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Abstract: Environmental exposures (EE) are increasingly recognised as important determinants of 
health and well-being. Understanding the influences of EE on health is critical for effective policy-
making, but better-quality spatial data is needed. This article outlines the theoretical and technical 
foundations used for the construction of individual-level environmental exposure measurements 
for the population of a northern English city, Bradford. The work supports ‘Connected Bradford’, 
an entire population database linking health, education, social care, environmental and other local 
government data over a period of forty years. We argue that our current understanding of environ-
mental effects on health outcomes is limited both by methodological shortcomings in the quantifi-
cation of the environment and by a lack of consistency in the measurement of built environment 
features. To address these shortcomings, we measure the environmental exposure for a series of 
different domains including air quality, greenspace and greenness, public transport, walkability, 
traffic, buildings and the built form, street centrality, land-use intensity, and food environments as 
well as indoor dwelling qualities. We utilise general practitioners’ historical patient information to 
identify the precise geolocation and duration of a person’s residence. We model a person’s local 
neighbourhood, and the probable routes to key urban functions aggregated across the city. We out-
line the specific geospatial procedure used to quantify the environmental exposure for each domain 
and use the example of exposure to fast-food outlets to illustrate the methodological challenges in 
the creation of city and nationwide environmental exposure databases. The proposed EE measures 
will enable critical research into the relationship and causal links between the built environment 
and health, informing planning and policy-making. 
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1. Introduction 
The influential role of the built environment in shaping our health and well-being is 

increasingly being recognised [1]. Growing evidence suggests strong relationships be-
tween exposures to environmental characteristics such as air pollution [2–4], noise [5–7], 
green space [8–10] and greenness [11–13], public transport [14,15], walkability and street 
centrality [16–18], unhealthy food [19–21], or indoor dwelling qualities [22,23] and health 
outcomes across the globe. While the detrimental effects of environmental exposures have 
been broadly demonstrated in numerous cases, there is also growing evidence for positive 
effects of built environment features. Individual features of the built environment have 
been linked to increased physical activity [24], active travel [25], or lower levels of obesity 
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[26]. For example, neighbourhoods that are walkable are associated with increased phys-
ical activity and other positive health outcomes [27,28]. Moreover, the built form and 
shape of green spaces have an impact on the number of walking trips fostering physical 
activity [29]. There are also occasions where the built environment features can be both 
beneficial and detrimental, such as the proximity to busy roads being supportive for active 
travel, but bad through their potentially high level of air pollution. Having a greater pre-
cision for environmental indicators would enable a more nuanced analysis of the relation-
ship between the built environment and health than has been possible to date. 

A major limitation of the existing ways of constructing large-scale spatial indicators is 
that they focus on aggregate levels such as administrative boundaries or postcodes, and do 
not take into account individual-level exposure [30]. Increasing evidence shows that expo-
sures perceived at the street level (e.g., air pollutants) can have particularly detrimental ef-
fects on health [31,32]. Such negative effects can occur even at low levels (i.e., short-term and 
low concentrations) of environmental exposure [33]. Exposures modelled at national scales 
have been found to significantly underestimate the real-world exposure perceived at the 
street level [34]. Evidence from small-scale studies indicates that characteristics of the built 
environment, such as higher densities of buildings forming street canyons, may lead to in-
creased levels of exposures [35]. This highlights the need for better quality spatial data at 
smaller scales to differentiate between conditions at the finest, street-level scale, since quan-
tifying environmental exposures at the scale at which they are experienced by individuals 
(rather than in arbitrarily designated geographies) can provide crucial information for im-
proving the knowledge on the impact of environmental exposures on health and well-being. 
Such knowledge will inform spatial planning decision-making, e.g., in guidance for targeted 
modifications of the built environment that accounts for its complexity. 

Agreement over the importance of individual features had been varied in the past. A 
recent meta-narrative review by Ortegon-Sanchez et al. [36] on the relationships between 
the built environment and child health, identified vast inconsistencies in the way in which 
neighbourhood characteristics are measured and conceptualised within health studies. 
These inconsistencies might explain the existing contrasting evidence for specific environ-
mental features and health outcomes, such as between quantifications of food environ-
ments and obesity [37], or between urbanicity and schizophrenia [38]. In the latter, ad-
vances are being made in improved precision of measuring built environment features, 
and it is to this literature that we hope our work will contribute [39]. 

Finding relationships between specific built environment features and health out-
comes opens the possibility for targeted planning and policy interventions. Yet, it is im-
perative for such interventions that decision-makers understand the precise built environ-
ment features involved to avoid adverse negative effects of policies to improve health 
outcomes [40]. Modifying the built environment effectively requires an intrinsic 
knowledge of the importance of individual features, as well as their interrelated effect on 
health. However, causal links between some built environment features and health out-
comes are still to be proven definitively, despite many attempts to do so [41]. 

There are significant differences and heterogeneity between the physical and envi-
ronmental characteristics of neighbourhoods of a similar population density within cities 
(e.g., dispersed high-rise and dense low-rise buildings). A large part of the field of urban 
planning is dedicated to the quantification of such differences measuring the geograph-
ical, form and functional properties of the built environment and their relationships 
[42,43]. Such nuanced and detailed measures of the built environment have not yet been 
systematically incorporated into the research on public health. We extend the argument 
by Cyril et al. [44] of ‘an urgent need for health studies to standardise measures of ur-
banicity’, to ‘the urgent need for comprehensive and detailed standardised longitudinal 
measures of the built environment’ for health and public health studies. Challenges for 
health research in understanding the importance of environmental features not only arise 
through the difficulties in the effective quantification of these but by their complex inter-
section with additional social, cultural or economic factors. 
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Existing and emerging large-scale linked population datasets which track health over 
time provide rich individual-level information on health and socio-economic factors. 
Combining such datasets with high-resolution geospatial environmental information of 
exposures, including the length and extent of exposure, holds the potential to improve the 
value of existing population datasets for the discovery of causal relationships between 
built environment characteristics and health outcomes. Geospatially-enriched population 
data also enables investigations into the interaction effects between different built envi-
ronment characteristics on health. 

We aimed to construct a detailed set of built environment indicators for every ad-
dress in Bradford, accounting for the limitations previously identified. This paper de-
scribes their development, highlights key challenges, and outlines potential pathways to 
accelerate discoveries. We hypothesise that by linking meaningful built environment fea-
tures to longitudinal whole population databases, researchers will achieve (a) an improve-
ment in the methods for correlating the built environment with health and social out-
comes; (b) will support the production of new knowledge on how the built environment 
contributes to diseases; and (c) in linking to cohort data, to improve the understanding of 
how and when the built environment shapes long-term health outcomes that are the result 
of growing up in unhealthy environments. 

We quantify a series of environmental exposures at an individual level across 11 dif-
ferent domains and link these to individual-level health data to investigate relationships 
at a high level of detail. Environmental information is gathered for a whole population 
and we outline how these can be linked to a longitudinal birth cohort in Bradford, Eng-
land. Our exposure indicators capture qualities across air pollution, greenspace and 
greenness, public transport, walkability, traffic, buildings and the built form, street cen-
trality, land use, and food environments as well as indoor dwelling quality domains. We 
demonstrate our methods on data around the year 2020 and outline how the proposed 
methods hold the potential to be created longitudinally for any year between 2007 and 
2022, and in future years, if data are available. 

Section 2 presents our theoretical approach, the methodologies of increased spatial pre-
cision and the standardised conventions in quantifying the built environment, Section 3 pro-
vides critical indicators to inform the existing contrasting pieces of evidence within health 
research, and Section 4 discusses challenges in creating city and nationwide datasets, and 
outlines potential pathways to accelerate discoveries in public health through the applica-
tion of large-scale environmental exposure and linked population datasets. 

2. Materials and Methods 
Increasing evidence points to the importance of individual built environment charac-

teristics on health and human behaviour, especially those that can be linked to encouraging 
physical activities [45,46]. In line with this recognition, we measured exposure through the 
perspective of an individual perceiving the built environment as they traversed and used it. 
We utilised a person’s address as the starting point to measure the likeliness of a person to 
interact with their immediate surroundings, and for simulated journeys through the streets, 
the neighbourhood and to urban features. We used this lived environment to quantify the 
exposures and to aggregate these at the address, which also formed a point of linkage to the 
individual-level health information from historical data held in a whole population data-
base and sourced from general practitioners (i.e., GPs, namely, family doctors) in the city of 
Bradford. 

In doing so, our approach differed from the existing large-scale environmental expo-
sure indicator datasets that are based on arbitrary geographic boundaries [30], by captur-
ing the granular differences of the built environment at the level they are experienced. 
This is an important distinction as, e.g., postcodes and administrative boundaries are gen-
erally affected by a modifiable area unit problem [47], and their centroids can introduce 
unobserved biases into the precision of computed proximities. For example, our analysis 
has shown that the location of address points within the rural postcodes in Bradford can 
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be as much as 6 km away from the actual postcode centroid—an observation which par-
ticularly on nationwide scales will have substantial effects on the analyses. We 
acknowledge that defining what specifically constitutes a person’s neighbourhood can 
differ widely between individuals [48,49], which is why approaches that utilise catchment 
areas suffer from arbitrary cut-off points. To address such limitations, we used a series of 
different metric distance radii and proposed a set of geospatial methods that aim to sim-
ulate a person’s lived environment, such as the introduction of distance decay functions 
(outlined in Section 2.4). 

The underlying premise for our environmental exposure indicators (EI) is that, in the 
lack of large-scale individual-level empirical data on movement and interaction, we can 
measure environmental exposure by simulating potential interactions using methods 
from transport and urban planning. We argue that, e.g., the usage of green space will be 
more likely to occur if the space is close to a person’s house, or that a person will be less 
likely to be exposed to air pollution if their home environment has clean air. However, we 
acknowledge that interaction with and exposure to the environment is not solely influ-
enced by accessibility and proximity, but also by individually-differing behaviours, atti-
tudes and norms [50], whether they be cultural (e.g., food consumption), social (e.g., fam-
ily structure), or economic (e.g., car ownership shaping how and where a person lives, 
works, and socialises). Keeping this in mind, we quantified the accessibility to urban fea-
tures both according to the direct proximity to them and as a cumulative opportunity for 
exposure to them; in other words, we modelled an individual’s potential of having an 
encounter with any given feature, as well as their proximity to it. 

While the EIs proposed in this article were tailored to be utilised within the Connected 
Bradford database (see Section 2.1), the methodology has been designed to enable an appli-
cation to any data sources holding individual-level address information (subject to the nec-
essary approvals), e.g., longitudinal cohort studies including those where the participants’ 
address information is only available at the level of the postcode (or outside of the UK to 
their equivalent, e.g., zip codes). The underlying datasets have been available annually since 
2007 allowing a longitudinal construction of the proposed environmental exposure indica-
tors. We will illustrate how the EIs can be linked to other datasets, such as longitudinal co-
hort studies using the example of the Born in Bradford (BiB) multi-ethnic family cohort 
study established in 2007 [51] (see Section 4). 

2.1. Setting 
Bradford, a city of 546,400 people [52] located in West Yorkshire in the north of Eng-

land (Figure 1), constitutes a particular case due to its significant number of people with 
limited social mobility, low educational outcomes, and poor health. The city is among the 
15 most deprived districts in England, with more than a third of its administrative areas 
within 10% of the most deprived areas nationally [53]. These inequalities are exacerbated 
by low levels of employment and income. Bradford’s population is “dominated by 
younger age groups” [54], and with a distinctively high percentage of South Asian origin 
residents (90% of whom are from Pakistan) [51]. Meanwhile, the average life expectancy 
rate at birth for residents in the Bradford District (2018–2020) is lower for men at 77.3 years 
than for women at 81.5 years, and around 2 years lower than the national life expectancy, 
which is 79.0 and 82.9 years, respectively [55]. Set in this context is the Connected Bradford 
Whole System Data Linkage project [56], a whole population database that combines de-
identified, longitudinal, near-to-real-time data from different organisations for approxi-
mately 800,000 citizens across the Bradford region in the north of England. The database 
uses pseudonymised NHS numbers (unique identifiers for every person registered with 
the National Health Service (NHS) in the country) and other data variables to combine a 
series of primary care data from general practices with community care and secondary 
care data, socio-economic information such as social care, education and housing, and 
benefits data from local authorities, as well as crime data from West Yorkshire police. This 
includes, e.g., variables on a patient’s medication, their clinical history, or emergency care 
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usage. Connected Bradford allows, hence, the tracking of routine health outcomes such as 
a patient’s weight or body mass index (BMI), the frequency of their health and mental 
health service use, the prescription of specific drugs (e.g., asthma medication), or school 
attendance, among many others (see [56] for a comprehensive list and description). 

 
Figure 1. Context map showing England, located in Western Europe (a), and the City of Bradford 
Metropolitan District within the north of England (b). © OpenStreetMap contributors and © OS and 
Crown copyright 2022. 

2.2. Data Linkage 
The data linkage between our EIs and the Connected Bradford database was 

achieved through a five-step process, i.e., (1) we derived environmental EIs for each resi-
dential Unique Property Reference Number (UPRN) in Bradford; (2) we received person 
identifiable information (i.e., historic address information) including pseudonymised 
NHS numbers from the Bradford Teaching Hospitals NHS Foundation Trust; (3) we 
georeferenced this historic address information and linked it to the UPRNs (as outlined 
below) and included EI data for each; (4) we pseudonymised the UPRNs and removed all 
the identifiable information; and (5) we provided Connected Bradford with a dataset of 
pseudonymised NHS numbers, pseudonymised UPRNs and linked EI data. 

For step 3, we conducted large-scale georeferencing of the available patient address 
information from all the participating GPs within Bradford. The data comprised address 
information from 1950–2022 including more than 22,500,000 address rows for 1,110,000 
unique pseudonymized NHS numbers. We used this address information in conjunction 
with Ordnance Survey (OS) AddressBase Premium data (which provides up-to-date ac-
curate information about addresses and properties in the UK) to match a patient address 
record to its respective UPRN. UPRNs are unique identifiers for every addressable loca-
tion in the UK. We matched the UPRNs to each patient address by adapting the open-
source address-matching Oracle and R package addressMatchR. The code was rewritten 
to run solely in the open-source programming language R and further adaptations were 
made to tailor the approach to the particularities of GP address information, requiring an 
extended simplification and cleaning of the input data (an open-source version of the code 
can be obtained via the GitHub repository https://github.com/kimonkrenz/CBHE (ac-
cessed on 14 December 2022)). The result was a historical address record for every patient, 
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linked to their respective NHS number within Connected Bradford. This enabled the link-
age of environmental information to a patient and their health and other wider determi-
nants of the health data captured in the Connected Bradford database via UPRNs. Sohal 
et al. [56] provide details of the granted ethical approval (IRAS ref: 239924, CAG ref: 
18/CAG/0091 and REC ref: 18/YH/0200) and the implemented mechanism to prevent the 
intentional or unintentional re-identification of individuals within this dataset. 

In parallel, we used the geographic information and address classification available 
within the OS AddressBase Premium dataset to identify all residential addresses, their 
UPRN and their location in Bradford. EIs could, thus, be generated for every residential 
address in Bradford and subsequently linked without the need to access patient infor-
mation in the process. Our methodology also allowed the computation of EIs for alterna-
tive address information or UPRNs, such as schools, libraries or workplaces, given these 
are linked to a person. 

2.3. Built Environmental Data Sources 
The base for our analyses comprised high-resolution vector-based geospatial data 

from OS (i.e., OS MasterMap Topography, OS MasterMap Highways Roads and Path, OS 
AddressBase and OS Points of Interest (POI) data). The OS datasets provided the most 
detailed, comprehensive and up-to-date view of Great Britain’s landscape, the built envi-
ronment and the land-uses. This high-resolution vector-based OS information has been 
available in a comparable and complete format since 2007. We used this geospatial infor-
mation from 2021 to construct a street network model through which we measured the 
proximities to environmental exposures. This network comprises all the publicly accessi-
ble roads, and also includes all the footpaths through towns and cities to comprehensively 
capture how and where a person might walk. The network is dissected into 20 m long 
segments, of which each start and end node can constitute the beginning or end of jour-
neys to and from urban features. The environmental exposures were based on either pri-
mary data collection, modelled information, or where appropriate, secondary data. This 
included vector-based information on the location of urban features (e.g., POI, National 
Public Transport Access Nodes (NaPTAN)), entrance/access points (e.g., OS Open Green-
space), the parts of streets, pathways and their properties (OS MasterMap Highways), 3D 
building information (OS MasterMap), and image-based satellite data (Landsat 8–9), as 
well as additional data sources capturing the indoor (e.g., energy performance certificates 
(EPC)) and outdoor qualities (e.g., local authority traffic and air quality data). 

2.4. Construction of Exposure Variables 
Utilising the Geographic Information System, we derived a series of measures quan-

tifying exposures to and within the built environment. For this, we defined nine different 
types of spatial relationships through and at which an individual can be exposed to the 
environment and features of the built environment (Figure 2). This approach took account 
of the most basic forms through which humans interact with the environment; both static 
(e.g., at the place of residence) and dynamic (e.g., while walking along a route). Therefore, 
these nine spatial relationships can be divided into exposure at specific locations, i.e., (a) 
at and within the residential home, (b) at the residential street next to the home, (c) at the 
urban block (i.e., the area enclosed by streets and paths) containing the residential home, 
(g) at a circular area surrounding the residential home, as well as exposures at places of 
potential interaction, i.e., (h) along a route to an urban feature or (d) to the closest urban 
feature from the residential home (e.g., parks entrances), (e) along a route to all, or the 
average distance to all the urban features of a specific type, (f) to urban features within a 
catchment area, and (i) to properties of routes within a catchment area. We used an open-
source PostgreSQL object-relational database in combination with PostGIS, a spatial da-
tabase extender, for the construction of a geospatial database and the calculation of the 
environmental exposure variables. PostGIS allows for fast and large-scale spatial-based 
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queries enabling a simultaneous computation of the spatial metrics for an entire city and 
potentially an entire country. 

 
Figure 2. Different methods quantifying environmental exposure at varying spatial relationships: at 
(a) an address; (b) an address street; (c) an urban block containing the address; from an address to: 
(d) an environmental feature; (e) all environmental features; (f) environmental features within a 
catchment area; a buffer around (g) an address; (h) a route from an address to an urban feature; (i) 
a catchment area from an address. 

In addition to the outlined spatial relationships, we introduced four different dis-
tance types used in our analysis, i.e., (1) the metric distance as the crow flies (ignoring 
particularities of the spatial configuration), (2) the metric distance through the street net-
work (representing how a human travels through and perceives the environment), (3) the 
angular distance through the street network (representing how a human navigates the 
environment), and (4) the distance decay metric distance through the street network (in-
corporating the effect of distance into the likelihood of an interaction between a human 
and the environment). Distance decay functions are standard methods in pedestrian ac-
cessibility modelling within the field of urban and transport planning. The core aim of 
these approaches is to incorporate the effect of distance in the analysis, i.e., the decreasing 
importance of an urban feature to a person with an increasing distance from it and to 
overcome the limitations of choosing otherwise necessary distance cut-off points. Addi-
tionally, distance decay functions provide a method to continuously decrease values until 
converging to zero, rather than an abrupt cut-off as in the buffer or catchment area ap-
proaches. While a plethora of different distance decay functions has been proposed, there 
is little statistical difference between these [57]. For the environmental indicators that use 
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the distance decay metric distance (D), we have selected the following exponential dis-
tance decay function: = , (1) 

where d is the distance in meters and k is a decay parameter. We applied this function to 
distances between addresses and urban features at varying decay parameters (Figure 3) to 
account for the potential differences in user groups (e.g., children, families with prams, and 
the elderly). 

 
Figure 3. Plots of different exponential decay functions and their effect on distances in meters. 

2.5. Selection of Environmental Domains 
We selected a series of 11 environmental domains for which we generated exposure 

indicators. This selection was based on the existing evidence pointing to potential associ-
ations between each of these built environment domains and health outcomes, and it was 
informed by the policy priorities of the City of Bradford. Where possible, we sought to 
refine the existing measurements in order to build on the existing research in this domain 
and to offer a methodology that could be adopted relatively straightforwardly. The fol-
lowing section will outline the reasoning for each domain, their data source and the spec-
ificities for their calculation. Unless further specified, see Section 3 for details on the vari-
ous spatial relationships and scales used for each domain. 

2.5.1. Air Quality 
Air pollution has long been associated with negative health outcomes [2–4]. Popula-

tion-wide analyses into the relationships between exposure to air pollution and health 
often utilise aggregate information, such as the UK Emissions data from the Department 
for Environment, Food and Rural Affairs (Defra) which features a 1 × 1 km resolution [58]. 
Villeneuve and Goldberg [59] highlight this as a common shortcoming in studies and ad-
vocate for high-resolution spatial datasets due to the variability of air pollution at small 
scales. We addressed this need by utilising high-resolution (1 × 1 m) air pollution data 
from 2018 on the annual average concentration of the particulate matter (PM) of 10 and 
2.5, as well as nitrogen oxides (NOx) from the City of Bradford Metropolitan District 
Council. This dataset was the result of an air quality model (i.e., a Ricardo-AEA Rapid-
Air complex dispersion modelling), which estimates the concentration at a 1 × 1 m resolu-
tion. The model utilises information gathered from more than 200 automatic and non-
automatic monitoring sites across Bradford’s urbanised areas (see [60] for a detailed 
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description of the underlying air quality monitoring data and the location of monitoring 
sites), in conjunction with local data on industrial sites, vehicular and train traffic, back-
ground concentrations and domestic heating activities. For rural areas where air pollution 
is not a concern and small-scale monitoring stations and tubes are scarce, we used the UK 
emissions data. We note that research designs that are interested in traffic-related pollu-
tion might be better placed to use traffic variables. 

We calculated the average and maximum values of the PM of 10 and 2.5 and NOx for 
the buffer and catchment-based buffer areas at varying distances. 

2.5.2. Road Traffic 
The effects of road traffic, such as noise [61] and air pollution (see Section 2.5.1), can 

have a series of adverse effects on health and quality of life which is increasingly being 
recognized by local authorities. Road Traffic is generally measured at the street level 
through annual manual traffic counts at various locations (e.g., major and minor roads) 
and aggregated to annual average daily flows (AADF). In the UK, streets that are not cov-
ered by manual counts are estimated in street-level estimation models. Such modelled 
data is often insufficient in capturing the temporary fluctuations during the day common 
to traffic flows and does not cover sufficient information for small local roads. To over-
come this limitation, we utilized the UK-wide Trafficmaster data, which has tracked the 
GPS information from more than 135,000 vehicles in 1 to 10 s intervals, since 2019. The 
data is purchased by the Department for Transport and is available to local authorities 
across the UK. Besides the count data, the data also contains information on the average 
speeds and free-flow speeds per street segment. We used these to derive a ratio-based 
congestion variable as follows:  =  1           ≥ ,          ℎ , (2) 

where a is the free-flow speed and x is the average speed during the observed period. 
We calculated the annual average and maximum bidirectional count of vehicles, as 

well as the maximum and average level of congestion for three time periods (i.e., peak 
morning (07:00–9:00), off-peak (10:00–16:00) and peak evening (16:00–19:00)) during 
weekdays. Besides measuring the count and congestion at the address street, we also ag-
gregated the data for a 300 m catchment area around the address. 

2.5.3. Greenness and Greenspace 
Numerous studies have highlighted associations between green space [8–10] or 

greenness [11–13] and health outcomes. The general method for measuring the degree of 
greenness is the normalised difference vegetation index (NDVI). This pixel-based metric 
estimates the density of green vegetation within satellite imagery. A high pixel resolution 
is critical to deriving meaningful small-scale estimations, and previous research [62] has 
demonstrated that a 30 m resolution provides sufficient detail. The NDVI can be calcu-
lated from historic and globally available satellite data, such as the USGS Landsat 8 prod-
uct (2013–present), as follows:  =  , (3) 

where NIR is the light reflected in the near-infrared spectrum (Landsat 8 Band 5) and RED 
is the light reflected in the red range of the spectrum (Landsat 8 Band 4). We used cloud-
free data from May 2020, the greenest month on record. 

We calculated the average NDVI within varying radii and walking distances. While 
the NDVI can capture the general level of greenery in an area (sometimes referred to as 
availability), it lacks information on the type and accessibility of usable green spaces. For 
this reason, we calculated the accessibility by computing the distance from an address to 
the closest entrance points of green spaces. We utilized the OS Open Greenspace dataset, 
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which includes information on entrances, area sizes and the following green space classi-
fications: public parks or gardens, allotments or community growing spaces, cemeteries, 
play spaces, religious grounds, bowling greens, golf courses, other sports facilities, play-
ing fields, and tennis courts. We followed the recommendations from the Accessible Nat-
ural Greenspace Standard for England [63] and the WHO [64], and computed the counts 
of green spaces within various distances, then combined these with two refined measures: 
a distance decay weighted count, as well as the distance weighted size. In doing so, we 
were able to capture the likelihood of interaction with a green space of a certain class by 
a person’s proximity to spaces considering that the interaction grows with size. 

We calculated measures for all the green spaces and each class respectively, whereas 
the individual green space classes could be combined into new variables through an ad-
dition. Specifically, we counted the number of green spaces of 2 ha within 300 m, 20 ha 
within 2000 m, and 100 ha within 5000 m. We then counted the number of green spaces 
within varying radii, and we calculated the distance decay weighted counts and green-
space area for varying parameters. 

2.5.4. Public Transport 
The use of public transport has, in various ways, been associated with better health 

[14,15]. Most studies interested in public transport accessibility quantify the proximity to 
public transport stops using an as-the-crow-flies distance, walking distance or travel time. 
We adapted these approaches and calculated the proximity to public transport stops using 
the 2022 National Public Transport Access Node (NaPTAN) database. The NaPTAN pro-
vides historic (1998–present) and nationwide information on the points of access to public 
transport. The spatial information ranges from a stop’s location to the entrance points of 
larger stations and it includes a classification for each stop/entrance (i.e., bus, coach, 
metro, rail, and airports). 

We calculated the walking distance to public transport access points for each class, in-
cluding the closest available point. We counted the number of public transport stops within 
varying radii, and we calculated the distance decay weighted counts for varying parame-
ters. 

2.5.5. Walkability and Land-Use Intensity 
Providing walkable and diverse neighbourhoods are two core policy priorities for 

local authorities aiming to deliver on sustainability targets. The degree to which an area 
is walkable has been linked to increased walking behaviour and better health [16–18]. A 
common way to evaluate the walkability of a street is to utilise street centrality measures 
(see Section 2.5.6.), as these can form an effective method, particularly with a lack of ad-
ditional data sources. For this work, we selected a methodology that utilised additional 
datasets to derive better estimations. Specifically, we used a pedestrian demand model 
[65] which was based on datasets used in other environmental exposure variables (i.e., OS 
MasterMap, OS AddressBase Premium, OS Highways, and NaPTAN), of which compa-
rable datasets can be found worldwide. The model was based on a combination of land-
use intensity, transport accessibility, street network centrality and residential population 
density, which resulted in a raster-based geographic data surface at a resolution of 25 × 25 
m generated through interpolation. We generated this model for Bradford and used the 
raster-based output as the base for aggregating the walkability variables from 2018. In 
addition, we also included the land-use intensity subcomponent as an individual variable. 
The land-use intensity was based on Shannon’s Diversity Index, which is calculated as 
follows: =  − ∑ ln , (4) 

where H is Shannon’s Diversity Index, i is the proportion of one land use area of all the 
land uses present and pi is the total value of the land use area. We further use H to account 
for the equitability of the mix. For a detailed description see Dhanani et al. [65]. 
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We calculated the average and maximum walkability and land-use intensity for var-
ying radii. 

2.5.6. Street Centrality 
Street centrality, or street network centrality, is an established metric to quantify the 

spatial configuration and urban morphology of an area by computing a relative centrality 
metric for every street. First introduced by Hillier and Hanson [66,67] and further devel-
oped by Turner et al. [68,69], there are two widely used metrics, i.e., angular closeness 
centrality (or angular integration, the potential of movement to a street segment) and an-
gular betweenness centrality (or angular choice, the potential movement through a street 
segment). Several studies have used these metrics as proxies for walkability and reported 
associations between these metrics and health outcomes [16–18] and their ability to pre-
dict pedestrian movement [70]. As such, the method overcomes the oversimplification is-
sues of alternative metrics that aim to capture the character of an urban area (e.g., ‘ur-
banicity’) by counting the number of intersections or measuring the aggregated popula-
tion density. 

The angular closeness centrality calculates the angular distance between every street 
segment and every other segment in the street network within a given radius, using the 
shortest angular path. The variable is calculated as follows (see [69] for a comprehensive 
description): ( ) =  (∑ )  , (5) 

where djk is the length of the shortest path between node pi and pk. The angular between-
ness centrality is calculated by generating the shortest paths between all segments within 
a given radius as follows: ( ) = ∑ ∑ ( )         ( < ), (6) 

where gjk(pi) is the number of shortest paths between node pj and pk which contain node pi, 
and gjk is the number of all the shortest paths between pj and pk. The base for this analysis 
was the network model using the OS Highways and OS Urban Path information described 
in Section 2.3. 

We calculated the relative centrality (i.e., the angular closeness and angular between-
ness centrality) for all the street segments in Bradford at varying radii. We measured the 
centralities at the residential segment and aggregated the average and maximum value 
within 300 m from a home address point. 

2.5.7. Built Form 
A main concern of the field of urban planning and urban morphology is the develop-

ment of methodologies to quantitatively capture differences in the urban form. We selected 
a prominent approach of these [71,72] and calculated a series of variables that described the 
spatial characteristic of urban densities and form, and combined these with descriptive in-
formation from secondary data (i.e., the Department for Levelling Up, and the Housing and 
Communities’ Energy Performance Certificate database). Specifically, we described built-
form characteristics at the building level, as well as the block level. We measured the build-
ing footprint, building height, building volume, and building floor area utilising the OS 
MasterMap and Building Height data in combination with OS Highways information from 
2021. This data will enable investigations between urban densities and health outcomes. 

We calculated for each address the floor-space index (FSI), ground-space index (GSI), 
open-space ratio (OSR), and the average building layers of floors (L) for the block (i.e., the 
continuous area bounded by streets) that contained an address point (see [71] for a com-
prehensive description). We further included EPC-based information on the build form 
classification (i.e., detached, semi-detached, end-terrace, mid-terrace, enclosed end-ter-
race, and enclosed mid-terrace), the dwelling type (i.e., house, bungalow, flat, maisonette, 
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and park home), the construction age band (i.e., before 1900, 1900–1929, 1930–1949, etc.), 
and the number of storeys and tenure type (i.e., rental (private), rental (social), and owner-
occupied). 

2.5.8. Indoor Qualities 
The COVID-19 pandemic has uncovered the importance of indoor qualities for phys-

ical and mental health [22,23], but capturing such indoor qualities at scale is a difficult 
task. For this reason, we selected a variety of variables of the EPC’s secondary information 
which could be used as a proxy for the indoor qualities. The variables included data on 
energy consumption, energy consumption potential, lighting, heating and hot water cost, 
size of glazed areas, floor area and height, number of heated rooms, number of habitable 
rooms, and the number of extensions. 

2.5.9. Food Environments 
Numerous studies have reported associations between fast-food exposure and health 

outcomes such as obesity in adults and children; however, the evidence is mixed [37]. Such 
mixed evidence might be caused by differences and imprecisions in measuring the expo-
sure, which often is based on crude area counts. To address such shortcomings, we meas-
ured the exposure to fast-food outlets at a high-spatial precision by calculating the accessi-
bility as the walking distance from an address to fast-food outlets at varying distances, and 
then we calculated the proportion of fast-food to all food offerings around the home. For 
this, we adapted a method by [20] using 2021 secondary OS Points of Interest (POI) infor-
mation to identify the fast-food outlets through the existing classification within the POI 
data in combination with text-based keywords applied to an outlet’s name (see Appendix B 
in [20] for the used keyword set). 

We counted the number of all the food offerings, the fast-food offerings, the ratio 
between the fast-food outlets and all food offering outlets within varying radii, and calcu-
lated the distance decay weighted counts. 

3. Results: Built Environment Indicators 
The result of the aforementioned methodology is a set of more than 500 environmen-

tal indicators outlined in Table 1. 

Table 1. Overview of environmental indicators, exposure measurements and data sources. 

# Environmental 
Domain 

Exposure 
Measurement 

Spatial 
Relationship 

Distance Type and 
Radii 

Data Source 

I Air Quality 
Concentration of Particulate Matter (PM)
10, PM 2.5, and nitrogen oxides (NOx) 

(g), (i) 
(1), 100, 300, 500, 
1000, 1500 

Environmental 
modelling, City of 
Bradford, Defra 

II Road Traffic 
Average traffic volume and level of con-
gestion 

(b), (f) (2), 100, 300 
Basemap 
Journey Time data 

III Greenness 
Normalised Difference Vegetation Index 
(NDVI) 

(b), (i) (1), 100, 300, 500, 
1000, 1500 

NASA Landsat 8–9 

IV Greenspace 
Accessibility of green spaces entrance 
points by class (e.g., play space, public 
park or garden, and religious grounds) 

(d), (e), (f) 
(2), (4), 300, 500, 
1000, 2000, 5000 

OS Open Green-
space 

V Public Transport 
Accessibility of public transport stops by 
class (e.g., bus, metro, rail, and coach) 

(d), (e), (f) 
(2), (4), 300, 500, 
1000, 2000, 5000 

NaPTAN 

VI Food Environment 
Accessibility of all food outlets, fast-food 
outlets, and ratio of fast-food outlets 

(d), (e), (f), 
(h) 

(2), (4), 300, 500, 
1000, 2000, 5000 

POI 

VII Land-use Intensity Shannon’s Diversity Index (SDI) (g), (i) 
(1), 100, 300, 500, 
1000, 1500 

POI 

VIII Walkability Walkability Index (WI) (g), (i) 
(1), 100, 300, 500, 
1000, 1500 

NaPTAN, POI, 
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UK Census, OS 
Highways, and 
OS AddressBase 

IX Street Centrality Betweenness and closeness centrality (b), (f) 
(2), 300, 500, 1000, 
15,000, 2000 

OS Highways 

X Built Form 

Building footprint, building height, 
building volume, building floor area, 
floor space index (FSI), ground space in-
dex (GSI), open-space ratio (OSR), aver-
age building layers of floors (L), build 
form, construction age band, number of 
storeys, dwelling type, and tenure type 

(a), (c) - 
OS MasterMap, 
OS Highways, and 
EPC 

XI Indoor Qualities 

Energy consumption, lighting/ heating/ 
hot water cost, glazed area, floor area, 
number of heated rooms, number of 
habitable rooms, floor height, and num-
ber of extensions 

(a) - EPC 

Figure 4 shows a visualisation of a variable from the food environment domain, i.e., 
the fast-food exposure using a distance decay weighted count. The mapping provides geo-
graphic insights into the spatial distribution of fast-food outlets and the difference in expo-
sure for each resident in Bradford. Urbanised areas feature a disproportionate number of 
fast-food outlets with the highest level of exposure in neighbourhoods around the centre. 
Suburban and rural neighbourhoods, on the other hand, feature comparably less exposure. 

 
Figure 4. Visualisation of fast-food exposure measure showing distance decay weighted counts: (a) 
for the entire metropolitan district of Bradford; (b) detail zoom-in on Toller ward illustrating the 
address-level variation in the exposure measurement. © OS and Crown copyright 2022. 
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In addition to the insights into the geographic distribution of fast-food outlets, we 
selected 11 exemplary EIs (see Table 2) to illustrate the environmental exposure of an av-
erage person in Bradford. Figures 5 and 6 show the mappings of these, demonstrating the 
potential insights that these data can provide both at city and local levels. 

 
Figure 5. Visualisation of the selection of exemplary EIs (I–IV, see Table 2 for details) for the entire 
metropolitan district of Bradford and a detailed zoom-in on the Toller ward. EIs include: (a,b) aver-
age exposure to PM 2.5; (c,d) number of vehicles during the morning period; (e,f) average level of 
greenery; (g,h) distance to the closest public park or garden; (i,j) distance to the closest bus stop; 
and (k,l) distance to the closest fast-food outlet. © OS and Crown copyright 2022. 
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Figure 6. Visualisation of the selection of exemplary EIs (IX–XI, see Table 2 for details) for the entire 
metropolitan district of Bradford and a detailed zoom-in on the Toller ward. EIs include: (a,b) di-
versity of shops; (c,d) average level of walkability; (e,f) closeness to other things in the city; (g,h) 
height of the home; and (i,j) size of the home. © OS and Crown copyright 2022. 
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Table 2. Selection of exemplary EIs from each of the 11 domains (Roman numerals match Table 1). 

# Environmental Exposure Indicator * Mean Std. Dev. Min. Max. Median Mode 
I Avg. exposure to PM 2.5 at a short walk from home (μg/m3) 8.92 0.98 6.40 11.48 9.01 10.31 

II Avg. number of vehicles at a short walk from home (AM) 188.72 182.93 0.00 2268.00 141.00 0.00 
III Avg. level of greenery within a short walk from home 0.22 0.06 0.08 0.44 0.22 0.12 
IV Distance to the closest public park or garden (m) 1044.94 708.12 10.54 5715.32 889.26 1105.96 
V Distance to the closest bus stop (m) 216.52 155.05 10.05 4338.08 182.99 268.05 

VI Distance to the closest fast-food outlet (m) 763.99 739.79 10.32 5869.15 561.89 298.47 
VII Diversity of shops within a short walk from home 0.08 0.07 0.01 0.51 0.06 0.33 

VIII Avg. level of walkability within a short walk from home 0.86 0.37 0.05 2.51 0.84 2.03 
IX Closeness to other things in the city within 1 km 1578.83 931.49 0.36 5986.89 1419.43 4157.30 
X Height of the home building (m) 6.55 3.88 0.10 39.60 5.70 5.40 

XI Size of the home (sqm) 88.87 49.56 0.00 3384.00 78.00 70.00 
* If not specified, the values are indices of the respective measurement. 

We combined this selection of exemplary indicators with demographic information 
from the 2021 Census to produce a synthetic person: Samina. Samina was a 12-year-old 
British Pakistani girl. She lived with her two parents in a 5.70 m high mid-terrace house 
of 78.00 square metres. During a short morning walk from home, she would be passed by 
182 cars and exposed to 9.01 micrograms per cubic metre of particulate matter 2.5, which 
is comparable to the annual mean concentration in the UK at urban background monitor-
ing sites in 2018 and just below the WHO guideline [73] of an annual mean of 10 mi-
crograms per cubic metre. The streets that she would traverse would not be very walkable 
(0.84), feature little diversity of shops (0.06), and have a greenery level of 0.22, which is a 
relatively low green environment when compared to the highest values of places in Brad-
ford. Samina would be close to public transport (182.99 m), but not very close to many 
other streets in the city (a 1419.43 street centrality), and closer to a fast-food outlet (561.89 
m) than to a public park or garden (889.26 m). 

While this is only a single example, it demonstrates how powerful such a dataset can 
be when multiplied across a cohort—or indeed a city’s population. Not only does it enable 
the researcher to detail each individual’s susceptibility to ecological influences on their 
health (and their confounders), but it also allows a policy-maker to identify—through ge-
ographical mapping of the data—where interventions, such as reducing the sources of 
pollution, or improving access to green spaces, should be targeted most urgently. 

4. Discussion 
Constructing large-scale, longitudinal, individual-level environment exposure vari-

ables poses a series of challenges, which we divide into a) general data challenges and b) 
measurement challenges. General data challenges include difficulties around the availa-
bility and comparability of historic data. Availability and comparability challenges can 
range from differences in quality, spatial resolution, precision, completion, and classifica-
tion, while measurement challenges consist of fundamental questions touching upon def-
inition, classification and operationalisation issues. 

To address these, we selected datasets for which comparable alternative datasets are 
available globally and which are consistent throughout the years (see Table 3). Using data 
from the earliest available dataset in the years where otherwise no data is available consti-
tutes a feasible alternative for datasets that show little temporal variation, such as the en-
trance points of parks (i.e., OS Open Greenspace). To provide an illustration of the compa-
rability challenges, the OS AddressBase Premium data has been available since 2004; how-
ever, a consistent address classification has existed only since 2013. This means that while 
spatial information exists prior to 2013, the identification of residential or non-domestic 
functions will need to be inferred through the use of alternative classifications such as the 
Valuation Office Agency’s Primary Description and Special Category (Scat) Codes. This 
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introduces comparability issues as the inferred classifications are not identical to the existing 
land-use classes. 

Table 3. Overview of available datasets by year. 

Dataset 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 
OS MasterMap           
OS Highways (OS ITN) ( ) ( ) ( )        
OS Urban Paths           
OS AddressBase Prem.           
OS POI           
OS Open Greenspace           
USGS Landsat 8           
EPC           
DEFRA (LA modelling)       ( ) ( ) ( ) ( ) ( ) 
Trafficmaster           
NaPTAN           
‘ ’: dataset is available, ‘( )’: only dataset in brackets available, and ‘ ’: dataset is not available. 

Furthermore, we trialled variables from the food environment domain, i.e., exposure 
to fast-food in conjunction with data from the BiB longitudinal cohort survey. Specifically, 
we looked at the association between fast-food exposure and childhood obesity. For this, we 
first applied our outlined method and calculated the exposure variables for all the residen-
tial addresses and all the school addresses in Bradford, as well as journeys between the two. 
We then geo-referenced the BiB participants’ address information as well as the school ad-
dress information and linked these to their respective UPRNs. These UPRNs were then used 
to link the environmental exposure information to the BiB participants in a safe data envi-
ronment. Our analysis of the exposure around the home showed that increasing spatial pre-
cision in the quantification of the exposure to FFOs does not lead to differences in the asso-
ciations with childhood obesity, which challenges the previous findings reporting associa-
tions between these two [74]. This analysis highlighted a series of measurement challenges. 
For example, there is little agreement as to what constitutes a fast-food outlet and differences 
in the definitions likely explain the heterogeneity in the reported associations [37]. In addi-
tion, a variety of potential spatial and non-spatial confounders which were not captured by 
our exposure measurements might be at play and would have to be controlled for when 
utilising environmental exposure variables. In the context of fast-food exposure, these could 
include, among others, a genetic predisposition, behavioural differences, financial situa-
tions, or level of deprivation. Each of these might also be expressed as a spatio-temporal 
urban self-selection process. For example, while obesity has been linked to economic depri-
vation, the density of fast-food outlets within reach of a home address seems not to be the 
main driving factor [75], which highlights the importance of controlling for such confound-
ers when utilising spatial information, and it indeed points to the importance of measuring 
the proximity by street distance (rather than an average across an area, or ‘as the crow flies’). 

The strength of our approach is—besides capturing the exposure at a spatial resolu-
tion at which it is perceived—its generalisability, which is applicable across the globe and 
to any type of environmental exposure through time. For example, future studies that 
wish to apply the proposed methodology in international contexts may consider the in-
clusion of additional variables relevant to the respective local environmental conditions, 
e.g., the surface temperature information derived from satellite imagery for areas affected 
by more extreme climates. The method enables not only investigations into the associa-
tions of exposure types and health outcomes but it provides the opportunity for causal 
inference research designs. An example of such a research design currently being under-
taken by our researchers is to utilise involuntary house move information to investigate 
the causal effect of air pollution on respiratory diseases using the Connected Bradford 
database. Opportunities for causal inference research designs not only exist within the 
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presented Connected Bradford database but for any longitudinal cohort survey. We have 
identified a series of longitudinal cohort surveys in the UK, i.e., the National Child Devel-
opment Study (NCDS), 1970 British Cohort Study (BCS70), UK Household Longitudinal 
Study (UKHLS), British Household Panel Survey (BHPS), Millennium Cohort Study 
(MCS) and Next Step (previously known as the Longitudinal Study of Young People in 
England (LSYPE)) (see Table 4), which can adopt our approach by linking a participant’s 
address to their UPRNs (subject to the necessary approvals) and subsequently to their 
environmental exposure without compromising their identity. Such nationwide longitu-
dinal cohort data provides an untapped potential in identifying the causal links between 
the built environment and health outcomes. 

Table 4. Overview of sweeps of alternative British longitudinal cohort surveys. 

Dataset 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 
NCDS           
BCS70           
UKHLS           
BHPS           
MCS           
Next Steps (LSYPE)           
‘ ’: dataset is available, and ‘ ’: dataset is not available. 

5. Conclusions 
This paper outlined the theoretical and technical foundation of Connected Bradford’s 

environmental exposure indicators. The dataset constitutes a unique information source 
providing high-resolution geospatial information on the exposure to and within the built 
environment for the entire population of Bradford. Our street and building-level infor-
mation have been captured at a scale that enables the formulation of guidelines and spatial 
planning policies for the modification of the built environment—a critical gap in the cur-
rent knowledge. This effort will enable pivotal research into the relationship and causal 
links between the built environment and health, informing planning and policy-making. 
Moreover, it has the potential to serve as a template for nationwide replication. The recent 
WHO priorities for urban health report [1] emphasised the importance of building city-level 
evidence on urban environments and health outcomes in order to obtain “a clearer picture 
of the association between urban exposures and health across the life course”. We have 
proposed here a method for doing so that overcomes some fundamental challenges of 
capturing precise, meaningful data at a scale that can improve the quality of evidence for 
research in this urgent policy domain. 
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