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Abstract: A deeper understanding of the rainfall–flow processes can improve the knowledge of the
rain-driven erosional processes in coarse-textured agricultural soil. In this study, on the red soil slope
farmland developed from weathered granite, a simulated rainfall experiment was conducted to study
the characteristics of rainfall redistribution, the processes of surface–subsurface flow generation and
prediction, and sediment production. Rainfalls with three intensities of 45, 90, and 135 mm h−1

with a duration of 90 min were applied to the weathered granite red soil with the slope gradient
of 10◦. Under 45 mm h−1 rainfall intensity, the output of rainwater was composed by subsurface
flow and bottom penetration, accounting for 35.80% and 39.01% of total rainfall, respectively. When
the rainfall intensities increased to 90 and 135 mm h−1, the surface flow became the main output of
rainwater, accounting for 83.94% and 92.42%, respectively. Coarsened soil exhibited strong infiltration-
promoting but poor water-storage capacities under light rainfalls. With an increased rainfall intensity,
the surface flow coefficient increased from 19.87% to 92.42%, while the amount of subsurface flow and
bottom penetration decreased by 1.3 and 6.2 L, respectively. For sediment production, the sediment
concentration was raised from 1.39 to 7.70 g L−1, and D10, D50, and D90 increased by 1.50, 1.83, and
1.40 times, respectively. The content of coarse particles (>1 mm) in surface soil increased by 12%, while
the content of fine particles (<0.5 mm) decreased by 9.6%. Under strong rainfalls, severe soil and water
loss, coarsening soil surface, and large loss of fine particles became major problems. During rainfall,
the subsurface flow and bottom penetration could be predicted well through quadratic equations of
rainfall time, which transformed into time-dependent exponential functions after rainfall. The results
provide a theoretical basis and data reference for soil erosion prevention and water management in
coarse-textured agricultural lands.

Keywords: granite red soil; rainfall redistribution; soil erosion; surface–subsurface flow; flow prediction

1. Introduction

Rainfall-driven soil erosion decreases soil fertility and productivity, threatens the
ecological environment, and limits agricultural production [1]. More and worse soil erosion
are primarily related to rainfall events [2,3], especially the frequent occurrence of climate
change and extreme rainfall events in recent years [4].

The soil developed from the weathered granite materials has a high content of sand,
which results in coarse soil texture, strong infiltration rate, poor water storage capacity,
and anti-erodibility [5]. Therefore, this area is prone to severe soil erosion under heavy
rain [6,7]. In addition, the weathered granite soil has a distinct layered structure character-
istic of “upper-soil, lower-sand, and bottom-rock”. Such soil properties are conductive to
infiltration and the development of subsurface flow in the soil body [8,9]. Subsurface flow
affects the distribution of rainfall–flow and the soil erosion process through direct ways
such as infiltration and pipe flow or indirect ways such as changing soil properties and
increasing water pressure [10–13]. Bryan and Rockwell [14] found a significant increase in
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sediment transport under the effect of subsurface flow. Huang et al. [15] pointed out that
the soil erosion enhanced significantly after the subsurface flow occurred. The existence
of subsurface flow could weaken the cementation, cohesion, and internal friction angle
among soil particles, then affect the soil strength and slope stability, leading to collapse,
slump, and debris flow disasters [16]. Li et al. [4] found that landslides could be triggered
after the subsurface flow in weathered granite areas, reaching a critical value.

The red soil hilly region of southern China is an important agricultural production
area [17], accounting for 36% of the total cultivated land and more than 50% of the total
output of oil-bearing crops, grain, and agricultural in China [18]. The red soil sloping
farmland developed from the weathered granite parent materials is widely distributed
here and is the primary source of soil erosion [19,20], and the soil loss rate can reach
98.78 t ha−1 yr−1. There is a large total amount of rainfall in this area but with extremely
uneven distribution of temporality and spatiality. More than 70% of the rainfall concentrates
in March to July [21,22], mainly including two rainfall types. In spring, plum rain with
small intensity lasts for a long duration, causing a large, accumulated amount. In summer,
thunder showers and short-term rainstorms become more frequent; the duration is shorter
but with heavy intensity, which also results in high total rainfall amount. Different rainfall
types alter the rainfall–flow redistribution and the processes of flow generation and soil
loss [23–25]. Due to different rainy seasons with high precipitation, hilly terrain, and coarse
soil texture, the red soil region has been facing severe soil and water loss [26–28].

Special soil properties and complex hydrological conditions lead to the processes of
flow generation and soil erosion in the weathered granite red soil area that are significantly
different from other regions, such as the black soil area in the northeast [29], the loess area
in the northwest [30,31], the purple soil area in the southwest [32,33], and the karst area [34].
Many scholars have carried out research on the characteristics, mechanisms, and control
methods of soil erosion on weathered granite [35,36]. Deng et al. [37] investigated the
effects of rainfall intensity and slope gradient on runoff and sediment yield from hillslopes
with weathered granite. Liu et al. [38] studied the processes and mechanisms of collapsing
erosion for granite residual soil in southern China.

In the area of weathered granite red soil, the subsurface hydrological process is
complex and accounts for a high proportion in rainfall–flow. The nutrients and pollutants
may migrate downward with the subsurface flow. In addition, the amount of soil erosion
caused by subsurface flow is much higher than that of splash erosion and sheet erosion.
Under the condition of long-term high soil water content, the weathered granite slopes
are prone to cause soil instability, and then more severe disasters occur such as collapses
and landsides. However, the current research on soil erosion on weathered granite red
soil area mainly focuses on the surface hydrological process and is insufficient for the
research on infiltration and near-surface hydrological process. The mechanism of sloping
soil erosion has not been fully clarified and also there is a lack of effective predictable
and preventive measures. Severe soil erosion and downward water loss have seriously
limited the agricultural development in the granite red soil area. More research on the
characteristics of surface–subsurface flow generation is needed in this region [24].

Due to the complex process of soil erosion in weathered granite slopes, under the
influence of the spatio-temporal variability of natural rainfall and the heterogeneity of
soil physio-chemical properties in the wild, effective quantitative and qualitative research
cannot be carried out. Indoor flow plot experiments under artificially simulated rainfall can
be flexibly and simply operated with the specific conditions of typical study areas. It has
become one of the most common methods in studying rainfall–driven erosion on sloping
land at small and medium scales [24,39].

On the basis of the above information, the objectives of this study were to (1) an-
alyze the redistribution of rainfall–flow on the surface; (2) study the characteristics of
flow generation of different soil layers and sediment production under different rainfall
intensities; and (3) predict the processes of subsurface flow and bottom penetration gen-
eration. The research results can provide a data basis and theoretical support for the
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management of soil erosion and rainwater resource of agricultural soil in the red soil hilly
area of southern China.

2. Materials and Methods
2.1. Study Area

Soil samples were collected in Ningdu County (115◦40′20′′–116◦17′15′′ E, 26◦05′18′′–
27◦08′13′′ N), which is located in the middle and low mountainous hilly area in southeastern
Jiangxi Province, China (Figure 1). The study area experiences a humid mid-subtropical
monsoon climate, with a mean annual precipitation of 1706 mm, and with 40–70% of the
total precipitation mainly occurring from April to June. The average annual temperature is
14–19 ◦C, with an annual sunshine hour of 1938.8 h. The landscape of the area is dominated
by hills and mountains. The rocks are mostly granite, and the red soil formed by the
weathering of granite is widely distributed here. The whole soil layer has a large amount of
quartz sand and gravel, with rough texture, low fertility, and strong permeability, being a
serious soil erosion area in Jiangxi Province. The topography and soil conditions are typical
of the granite region of southeastern China.
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Figure 1. Location of study area.

2.2. Plot Installation

The steel structure soil plot used in this study was with a full size of 1.5 × 0.5 × 0.5 m
(length × width × depth) (Figure 2). According to the field observations, the plot was set
at a fixed slope of 10◦, which was representative of the study area. The sampling soil was
collected from the surface layer 0–30 cm deep in a Masson pine forest, which had been
eroded and degraded for many years. The soil texture belongs to the loamy sandy soil,
with a sand content of 72.55%, silt content of 12.38%, and clay content of 15.07%. Detailed
soil information is shown in Table 1.

Table 1. Characteristics of the soil used in the present study.

Parameter Unit Value

Coarse sand (200–2000 µm) g kg−1 486.57 ± 22.62
Fine sand (50–200 µm) g kg−1 238.86 ± 18.74
Coarse silt (20–50 µm) g kg−1 43.52 ± 11.66
Fine silt (2–20 µm) g kg−1 76.51 ± 6.90
Clay (0–2 µm) g kg−1 154.54 ± 29.0
Organic matter g kg−1 5.29 ± 0.97
TN g kg−1 0.37 ± 0.08
TP g kg−1 0.12 ± 0.03
CEC mol kg−1 11.91 ± 0.96
pH 4.65 ± 2.91

TN, total nitrogen; TP, total phosphorous; CEC, cation exchange capacity.
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Figure 2. The structure of the experimental soil plot.

The sampling soils were bagged after air-drying, crushing, and passing through a
5 mm sieve. The soils were filled into the plot in layers of 5 cm, and the soil layer was
compacted after each filling. The total thickness of the fill was 45 cm, and the soil surface
was 5 cm from the top of the plot. According to the field survey at the sampling site, the
filled soil had a bulk density of 1.20 g cm−3. In addition, the boundaries between the soils
and soil plot were forcefully compacted to reduce the marginal effect.

As shown in Figure 2, the surface flow and sediment samples were converged through
the “V-shape” outlets at the front part of the soil flume, which was linked with the collection
device. At the bottom of the soil plot, the water outlet was set as a square of 5 cm to ensure
free infiltration during the rainfall. Bottom penetration water was collected through the
splicing plate. A 10 cm wide slit was opened under the front baffle of the soil plot, and a
gauze was fixed with glue inside of slit to ensure soil particles would not leak out during the
soil-filling and rainfall processes. A water pipe with a valve was installed outside of slit to
lead out subsurface flow, which was connected with the bucket to collect subsurface flow.

2.3. Rainfall Simulation

The experiments were carried out in the artificial simulated rainfall hall of Jiangxi
Ecological Science and Technology Park of Soil and Water Conservation (115◦42′08′ ′–
115◦43′06′ ′ E, 29◦16′37′ ′–29◦17′40′ ′ N), which was located in De’an County, northern Jiangxi
Province. The simulated rainfall hall covered an area of 1200 m2, and the top was equipped
with a combined downward spray artificial rainfall device. During simulation, the rainfall
intensity was managed by adjusting the water pressure in the supply pipe to ensure the
homogeneous distribution and stable velocity of raindrops for making the simulations
as close to natural rainfall as possible. The fall height of simulated raindrops was 14 m
to ensure that all raindrops could reach the terminal velocity of natural raindrops and
a uniformity ratio of 90%. The rainfall intensity could be adjusted in the range of 10 to
220 mm h−1 by changing the nozzle size and the water pressure.

Before the formal experiment, the soil surface was pre-wetted at a rainfall intensity
of 10 mm h−1 until the bottom penetration water appeared. After the soil plot was left
horizontally for 12 h, the simulated rainfall was started.

According to the multi-year rainfall data and long-term meteorological observation
data in the study area, the rainfall simulations in this study were set as three rainfall
intensities, 45, 90, and 135 mm h−1, for a duration of 90 min. These simulated rainfall
settings represent typical rainfall regimes in the granitic-parent-haired red soil region of
southeastern China [13].
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2.4. Data Collection and Analysis

During each simulation, the initial time of the surface and subsurface flows, as well
as the bottom penetration, were recorded. Subsequently, the flow and sediment samples
were collected at 3 min intervals, and the total collecting time was 90 min for surface flow
and sediment samples. Considering the trailing of subsurface flow and bottom penetration,
the subsurface flow and bottom penetration were continued to be collected at 3 intervals
for a total collection time of 240 min. The sediment samples were dried in a forced-air
oven at 105 ◦C until a constant mass was obtained and weighed to calculate the sediment
concentration and soil loss rate.

After uniformly mixing all surface flow and sediment samples collected during simu-
lation, five bottles of them were taken to the laboratory for analysis of sediment particle
size. The sediment particle size was measured by the laser particle size analyzer (model
Eye tech) produced by Amide Company; 0–12,000 µm of particle size distribution was
selected. We calculated the corresponding particle sizes D10, D50, and D90 when the
cumulative particle size distribution of sediment reached 10%, 50%, and 90%, respectively.
After each rainfall simulation, the sediments were collected from the upper and lower parts
of the soil slope with a thickness of 2 cm near the surface and were brought back to the
laboratory immediately for particle size sieving. In this study, the air-dried soil samples
were passed through a set of sieves including 2, 1, 0.5, 0.25, and 0.15 mm to determine the
weight distribution of different particle sizes, followed by oven drying to obtain their mass.

The surface flow coefficient (SFC) was determined as the flow depth per minute to
plot the area with the following formula:

SFC = VS f /Vr (1)

where SFC is the surface flow coefficient (%), VS f is the surface flow volume (L), and Vr is
the rainfall volume (L).

The sediment concentration (SC) of each sample was determined using the
following formula:

SC = W/VS f (2)

where SC is the sediment concentration (g L−1), and W is the sediment weight of each
sample (g).

In this study, the rainfall transformation ratio (RTR) was computed according the
following equation:

RTR =
(

Vf /Vr

)
× 100% (3)

where RTR is the rainwater transformation ratio to surface and subsurface flow, as well as
the bottom penetration, represented as a non-dimensional quantity, and Vf represents the
amount of surface flow, or subsurface flow, or bottom penetration; the unit of measure for
all variables is L.

Microsoft Excel 2019 and SPSS 25.0 were used to organize and statistically analyze
the above experimental data. The differences among the treatments were tested by using
one-way ANOVA at the p = 0.05 probability level.

3. Results
3.1. Surface Flow Generation

Figure 3 presents the surface flow coefficients under different rainfall intensities. When
the rainfall time increased, the surface flow increased first and then hit a relatively stable
value; therefore, the surface flow coefficient showed an increasing–stabilizing tendency.
The response of surface flow accelerated with an increase in rainfall intensity. When
the rainfall intensity increased from 45 to 135 mm h−1, the initial generation time was
decreased by 4 min (Table 2). Moreover, the time to reach the steady state was 36 min under
45 mm h−1 rainfall and was shortened to 24 and 15 min under 90 and 135 mm h−1 rainfall
events, respectively.



Int. J. Environ. Res. Public Health 2023, 20, 2104 6 of 17

Int. J. Environ. Res. Public Health 2023, 20, x  6 of 17 
 

 

𝑅𝑇𝑅 = (𝑉𝑓 𝑉𝑟⁄ ) × 100% (3) 

where 𝑅𝑇𝑅 is the rainwater transformation ratio to surface and subsurface flow, as well 

as the bottom penetration, represented as a non-dimensional quantity, and 𝑉𝑓 represents 

the amount of surface flow, or subsurface flow, or bottom penetration; the unit of measure 

for all variables is L. 

Microsoft Excel 2019 and SPSS 25.0 were used to organize and statistically analyze 

the above experimental data. The differences among the treatments were tested by using 

one-way ANOVA at the p = 0.05 probability level. 

3. Results 

3.1. Surface Flow Generation 

Figure 3 presents the surface flow coefficients under different rainfall intensities. 

When the rainfall time increased, the surface flow increased first and then hit a relatively 

stable value; therefore, the surface flow coefficient showed an increasing–stabilizing ten-

dency. The response of surface flow accelerated with an increase in rainfall intensity. 

When the rainfall intensity increased from 45 to 135 mm h−1, the initial generation time 

was decreased by 4 min (Table 2). Moreover, the time to reach the steady state was 36 min 

under 45 mm h−1 rainfall and was shortened to 24 and 15 min under 90 and 135 mm h−1 

rainfall events, respectively. 

 

Figure 3. The surface flow generation processes under different rainfall intensities. The dotted lines 

indicate the mean surface flow coefficients. Error bars represent standard errors of the means (n = 

30). Bars with different letters differ significantly. 

Table 2. The hydrological characteristics of the rainfall–flow under different intensities. 

Rainfall 

Intensity 

(mm h−1) 

Initial Generation Time (min) Peak flow Amount (L) Total Flow Amount (L) 

Surface 

Flow 

Subsurface 

Flow 

Bottom Pen-

etration 

Surface 

Flow 

Subsurface 

Flow 

Bottom Pen-

etration 

Surface 

Flow 

Subsurface 

Flow 

Bottom Pen-

etration 

45 5 7 13 0.51 0.27 0.47 10.2 14.5 15.8 

90 2 9 15 3.50 0.27 0.34 89.6 13.1 10.9 

135 1 7 25 5.38 0.21 0.29 153.6 13.2 9.6 

The surface flow coefficients increased significantly with increasing rainfall intensi-

ties. At 45 mm h−1 rainfall, the initial surface flow coefficient was only 1.95%, while the 

values were 32.49% and 55.97% at 90 and 135 mm h−1 rainfall intensities, respectively. 

Moreover, the peak value also increased from 27.36% under 45 mm h−1 to 97.13% under 

135 mm h−1 rainfall. For the mean surface flow coefficient, it was only 19.87% at 45 mm h−1 

rainfall and increased to 83.84% and 92.42% at 90 and 135 mm h−1 rainfall intensities, re-

spectively.  

3.2. Subsurface Flow Generation 

Figure 3. The surface flow generation processes under different rainfall intensities. The dotted lines
indicate the mean surface flow coefficients. Error bars represent standard errors of the means (n = 30).
Bars with different letters differ significantly.

Table 2. The hydrological characteristics of the rainfall–flow under different intensities.

Rainfall
Intensity
(mm h−1)

Initial Generation Time (min) Peak Flow Amount (L) Total Flow Amount (L)

Surface
Flow

Subsurface
Flow

Bottom
Penetration

Surface
Flow

Subsurface
Flow

Bottom
Penetration

Surface
Flow

Subsurface
Flow

Bottom
Penetration

45 5 7 13 0.51 0.27 0.47 10.2 14.5 15.8
90 2 9 15 3.50 0.27 0.34 89.6 13.1 10.9
135 1 7 25 5.38 0.21 0.29 153.6 13.2 9.6

The surface flow coefficients increased significantly with increasing rainfall intensities.
At 45 mm h−1 rainfall, the initial surface flow coefficient was only 1.95%, while the values
were 32.49% and 55.97% at 90 and 135 mm h−1 rainfall intensities, respectively. Moreover,
the peak value also increased from 27.36% under 45 mm h−1 to 97.13% under 135 mm h−1

rainfall. For the mean surface flow coefficient, it was only 19.87% at 45 mm h−1 rainfall
and increased to 83.84% and 92.42% at 90 and 135 mm h−1 rainfall intensities, respectively.

3.2. Subsurface Flow Generation

The generation of subsurface flow showed an increasing–stabilizing–decreasing trend
(Figure 4). All subsurface flow amounts increased sharply to a high value, subsequently
reached a relatively stable stage, and then declined rapidly after rainfall stopped. The initial
generation of subsurface flow lagged behind the surface flow, and the lag time ranged from
2 to 7 min (Table 2). However, the time to reach the stable state increased with an increase
in rainfall intensity, which was from 40 min at 45 mm h−1 increased to 70 and 55 min at
90 and 135 mm h−1.
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The initial subsurface flow generation increased with increasing rainfall intensities. At
a 45 mm h−1 rainfall event, the initial flow amount was 26 mL, which increased to 43 and
88 mL at 90 and 135 mm h−1 rainfall intensities, respectively. With the extension of rainfall
time, the generation of subsurface flow had a negative relationship with rainfall intensity.
When the rainfall intensity rose from 45 to 135 mm h−1, the peak value decreased from
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270 to 210 mL. Moreover, during the whole rainfall period, the total amount at 45 mm h−1

was 1.1 L higher than that at 90 and 135 mm h−1 rainfall.
After rainfall stopped, the subsurface flow continued to generate, and the flow amount

was even more than that during the rain. At the 45 mm h−1 rainfall event, the subsurface
flow amount after the rain was 8.3 L, which was 2.1 L greater than that during the rain
process. For the 90 and 135 mm h−1 rainfalls, the post-rain value was approximately 3 L
greater than that the in-rain value.

3.3. Bottom Penetration

The generation of bottom penetration presented an increasing–decreasing tendency,
with one peak (Figure 5). All bottom penetration increased sharply to a peak and then
decreased gently. The initial generation time and peak time extended greatly with in-
creasing rainfall intensity. From 45 to 135 mm h−1 rainfall, the initial time increased from
13 to 25 min, and the peak time increased from 87 to 99 min. The higher the rainfall intensity,
the slower the bottom penetration response.
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The bottom penetration generation was negatively correlated with rainfall intensity
(Table 2). With the increase in rain intensity, the peak amount decreased from 470 to 341,
and to 290 mL. During the entire rainfall process, the total bottom penetration amount sig-
nificantly decreased from 7.4 L at 45 mm h−1 rainfall to 4.8 and 3 L at 90 and 135 mm h−1,
respectively. After the rainfall stopped, the bottom penetration amount was 8.4 L un-
der 45 mm h−1 rainfall intensity, which was 2.3 and 1.8 L higher than that at 90 and
135 mm h−1, respectively.

3.4. Sediment Production

The variability of sediment concentration with flow time under different rainfall
intensities is depicted in Figure 6. Under all rainfall intensities, the sediment production
process showed a decreasing–stabilizing trend, with dynamic fluctuations. The sediment
concentration decreased rapidly within 15 min after the onset of rainfall, and then the
decrease became smaller. The time to reach the stable state advanced with the increasement
of rainfall intensity. At 45 mm h−1 rainfall intensity, this time was 63 min, which shortened
to 42 and 30 min at 90 and 135 mm h−1 rainfall intensities, respectively.

The sediment concentrations increased significantly with increasing rainfall intensities.
At 45 mm h−1 rainfall, the initial sediment concentration was only 1.39 g L−1, which was
greatly lower than 12.59 and 21.16 g L−1 at 90 and 135 mm h−1, respectively. Moreover, for
the average sediment concentration, this value increased from 0.62 g L−1 at 45 mm h−1 to
4.80 and 7.70 g L−1 under 90 and 135 mm h−1 rainfall events, respectively.

Three indices, namely, D10, D50, and D90, which were used to characterize the particle
size, all increased with an increase in rainfall intensity (Figure 7). At 45 mm h−1 rain, D10
was 30.51 µm and increased to 41.22 and 45.75 µm at 90 and 135 mm h−1 rainfall intensities,
respectively. The increases in D50 and D90 were more significantly affected by the rainfall
intensity. From 45 to 90 and 135 mm h−1 rainfall, D50 increased by 1.61 and 1.83 times,
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respectively. Moreover, for D90, this value was 49.15 and 80.13 at 135 mm h−1 more than
that at 90 and 45 mm h−1 rainfall, respectively.
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Figure 6. The sediment concentration under different rainfall intensities. Error bars represent
standard errors of the means (n = 30). Bars with different letters differ significantly.
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Figure 7. The size distributions of the eroded sediments under different rainfall intensities. Note: D10,
D50, and D90 were the corresponding particle sizes when the cumulative particle size distribution of
the sediment samples reached 10%, 50%, and 90%. The different letters indicate significant differences
among different rainfall intensities (p < 0.05).

4. Discussion
4.1. Variations in Particle-Size Distribution of the Eroded Surface Soil

Variations in PSD can reflect the effects of soil properties such as soil texture, aggregate
content [40], and soil moisture [41], as well as rainfall characteristics such as rainfall inten-
sity, duration [42], and rainfall redistribution including surface and subsurface flow [43,44]
on soil erosion processes.

A 2 cm thick sediment layer on the surface was collected after rainfall ended for
sieving analysis to determine the variations in PSD (Figure 8). The results showed that
with an increase in rainfall intensity, the contents of large (>2 mm) and medium (1–2 mm)
particles of the eroded sediment were increased. When the rainfall intensity was raised from
45 to 90 and 135 mm h−1, the content of particle with size (>1 mm) increased from 51.8% to
61.6% and 63.8%, respectively. Conversely, all particles with sizes (<1 mm) significantly
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decreased with the increase in rainfall intensity. The values were reduced from 48.2% to
38.4% and 36.2%, respectively.
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Figure 8. The sieved size and weight percentage of the eroded surface soil after rainfall simulation.
The different letters indicate significant differences among different rainfall intensities (p < 0.05).

Ultimately, under light rain, the content of sand particle (>0.5 mm) decreased by only
3.25% from the original value of 72.55%, while it increased by about 6% under heavy rains.
The content of fine particles (silt and clay) increased from the original 27.44% to 30.7% at
45 mm h−1 rainfall and significantly decreased to 21.1% and 21.9% at 90 and 135 mm h−1,
respectively. The stronger rainfall intensity, the more enrichment of coarse particles and
loss of fine particles on the soil surface, leading to the degradation of soil quality and
fertility [45]. This is due to the fact that at lower rainfall intensities, coarse particles are
dispersed into smaller particles by the kinetic energy of raindrops, and small particles are
lost in suspension, while large particles are harder to be transported. As the transportable
fine particles on the soil surface are exhausted, the coarser particles are exposed in the
topsoil layer to protect the underlying soil. With the increase in rainfall duration, the
content of fine particles gradually decreases, while the content of coarse particles gradually
increases. Under larger rainfall intensities, there is the increase in stream power and
carrying capacity of the surface flow. Fine particles are transported by suspension–saltation,
and coarse particles can also be transported, which obviously increases the proportion of
coarse particles in the eroded surface soil.

Variations in PSD indicate that surface soil particles developed from weathered granite
are easily sorted under the disturbance of rainfall, finer particles including clay and silt
deposit at the bottom, and coarser sand particles gradually cover the surface. This changes
the composition and structure of soil [46] and has significant effects on the rainfall–flow
redistribution, processes of flow generation, and sediment production (Figure 8).

4.2. Characteristics of Rainfall–Flow Redistribution

The infiltration process was significantly affected by soil texture and rainfall intensity,
including infiltration amount, rate, and depth on the soil surface, which was an important
reason for the differences in rainfall redistribution. It in turn affected the surface–subsurface
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flow generation process. Coarsened soil significantly promoted the infiltration process
under light rainfall intensities (Figure 9). The transformation ratio of rainfall into surface
flow was only 25.19%; the other three-quarters of rainwater infiltrated downwards; and
35.80% and 39.01% were converted into subsurface flow and flowed out through bottom
penetration, respectively. Subsurface flow and bottom penetration were the main output
forms of rainwater in sloping lands. Coarsened soil showed a strong infiltration–promoting
capacity but with a poor water-storage capacity under light rainfall intensities.
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When the rainfall intensity increased, the rainfall rate exceeded the infiltration rate.
At this time, the infiltration process was mainly controlled by soil conditions including
soil structure, soil texture, and soil particle size distribution. The part of rainwater that
exceeded the infiltration rate immediately transformed to the surface flow, and thus the
mode of flow generation changed from saturation excess flow to infiltration excess flow [47].
Most rainwater was exported in the form of surface flow. At 90 mm h−1 rainfall, the
transformation ratios of rainfall into surface and subsurface flow were 78.87% and 11.53%,
respectively, and the bottom penetration was only 9.60%. Such a transformation difference
became more significant with an increase in rainfall intensity. When the rainfall intensity
rose to 135 mm h−1, the conversion rate of surface flow increased to 87.07%, while the value
of subsurface flow and bottom penetration decreased to only 7.48% and 5.45%, respectively.
Therefore, in the case of heavy or extreme rainfall, the increased loss of rainwater in the
form of surface flow exacerbated the scouring effect on the soil surface. Coarsening soil
surface and massive loss of fine particles resulted in the degradation of soil equality and
fertility [48–50].

4.3. Characteristics of Flow Generation

The characteristics of weathered granite red soil cause the flow generation time of
different soil layers to be significantly different [51–54]. In the early stage of rainfall, the
rainwater is mainly used to moisten the surface soil and fill the soil pores, and thus the
flow generation has a hysteresis effect. Before reaching soil saturation, the surface flow
is generated in the form of infiltration excess flow [47]. Under light rainfall intensity, due
to the rough texture, large pores, and poor water holding capacity of weathered granite
red soil [55], the rainwater is more likely to infiltrate downwards. Therefore, the surface
flow generation is slower, and the subsurface flow and bottom penetration generations
are faster. After the surface soil reaches saturation, the form of surface flow generation
transforms to saturated flow [47,56]. At this time, the subsurface flow generation reaches
a relatively stable stage. The stronger the rainfall intensity, the more rainwater enters the
soil plot per unit time, and the faster the soil reaches saturation as well as the surface flow
generation [57,58].

The flow generation process during rainfall is affected by the change of the soil
environment of weathered granite. In the early stage of rainfall, under the splashing and
compact effect of raindrops, soil aggregates are destroyed and formed to silt and clay
particles, blocking soil pores and forming thin soil crusts [59]. Soil crusts reduce the surface
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roughness and infiltration, which is beneficial for the surface flow generation and reduce
subsurface flow and bottom penetration generation [60,61]. However, with the extension
of rainfall, coarse particles gradually cover the soil surface, which reduces the formation
of soil crusts and increases porosity to promote rainwater and flow infiltration, causing
fluctuations in the process of flow generation [37,56].

4.4. Prediction of Subsurface Flow and Bottom Penetration Generation Processes

In the weathered granite red soil sloping farmland, the coarse soil texture leads to
strong soil permeability but poor water storage capacity; the migration of flow and sediment
of different soil layers is also complex. The infiltration process and near-surface hydrology
significantly affect the soil erosion process and are related to nutrient loss and pollutant
migration in the agricultural lands. Therefore, the prediction of near-surface hydrological
processes is particularly important.

When the infiltration process is mainly controlled by soil conditions rather than rainfall
intensity, it is a function of rainfall time. With the extension of rainfall time, subsurface flow
and bottom penetration can be predicted by the one-dimensional quadratic polynomial of
the rainfall time (Figure 10), and the relationship is expressed as follows:

V = AT2 + BT + C (4)

where V is the amount of subsurface flow or the amount of bottom penetration (L); T is the
rainfall time (min); and A, B, and C are constants.
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Figure 10. Relationships between the times and subsurface flow and bottom penetration during the
rainfall simulations.

The coefficients of determination of the subsurface flow and bottom penetration
fitting with rainfall all increase with an increase in rainfall intensity. Moreover, the fitting
relationship of the bottom penetration and rainfall time is better than that of the subsurface
flow (Figure 10).

Considering that after rainfall stops, the subsurface flow and bottom penetration
continue to generate, and the total amount even exceeds that during the rainfall. There-
fore, the prediction of subsurface flow and bottom penetration after rainfall stopped is
more important.

After rainfall ends, the fading process of subsurface flow and bottom penetration is
expressed by an exponential function relation of time (Figure 11). The longer the time,
the lower the subsurface flow and bottom penetration. The exponential relationship is
as follows:

v = eat+b (5)



Int. J. Environ. Res. Public Health 2023, 20, 2104 12 of 17

where v is the amount of subsurface flow or the amount of bottom penetration after the
end of rainfall (L), t is the time after rain stopped (min), and a and b are constants.
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Figure 11. Relationships between the times and subsurface flow and bottom penetration after the
rainfall simulations ends.

With an increase in rainfall intensity, the subsurface flow and bottom penetration fit
better with rainfall time. The fitting relationship between bottom penetration and rainfall
time (R2 > 0.98) is better than that of the subsurface flow (R2 > 0.92) (Figure 11).

Figure 12 presents the relationship between the measured and predicted values of
subsurface flow and bottom penetration after rainfall ends. The predicted and measured
values were in good agreement with the 1:1 line, which indicates that the subsurface flow
and bottom penetration can be predicted well. As time continues, the predicted values were
gradually lower than the measured values, especially for the subsurface flow. In general,
with an increase in rainfall intensity, the coefficients of determination of the prediction
equations of subsurface flow and bottom penetration all increased. The stronger the rainfall
intensity, the higher the prediction accuracy. Moreover, the coefficients of determination of
bottom penetration were generally higher than that of subsurface flow, meaning that the
prediction accuracy of bottom penetration was higher than that of subsurface flow.
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Figure 12. Relationships between the measured and predicted subsurface flow and bottom penetra-
tion after rainfall simulations.
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4.5. Characteristics of Sediment Production

Compared with flow generation, the sediment production process is more fluctu-
ated. The reason was that the processes of slope erosion and sediment transport were
unsaturated and non-equilibrium. The erosion capacity of surface flow and the supply of
erosive materials on the slope together determined the sediment production. In all rainfall
events, the sediment concentration firstly rapid decline from a high value, accompanied by
dynamic fluctuations. This can be partly attributed to the first washout effect of the erosion
process [55,57,58,62]. Moreover, due to the soil surface developed from the weathered
granite parent material being loose, a large number of soil particles are dispersed by the
splashing effect of raindrops. More loose sediment can be carried by surface flow, resulting
in a high sediment concentration, while the subsequent decrease in sediment concentration
is due to the reduction of mobile soil particles, as well as the increase in soil stability under
the compaction effect of raindrops and the transient formation of thin surface crusts [59,63].
Meanwhile, the increased value of surface flow also led to the decreased value of sediment
concentration. In the middle and late stages of rainfall, the separation capability of surface
flow under the disturbance of raindrops and the anti-erodibility of soil surface reached a
balance, causing the variation of sediment production to tend to be stable.

Rainfall directly affects sediment production through the impact of raindrops and
indirectly affects it through the differences in rainfall–flow redistribution. Under light rain,
the dispersed sediment particles are less under the lower kinetic energy of the raindrops
and less surface flow. Moreover, due to the loose texture and strong permeability of the
granite weathered red soil [64], the infiltration volume and rate are greater and faster, which
slows down the surface flow amount and rate and decreases the flow energy. This leads
to less soil loss. While under greater intensity rainfall events, the higher kinetic energy of
raindrops separates more sediment particles from the loose surface, which becomes the
major source of soil transportation and loss. In addition, the more rainwater transformed
into surface flow, the flow velocity and energy increase under heavier rainfall, which
increases the ability of surface flow to separate and transport sediment. Vaezi et al. [65]
pointed out that a high initial value of sediment concentration was associated with an
increase in surface flow to separate soil particles.

However, with the extension of rainfall, covered coarse particles weakens raindrop
splash erosion of the surface soil [66], reduces the physical degradation (such as surface
sealing and compaction) of the soil surface [67], and enhances the anti-erodibility and
anti-scourability of the soil [68]. In addition, the existence of coarse particles may increase
porosity to increase flow infiltration, and thus the detachment and transport capability of
the surface flow is decreased [69], reducing soil loss [70,71]. This can explain that sediment
production enters a relatively stable state in the later period of rainfall.

5. Conclusions

Simulated rainfall experiments were conducted to study the processes of rainfall-
flow redistribution, flow generation and prediction, and sediment production in red soil
sloping farmland developed from weathered granite. Under light rainfall intensities,
the subsurface flow and bottom penetration were the main output of rainwater, and
coarsened soil exhibited strong infiltration-promoting but poor water-storage capacities.
With an increase in rainfall intensity, the surface flow generation and sediment production
significantly increased. Moreover, the content of coarse particles (>1 mm) in surface soil
increased by 12% while the content of fine particles (<0.5 mm) decreased by 9.6%. This
led to severe coarsening of surface soil, as well as degradation of soil equality and fertility
under heavy or extreme rainfall intensities. The prediction of the near-surface hydrological
process was important for preventing water erosion and rainwater utilization. During
rainfall simulation, the subsurface flow and bottom penetration were predicted through a
quadratic equation about rainfall time; after rainfall ended, the prediction equations were
transformed into time-dependent exponential functions. The prediction accuracy increased
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with an increase in rainfall intensity, and the prediction accuracy of bottom penetration
was higher than that of subsurface flow.

The results suggested that rainfall–flow redistribution and near-surface hydrological
processes had to be taken into account in coarse-textured agricultural lands in the hilly
area, as well as the fact that increasing surface cover is the key to prevent soil erosion and
regulate water resources on the severely eroded bared land.

In situ simulated experiments on granite red soil slopes should be conducted to verify
and supplement the indoor experiments. The variations of hydraulic properties of flow
should be analyzed in depth, and the hydrodynamic characteristics and erosion mechanism
of granite red soil should be further explored.
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