e.g., the initial powder sample, the
final precipitate (NEOM), was analyzed by an element analyzer (NA1500, CARLO ERBP
INSTRUMENTS). The TC was expressed per gram of dry matter of the initial powder
sample (mg·g−1 DM). The total organic carbon (TOC) of each supernatant (SPOM, REOM,
SEOM, and PEOM) was analyzed by a TOC analyzer (TOC-5050P, SHIMADZU). The TOC
of supernatant was also expressed per gram of dry matter of the initial powder sample
(mg·g−1 DM). The AC (apportionment of carbon) was calculated from the carbon content
(TC or TOC) of each fraction divided by that of the initial powder sample. In this way, the
OM of wastes, digestates, and composts was characterized by the carbon content of OM
(OM_TC, mg·g−1 DM) and 5 accessibility variables: SPOM_AC, REOM_AC, SEOM_AC,
PEOM_AC, and NEOM_AC.

The concentration of CO2 trapped in the NaOH solution during the incubation was
analyzed by the same TOC analyzer. All the chemical analyses were also conducted in
triplicate. Sequential extraction and chemical analyses could be repeated if the standard
deviation among triplicates was larger than 10%. The mean values of chemical analyses
were used for further analysis.

2.4. Three-Dimensional Fluorescence Analysis

It should be noted that Chen, Westerhoff [39] proposed fluorescence regional inte-
gration (FRI), separating the spectra into five zones. Here this protocol made a more
detailed division of regions IV and V in FRI into zones III, V, VI, and VIII, which helped
to discriminate easily humic acid-like and lipofuscin-like materials (Figure S1). For more
detail, please refer to Jimenez, Aemig [31], Aemig, Chéron [40], and Fernández-Domínguez,
Patureau [36]. The fluorescence proportions (Pf) of seven zones (I–VII) were normalized
and calculated based on fluorescence intensity and zone volume (Equations (1) and (2)).

Vf (i)
(

U.A./mgTOC · L−1
)
= Vf _raw(i)/TOCsample × 1/

S(i)

∑7
i=1 S(i)

(1)

Pf (i)(%) =
Vf (i)

∑7
i=1 Vf (i)

× 100 (2)

where Vf (i) is the normalized volume of a zone i (U.A./mgO2 · L−1), Vf _raw is the raw
fluorescence volume of a zone i (U.A./mgO2 · L−1), TOCsample is the TOC concentration
of the sample (mg · L−1), S(i) is the area of a zone i (nm2), and Pf (i) is the fluorescence
proportion of a zone i (%).

In this way, the OM of wastes, digestates, and composts was characterized by 28
complexity variables: SPOM_Pf (I–VII), REOM_Pf (I–VII), SEOM_Pf (I–VII), and PEOM_Pf
(I–VII).
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2.5. Incubation in the Soil

The non-mineralized carbon (Cnm) of samples was obtained from soil incubation,
which is like other respiration indicators. A low CO2 emission during the incubation
signified a high Cnm, and hence high stability of OM in this sample once spread in the
soil. The incubated samples included manure, biowaste, mixed wastes, sludge, vegetable
residues, and the corresponding digestate and composts (Table S1). Biowaste was not
incubated because this type of waste was not allowed to be directly spread according to
French regulations.

The soil of silty loam texture was collected at 0–5 cm depth from our experimental
farmland site near Versailles, Yvelines, France (48◦50′23” N, 1◦56′50” E). It consisted of 18%
clay, 73% silt, 8% sand, and 2.3% organic matter. Its pH and C/N ratio were 6.6 and 12,
respectively. The collected soil was air-dried, homogenized, and screened at 5.0 mm, then
stored at 4 ◦C until it was used. The particle sizes of samples were different, which also
plays an important role in biodegradation. The higher specific surface of smaller particles
facilitates biodegradation. In order to avoid this effect, like sequential extraction, all the
samples were also dried and ground to 1.0 mm prior to the incubation.

Before incubation, the 1.0 mm shredded samples were mixed with dry soil at a ratio
equivalent to 4 g C kg−1 dry soil. A suitable quantity of water was then added to make the
humidity of the mixture equivalent to 28% (w/w). The moist mixture was thereafter loaded
into 3 L glass jar and incubated at 28 ◦C in the dark in growth chambers for 175 days. Soil
moisture was maintained through the incubation by weighing the soil at weekly intervals
and adding deionized water when necessary. The water-filled pore space (WFPS) of the soil
pores was held at around 65%. The WFPS was calculated according to references [41,42].
A control treatment without any OM amendment was also included. Each sample was
incubated in four replicates.

The CO2 emission was measured from the OM-amended soil during the incubation
using a CO2 trap (50 mL of 1 M NaOH) in the jar. The mean captured CO2 was measured in
four replicates at 1, 3, 7, 14, 21, 28, 49, 70, 91, 112, 133, 154, and 175 days after the beginning
by replacing the CO2 traps at those dates. The net CO2 production was calculated from the
difference of mean captured CO2 values between the OM-amended soil and the control,
under the assumption that the mineralization of native soil organic C was not significantly
modified by the addition of OM (no priming effect) or that the priming effect was of
the same order of magnitude in all tested substrates. The net CO2 production was then
transformed and expressed per gram of dry matter of the sample. The Cnm was calculated
by subtracting the amount of C released as net CO2 production from the total C content of
the sample (Table S1).

2.6. Statistical Analysis and Models Building

The statistical analysis and PLS regression were performed by using the software
SIMCA-Plus 14.1 (MKS Umetrics). The principal components analysis (PCA) was fitted
by choosing the smallest number of principal components that were required in order to
explain a large amount of the variation in the data [43,44]. This was performed by checking
the ordinal number of principal components at which the proportion of variance explained
by each subsequent principal component dropped off.

Three sub-models were developed in the PLS approach for anaerobic digestion, com-
posting, and soil (Figure 1), respectively. The PLS is a dimension reduction method and a
supervised alternative to principal components regression (PCR), which attempts to find
directions (principal components) that help explain both the response and the predictors.
The input of the digestion and composting sub-models was 34 featuring variables of OM
before treatment: the carbon content of OM (OM_TC, mg·g−1 DM), 5 accessibility variables
(SPOM_AC, REOM_AC, SEOM_AC, PEOM_AC, and NEOM_AC), and 28 complexity
variables (SPOM_Pf (I–VII), REOM_Pf (I–VII), SEOM_Pf (I–VII), and PEOM_Pf (I–VII)).
The output was 34 featuring variables of OM in digestate and compost. The input of the
soil sub-model was also 34 variables, while its output was the Cnm of OM in the soil. There
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were also some parameters to evaluate the performance of sub-models. R2X (cum) was the
percent variation in the X matrix (input) explained by the sub-model, while R2Y (cum) was
the percent variation in the Y matrix (output) explained. R2X (cum) and R2Y (cum) were
measures of fit, i.e., how well the sub-model fit the data. Q2 (cum) was the percent variation
predicted by the sub-model according to cross-validation. Q2 (cum) was a measure of
predictivity, i.e., how well the sub-model predicts new data. All the data of this work can
be downloaded in Supplementary Table S2.
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Figure 1. Schema of the concept of modeling. AD−anaerobic digestion; HRT−hydraulic retention
time (days); DC−duration of composting (days).

3. Results and Discussion
3.1. Grouping of Non-Treated Organic Wastes

31 organic wastes (input, Table 1) were clustered using hierarchical cluster analysis
(HCA) on 34 variables (Figure 2). The wastes in Group 1 were the raw sludge (Sludge1–3),
while Group 2 consisted of the mixture of digested sludge (Mix8-D) and the mixture of
manure, food waste, and turf (Mix10). The cow/beef manures mixed with straw/hay
(Manure2–5), straws, and corn stalks made up Group 3. Group 4 included green waste,
poultry manure mixed with straw (Manure1), and mixtures of raw sludge with green waste
(Mix1–4). At last, all the wastes containing a fine organic fraction of household waste
(Biowaste1–5), Manure6, Mix5, Mix6, Mix7, and Mix9-D formed Group 5. The Manure6
sample was different from other manures since it was a supernatant of centrifuged pig ma-
nure mixed with horse fodder. Different from Mix1–4, Mix5–7, and Mix9-D were mixtures
of raw sludge or sludge digestate with grass and tree bark. Despite the heterogeneity of
various organic wastes, the result of HCA suggested that the 34 variables could help to
distinguish these wastes in terms of their origins and compositions.
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3.2. Influence of Biological Treatment on Organic Matter of Wastes

The 34 variables of OM in all the samples, including non-treated wastes (n = 31),
digestate (n = 23), and composts (n = 34), were analyzed using PCA to visualize the data
and explore the potential differences among wastes, digestate, and composts. The 34
variables were reduced to five principal components (R2 = 0.777, Q2 = 0.553). The first
two components explained 56% of the variance in the data (Figure 3A. The red points
represented the organic wastes before treatment. The blue points and green points were
the digestate and compost, respectively. There was a trend of aggregation from the right
to the upper left. A large part of organic wastes (red points) was on the first and second
quadrants of the ellipse. The digestate (blue points) dispersed in the middle of the ellipse.
The composts were (green points) assembled on the fourth quadrant.

Int. J. Environ. Res. Public Health 2023, 20, 2151 8 of 18 
 

 

 
Figure 2. Hierarchical cluster analysis (HCA) of organic wastes. 

3.2. Influence of Biological Treatment on Organic Matter of Wastes 
The 34 variables of OM in all the samples, including non-treated wastes (n = 31), di-

gestate (n = 23), and composts (n = 34), were analyzed using PCA to visualize the data and 
explore the potential differences among wastes, digestate, and composts. The 34 variables 
were reduced to five principal components (R2 = 0.777, Q2 = 0.553). The first two compo-
nents explained 56% of the variance in the data (Figure 3A. The red points represented the 
organic wastes before treatment. The blue points and green points were the digestate and 
compost, respectively. There was a trend of aggregation from the right to the upper left. 
A large part of organic wastes (red points) was on the first and second quadrants of the 
ellipse. The digestate (blue points) dispersed in the middle of the ellipse. The composts 
were (green points) assembled on the fourth quadrant. 

 
Figure 3. Cont.



Int. J. Environ. Res. Public Health 2023, 20, 2151 9 of 18Int. J. Environ. Res. Public Health 2023, 20, 2151 9 of 18 
 

 

 
Figure 3. Cont.



Int. J. Environ. Res. Public Health 2023, 20, 2151 10 of 18Int. J. Environ. Res. Public Health 2023, 20, 2151 10 of 18 
 

 

 
Figure 3. PCA score scatter plot of first two principal components on 34 variables of all the samples 
(red points−organic waste; blue points−digestate; green points−compost). (A) Score scatter plot of 
all the samples; (B) Groups 1 and 2; (C) Group 3; (D) Group 4; (E) Group 5. 

To improve the visibility, Figure 3A was zoomed in on and divided into four sub-
figures corresponding to five groups of organic wastes classified by HCA (Figure 3B−E). 
The Sludge1 and Sludge2 samples were closely located on the right boundary of the ellipse 
because they were sampled from the same WWTP at different dates (Figure 3B). The 
Sludge3 contained only the secondary sludge, which made it far away from other wastes. 
This suggested that Sludge3 was an outlier that should be removed in further modeling. 
Sludge1 and 2 moved to the left after digestion, while the composting made Sludge3 shift 
to the top left of the ellipse. The Mix8-D was a mixture of sludge digestate. Its compost 
also moved to the top left. The composition of Mix10 was complicated. It consisted of cow 
manure, grass, fruits, vegetables, and dietary fat. The addition of dietary fat made this 
mixture very different from other “low-fat” wastes. It was digested under three reactors: 
thermophilic condition (Mix10-D1 and -D2) and mesophilic (Mix10-D3). It seems the ther-
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were far away from Mix10, while the mesophilic digestate (Mix10-D3) was near to Mix10. 
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To improve the visibility, Figure 3A was zoomed in on and divided into four sub-
figures corresponding to five groups of organic wastes classified by HCA (Figure 3B−E).
The Sludge1 and Sludge2 samples were closely located on the right boundary of the ellipse
because they were sampled from the same WWTP at different dates (Figure 3B). The
Sludge3 contained only the secondary sludge, which made it far away from other wastes.
This suggested that Sludge3 was an outlier that should be removed in further modeling.
Sludge1 and 2 moved to the left after digestion, while the composting made Sludge3 shift
to the top left of the ellipse. The Mix8-D was a mixture of sludge digestate. Its compost
also moved to the top left. The composition of Mix10 was complicated. It consisted of cow
manure, grass, fruits, vegetables, and dietary fat. The addition of dietary fat made this
mixture very different from other “low-fat” wastes. It was digested under three reactors:
thermophilic condition (Mix10-D1 and -D2) and mesophilic (Mix10-D3). It seems the
thermophilic digestion changed the characteristics of the mixture since Mix10-D1 and -D2
were far away from Mix10, while the mesophilic digestate (Mix10-D3) was near to Mix10.
The wastes in Group 3 were found around the origin (Figure 3C). Like Group 1, their
digestate moved to the upper left. Except for Stalk1, the digestate was always located on
the upper left of undigested waste. The Stalk2-98d sample was not a digestate, but the
corn stalk spread and was left on the top of the soil for 98 days. It seems soil spreading
significantly changed the characteristics of the corn stalks.

The right-to-upper-left shift became more obvious in Figure 3D,E, except for the
Manure6 and Mix7-C1 samples. The mature composts were far away from their original
wastes and assembled on the top left of the ellipse, while the digestate was scattered
between wastes and composts. The green points with positive scores in the first component
were, in fact, wastes composted for only 7–14 days. In other words, they were immature.
The Manure6-D was probably not stabilized due to the poor stirring of the digester, which
made it like other non-treated wastes [45]. Mix7-C1–3 were composts sampled at 7, 28, and
70 days, respectively (Table 1). Only Mix7-C1 was located on the right side of the original
waste. It implied biowaste did not always become more stabilized throughout the whole
composting period. Organic matter in biowaste could become more hydrolyzed, in other
words, more unstable, at the beginning (7 days) of the composting due to strong microbial
activities. However, other samples did not show this tendency because they were all
collected after 13 days of composting. Since there were not enough similar samples, Mix7-
C1 was still considered an outlier and removed in modeling. This exploratory analysis of
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the PCA score scatter plot indicated, for a given waste, that there was a right-to-upper-left
shift among waste, digestate, and compost.

The loadings of the first two components are displayed in Figure 4 to help our un-
derstanding of this right-to-upper-left shift. The loadings of five components are also
provided in the data table in Supplementary Table S3. The first principal component
loading vector placed almost all its weight on Pf of zones I–III (SPOM_Pf (I–III), REOM_Pf
(I–III), SEOM_Pf (I–III), and PEOM_Pf (I–III)), which indicated “simple” protein-like ma-
terials in four extractable fractions. The variables indicating “complex” organic matter
(SPOM_Pf (IV–VII), REOM_Pf (IV–VII), SEOM_Pf (IV–VII), and PEOM_Pf (IV–VII)) were
in the opposite direction of “simple” materials. This right-to-upper-left shift signified, in
fact, an increase in the complexity of molecules. Moreover, the apportionment of carbon
in easily extractable fractions (SPOM_AC, REOM_AC, SEOM_AC) contributed positively
to the first principal component and negatively to the second principal component, while
that of poorly extractable organic matter (PEOM_AC) and non-extractable organic matter
(NEOM_AC) were in opposition. This right-to-upper-left shift also suggested a decrease
in accessibility. The OM in wastes became less accessible and more complex after AD
or composting. Almost all the compost is assembled in a small area to the left of the
digestate. Composting was capable of further stabilizing the digestate and producing
similar composts regardless of the origins of wastes or digestate. This result confirmed
our hypothesis. The 34 variables revealed the evolution of the stability of OM in wastes
throughout treatments.
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Figure 4. Loading scatter plot for the first two principal components. (The color scale indicates
the contribution of 34 variables on the first component. SPOM−soluble fraction from particular
extractable organic matter; REOM−readily extractable organic matter; SEOM−slowly extractable
organic matter; PEOM: poorly extractable organic matter; AC−apportionment of carbon in corre-
sponding fraction; I−VII−fluorescence proportions of seven zones in the corresponding fraction, the
mark “Pf” was removed to reduce the length of labels).

The Van Soest method is one of the most widely used OM fractionation protocols [46].
According to the Van Soest method, the OM can be separated into neutral detergent
fiber (NDF), acid detergent fiber (ADF), and strong acid detergent fiber (SADF). Various
protocols modified from the Van Soest method and other similar extraction methods have
been applied to OM characterization [47,48]. In combination with these extraction methods,
various kinds of models have been developed to predict the biodegradation of OM in
the soil, digestion, composting, etc. [49–51]. According to these models, e.g., CANTIS,
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NCSOIL, and COP-Compost, different mineralization rate values were allocated to these
extracted fractions [50,52,53]. However, the extraction sequence could only reflect the
accessibility of OM to microorganisms [54]. The composition of each fraction might evolve.
This made the allocated value of the same fraction different from one substrate to another
in different studies.

This work suggested both accessibility and complexity should be considered while
evaluating the biodegradation of OM. The HCA analysis indicated this sequential extraction
and fluorescence analysis protocol could distinguish the origins and compositions of
organic wastes. The first two components of PCA implied the “complexity” of accessible
OM should indeed be considered. Although the physical meanings of principal components
were unclear, which was the main drawback of PCA, the loading vectors of the first two
components clearly revealed the changes in the molecular structures of OM through
treatments. A regression approach could therefore be performed using the principal
component score vectors as features to predict the stability of OM with much less noisy
results [55].

3.3. Development of PLS Sub-Models

Three PLS sub-models were built for AD, composting, and soil, respectively (Figure 1).
The data of Manure1, Biowaste2, and their digestate, composts, and composts of digestate
were excluded from building the sub-models but reserved for further validation.

The inputs of the AD sub-model included 34 variables of OM in wastes and the
hydraulic retention time (days). The output of the AD sub-model was 34 variables of OM
in the digestate. The hydraulic retention time was found to be more relevant in predicting
the 34 output variables than other process parameters, e.g., the mesophilic/thermophilic
condition and the dry/humid process (Table 1). A regression approach could therefore be
performed using the principal component score vectors as features to predict the stability
of OM with much less noisy results. The R2X (cum) and R2Y (cum) of the AD sub-model
up to the third component were 0.898 and 0.678, respectively, which indicated a good fit for
the sub-model. The Q2Y (cum) of the AD sub-model was 0.524, which was superior to 0.5
and indicated good predictivity [56].

In the same way, the inputs of the composting sub-model included 34 variables of
OM in the waste/digestate and the duration of composting (days). The output of the
composting sub-model was 34 variables of OM in the compost. The outliers (Sludge3 and
Mix7-C1) identified in Section 3.2 were also removed. The R2X (cum), R2Y (cum), and Q2Y
(cum) of the composting sub-model were 0.935, 0.812, and 0.534, respectively. To further
check the quality of the sub-models, Figure 5A, B show the cumulated R2 and Q2 values
for each variable in the above two sub-models. Here, R2VY (cum) indicated how well the
variation in a variable was explained, while Q2VY (cum) indicated how well a variable
could be predicted. For most of the variables, their R2VY (cum) was close to 0.8. The
Q2VY (cum) was also above 0.5. This suggested a good fit and predictivity for most of the
variables in the sub-models.

The soil sub-model used the 34 variables of OM to predict their Cnm after spreading
in soil. The R2X(cum), R2Y(cum), and Q2Y(cum) of the soil sub-model were 0.605, 0.947,
and 0.753, respectively. Figure 5C displays the observed versus predicted Cnm. Almost all
the points fell close to this 45-degree line, which indicated a good predictivity of the sub-
model. The root-mean-square error of estimation (RMSEE), which indicated the fit of the
observations to the sub-model, was only 3.803. The root-mean-square error of co-variance
(RMSEcv) is analogous to RMSEE but estimated using cross-validation. The RMSEcv of the
soil sub-model was 8.463.



Int. J. Environ. Res. Public Health 2023, 20, 2151 13 of 18Int. J. Environ. Res. Public Health 2023, 20, 2151 13 of 18 
 

 

 
Figure 5. Performance of partial least squares (PLS) regression model. (A,B) R2Y(cum) and Q2Y(cum) 
of each variable for anaerobic digestion and composting sub-models. (C) Observed versus predicted 
Cnm of soil sub-model. Out−variables of solid digestate, compost, or compost of solid digestate after 
anaerobic digestion or composting; I−VII−the fluorescence proportions (Pf) of seven zones (I−VII) in 
3D fluorescence spectra. 

  

Figure 5. Performance of partial least squares (PLS) regression model. (A,B) R2Y(cum) and Q2Y(cum)
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3.4. Coupling of Three PLS Sub-Models

Three sub-models were coupled to predict the Cnm of OM in the soil, e.g., predicting the
Cnm of Manure1-D-C in the soil using the 34 variables of only Manure1. The performance
of prediction was validated using the data of Manure1, Biowaste2, and their treatment
products. The observed vs. predicted values of 34 variables are given in the data table
in Supplementary Table S4. The observation vs. prediction result of Cnm is presented in
Figure 6 (blue bars vs. orange bars). The Cnm of Biowaste2 was absent since it was not
incubated. The gap between the observation prediction of Manure1 was larger than that
of others. The observed Cnm of Manure1 was only 50.8%, but the model returned 64.4%.
Taking the diversity of different types of non-treated wastes into consideration, the data
was probably insufficient to assure the precise prediction of direct soil-spreading wastes.
However, the model obtained satisfactory results in the prediction of Cnm for digestate
and compost. The model predicted the Cnm of digestate of Biowaste2 was only 71.9%. The
Biowaste2-D was indeed not sufficiently stabilized. The model predicted the digestate was
further stabilized after 77 days of composting. The Cnm of Biowaste2-D-C2 attained 84.8%,
which was superior to that of Biowaste2-D-C1 (82.6%) with 50 days of composting.
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Figure 6. The observed non-mineralized carbon (Cnm, %) values vs. predicted values. The blue,
orange, grey, and yellow bars represent observed Cnm value, predicted Cnm values using both
accessibility and complexity variables (n = 34), using only the carbon content of OM plus accessibility
variables (n = 6), and using only the carbon content of OM plus complexity variables (n = 29),
respectively. Cnm—non-mineralized C (%) of OM in the soil; D—digestate; C—compost.

To further verify the need for taking both accessibility and complexity into considera-
tion, we built another two sets of three sub-models using the same PLS approach to predict
the Cnm (Figure 6). The first set used only the carbon content of OM plus accessibility
variables (6 variables, grey bars), while the second one used only the carbon content of
OM plus complexity variables (29 variables, yellow bars). It was clear that using only
accessibility variables trended to overestimate the Cnm in most cases. In contrast, using
only complexity variables could underestimate the Cnm while coupling the sub-models.
This comparison suggests both accessibility and complexity variables were necessary to
predict the stability of OM in the soil.

Various anaerobic digestion, composting, and soil models have been developed, rang-
ing from steady-state to statistical learning and dynamic models [23,24,57]. However,
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there are few anaerobic digestion models focusing on the biodegradability of OM in di-
gestate [58,59]. There are much more models devoted to the stability of OM in compost
and soil. However, various indicators have been proposed to evaluate the stability of OM,
e.g., EC (electric conductivity), C/N, germination index, humification index, nitrification
index, biological denitrification potential, and Shannon index [60–63]. These indicators are
difficult to be unified. Coupling an AD model to a composting or a soil one to predict the
stability of OM is extremely difficult since their inputs and outputs are different [28].

This sequential extraction plus fluorescence analysis protocol has been built and
improved by our previous studies [31,38,64]. In combination with the PLS regression
modeling approach, its performance on the prediction of OM biodegradability has been
proved by works on digestate [33,36] and compost of digestate [34,37]. This work is the first
time we tried to build three sub-models and couple them together to predict the stability of
OM in the soil. The result of coupling three sub-models suggested that for a given waste,
we could use the sequential extraction and fluorescence spectroscopy characteristics to
predict the stability of its OM in the soil originating from different treatment procedures.
Moreover, this modeling approach has other advantages: (1) flexibility, as the sub-models
can be easily coupled according to a specific procedure, and (2) the possibility of being
improved, as the performance of the model can be improved in pace with the accumulation
of the database.

4. Conclusions

Organic wastes, digestate, and composts collected from different waste treatment
sectors were characterized by using an organic matter characterization protocol. The 34
featuring variables, which included the carbon content, the apportionment of carbon in five
fractions, and the fluorescence proportions of seven spectra zones in four soluble fractions,
revealed the progressive increase in the stability of organic matter from non-treated wastes
to digestate and further, to compost. Three PLS regression sub-models were built for
anaerobic digestion, composting, and soil, respectively. Inputting the 34 featuring variables
of non-treated wastes into the coupled sub-models could successfully predict the stability of
digestate, composts, and composts of digestate in the soil. This modeling approach would
help us in choosing the most environmentally friendly treatment procedure according to
the stability of organic matter in the wastes, e.g., mitigate greenhouse gas emissions from
soil application, enhance the stability of soil carbon storage, and acquire more renewable
energy from easily biodegradable wastes.
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