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Abstract: Parabens and bisphenol A are synthetic compounds found in many everyday objects,
including bottles, food containers, personal care products, cosmetics and medicines. These substances
may penetrate the environment and living organisms, on which they have a negative impact. Till
now, numerous studies have described parabens and BPA in humans, but knowledge about terrestrial
wild mammals’ exposure to these compounds is very limited. Therefore, during this study, the most
common concentration levels of BPA and parabens were selected (such as methyl paraben—MeP,
ethyl paraben—EtP, propyl paraben—PrP and butyl paraben—BuP) and analyzed in guano samples
collected in summer (nursery) colonies of greater mouse-eared bats (Myotis myotis) using liquid
chromatography with the tandem mass spectrometry (LC-MS-MS) method. MeP has been found in
all guano samples and its median concentration levels amounted to 39.6 ng/g. Other parabens were
present in smaller number of samples (from 5% for BuP to 62.5% for EtP) and in lower concentrations.
Median concentration levels of these substances achieved 0.95 ng/g, 1.45 ng/g and 15.56 ng/g for EtP,
PrP and BuP, respectively. BPA concentration levels did not exceed the method quantification limit
(5 ng/g dw) in any sample. The present study has shown that wild bats are exposed to parabens and
BPA, and guano samples are a suitable matrix for studies on wild animal exposure to these substances.

Keywords: wild animals; environmental pollution; endocrine disruptors; toxicology

1. Introduction

Currently, environmental pollution with organic compounds remains on the increase.
Among these substances, bisphenol A (BPA) and parabens are of great importance [1,2].
BPA—chemical name 2,2-Bis(4-hydroxyphenyl)propane—is a substance used in production of
plastics including polycarbonates and epoxy resins, which in turn is utilized in a wide range
of branches of industry [2,3]. The popularity of BPA is because items containing this substance
are light, resistant to damage and resilient [4]. It is not without significance that the synthesis
of BPA is relatively easy and cheap [2,4]. Therefore, BPA is present in various everyday issues,
such as bottles, electronic elements, furniture, food containers and many others [2–4].

In turn, parabens are a group of the esters of p-hydroxybenzoic acid and differ from
each other by the type of substituent, which may be an alkyl chain or an aromatic ring [1].
Properties of parabens depend on the type of substituent in a molecule, but generally this group
of components is characterized by fungistatic, anti-yest and anti-mold activities, as well as
antibacterial properties [5,6]. These characteristics of parabens cause their widespread usage as
preservatives in cosmetics, personal care products, drugs and food [1]. The presence of parabens
has been described in shampoo, lipsticks, food packaging, baby wipes and many others, and
the most used parabens are compounds with short-chain substituents, such as methyl paraben
(MeP), ethyl paraben (EtP), propyl paraben (PrP) and butyl paraben (BuP) [1,5,6].
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BPA and parabens, penetrating the body, bind to estrogen receptors and first of all
cause disturbances in endocrine system [1,2]. Therefore, these substances are included in the
group of compounds called endocrine disruptors. Both BPA and parabens may penetrate
to the natural environment [6,7]. The presence of these substances has been described
in the surface and tap water, soil, air, house dust and plants around the world [1,2,8–10].
Moreover, BPA and parabens penetrate the human and animal organisms, mainly through
the gastrointestinal tract, but also through respiratory system, transdermal absorption and
in utero through placenta [1,2,4]. Till now, BPA and parabens have been described mainly in
the blood serum and urine [1,2,11–13]. Apart from these “classic” matrices, their presence
has also been found in hair, nail, breast milk, semen and various tissues [1,2,4,14–17].

Endocrine disruptors can impair the functions of many internal organs. Previous
studies have reported that BPA adversely affects the nervous system, endocrine glands,
immune cells, male and female reproductive organs, heart and many other organs and
internal systems [2,4,18]. It is also known that high exposure to BPA results in higher risk of
diabetes, obesity, hypertension, cancers and neurodegenerative processes [2,19–21]. In turn,
for many years, parabens were considered substances that had no negative impact on living
organisms [1]. However, latest studies have shown that they have cytotoxic and genotoxic
effects and negatively impact on the nervous, reproductive and endocrine systems, as
well as immune reactions [1,5,22,23]. Moreover, some studies have described correlations
between parabens and obesity, developmental disorders and neoplasms [22,24].

Contrary to humans, animal exposure to BPA and parabens polluting the environment
is much less known. Regarding domestic animals, parabens have been found in the urine
of dogs, cats and cows [25,26], raw cow’s milk [27] and canine fur [28]. More is known
about the exposure of domestic animals to bisphenol A, the presence of which has been
reported in the blood serum and urine of dogs and cats [29–31], canine fur [32], fresh pork
meat [33] and cow’s milk [27].

Even less is known about the exposure of wild animals to BPA and parabens. Previous
studies have reported the presence of BPA in wild water animals including mussels, fish,
prawns and mollusks, as well as sea birds and seals, but knowledge about wild mammal
exposure to BPA is rather scanty and fragmentary [34–37]. Parabens have also been
described mainly in water animals—fish, birds and mammals [38–42]. Only single previous
reports describe parabens in terrestrial birds and mammals [42].

Such a limited number of studies on wild mammals may be related to the fact that it is
virtually impossible to collect samples of blood, urine or fur without capturing or killing
the animal. The only matrix that can be taken from a wild animal for toxicology studies
without significantly interfering with its life are feces/guano samples. The utility of this
matrix is also supported by the fact that previous studies have confirmed that both BPA
and parabens are excreted from organisms through the digestive tract [43,44].

On the other hand, among terrestrial mammals, bats play an important role in tox-
icological studies. Bats are an extremely heterogenous group of mammals consisting of
above 1400 species living on all continents except Antarctica [45]. Bats are particularly
vulnerable to the impact of factors changing their natural habitats, among which one of
the most important is anthropogenic pollutions of the environment [46]. For this reason,
bats are considered to be one of the best bioindicators of quality environment, including
anthropogenic environmental pollution [46–48]. The high sensitivity of bats to environmen-
tal pollution is related to their biology, namely, their relatively long lifespan (even more
than 30 years) and high metabolic rates resulting in high food intake, as well as frequent
establishment of colonies near human habitation [49,50]. Unfortunately, despite the legal
protection of most species, the number of bat populations is constantly decreasing [45], and
one of the reasons for this is environmental pollution.

Taking these facts into account, the purpose of this study is to assess the exposure
of the greater mouse-eared bat (Myotis myotis)—one of the most popular bat species of
Poland [51] to bisphenol A and the most common parabens, such as MeP, EtP, PrP, BuP through
guano samples analysis. According to the best knowledge of authors, it is the first study in



Int. J. Environ. Res. Public Health 2023, 20, 1928 3 of 17

which guano samples are used to evaluate the wild terrestrial mammal exposure to BPA and
parabens, as well as the first ever study biomonitoring parabens in wild terrestrial mammals.

2. Materials and Methods
2.1. Reagents

The analytical reagents used in this study such as formic acid and ammonium acetate
were purchased from Panreac (Barcelona, Spain). C18 disperser sorbent was provided by
Scharlab (Barcelona, Spain). HPLC-grade methanol, and water were purchased from Romil
(Barcelona, Spain). Paraben and BPA standards (≥99.0%) were purchased from Sigma-Aldrich
(Steinheim, Germany). The internal standards (ISs) BPA-d14 and PrP-13C6 were supplied by
Cambridge Isotope Laboratories (Tewksbury, MA, USA). Individual stock standard solutions
of 1000 mg/L and working solutions (by dilution of the former) were prepared in methanol.

2.2. Sample Collection

Four summer (nursery) colonies of greater mouse-eared bats (Myotis myotis) located in
various parts of Poland were included into the study. The localization and characteristics
of colonies are presented on Figure 1. The choice of bat colonies was not accidental. The
colonies included into the study are some of the largest colonies of a greater mouse-eared
bat in Poland. They are located in various environments and in various parts of Poland:
colony no. 1 is located in a small village, which is placed relatively close to the most
industrialized region in Poland (Upper Silesia); colony no 2 is located in a small village
in agricultural land without industry; colony no 3 is located in a medium-sized town
with a chemical industry and colony no 4 is located in a small town without industry.
Such different localization of bat colonies allowed to better understand, what factors may
influence of bat exposure to parabens and BPA.
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Figure 1. Location and characteristics of bat colonies included into the study.

Guano samples were collected in August–September 2021. To collect samples, flat glass
containers were put for 48 h on the floor of the places with bat colonies. After these time
containers were removed and samples were transferred to glass jars and frozen at −20 ◦C
until further analysis. Forty guano samples (ten samples from each colony) collected from
different parts of rooms, where bat colonies live, were included into the present study.
During collection of samples, special emphasis was placed on not stressing and scaring
the bats. Because the sampling procedure was completely non-invasive, according to Act
for the Protection of Animals for Scientific or Educational Purposes of 15 January 2015
(Official Gazette 2015, No. 266), applicable in the Republic of Poland, consent of bioethical
committee to conduct the present study was not required.
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2.3. Sample Treatment

Samples were lyophilized and homogenized. An aliquot of 1.0 g of sample was fortified
with 100 µL of a methanol solution of the ISs (250 ng/mL) in 12 mL glass tubes. The sample
procedure involves the extraction of the analytes by ultrasonic solvent extraction, using 7 mL
of methanol (0.5% v/v, formic acid) as extraction solvent for 5 min and centrifuged for 5 min
(4050× g). The extraction procedure was repeated three times and the supernatants were
combined. Given the complexity of the selected biological sample and of the extract obtained
in the first stage of ultrasonic solvent extraction (USE), the cleaning process was intended
to remove any interference from the extract. For this approach, a cleaning process using
dispersive adsorbents (d-SPE) based on the QuEChERs technique (Quick, Easy, Cheap, Effec-
tive, Rugged and Safe) was used. This procedure consisted in shaking vigorously for 2 min
the combined extracts from USE with 0.3 g of C18 sorbent and then centrifuged at 4050× g
for 5 min. Finally, the supernatant was evaporated to dryness, reconstituted in 0.25 mL of
a mixture methanol–water (50:50 v/v) and filtered through a 0.22 µm nylon filter prior to
injection into the liquid chromatography tandem mass spectrometry (LC-MS/MS) instru-
ment (Agilent, Santa Clara, CA, USA). Chromatographic conditions were those previously
reported by Martín et al. [52]. Instrument settings and analytical determination parameters
are summarized in the Supplementary Material (Table S1).

2.4. Method Validation, Quality Assurance and Quality Control

The analytical features (linearity, sensitivity and accuracy (trueness and precision)) of
the method are presented in Table 1.

Table 1. Linearity, method quantification limit, precision and recovery of parabens and BPA in guano matrix.

Compound Linearity MDL MQL RSD Rec
R2 (ng/g dw) (ng/g dw) (%) (%)

MeP 0.998 0.02 0.05 12.1 98.6
EtP 0.998 0.02 0.05 11.2 108.1
PrP 0.999 0.02 0.05 14.2 107.2
BuP 0.998 0.02 0.05 9.5 118.8
BPA 0.997 2.00 5.00 35.9 139.3

MDL: Method detection limit MQL: Method quantification limit; RSD: Relative Standard Deviation; Rec: Recovery.

A matrix-matched calibration curve method was used to overcome the matrix effect.
For that, fortified commercial guano samples were prepared containing the analytes at eight
different concentration levels in the range from method quantitation limit (MQL) to 100 ng/g
dw. Note that the commercial guano samples used for matrix-matched calibration were
simultaneously analyzed and their signals were subtracted to spiked sample extract signals.
BPA and parabens (except MeP) were not detected in the commercial guano samples.

Method detection limits (MDLs) and method quantification limits (MQLs) were calcu-
lated as the concentrations of each compound corresponding to a signal-to-noise ratio of
3:1 and 10:1, respectively, using guano spiked samples at low concentration levels.

Accuracy (trueness and precision) of the method was assessed using commercial
guano samples spiked at 25 ng/g dw. Accuracy was evaluated by a recovery control over
the whole procedure, which included extraction from the matrix, d-SPE and concentration
step. The precision is expressed through the relative standard deviation (%, RSD) of
measurements on different days.

To guarantee the quality assurance of results, a protocol involving the use of control
spiked samples (fortified commercial guano samples at 50 ng/g dw), solvent (methanol:water
50:50 v/v) injections, standards containing a mixture of the target compounds (12.5 ng/mL)
and procedural blanks (processed in the same way as the samples) were included into each
analytical batch (5 samples).
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2.5. Statistical Analysis

The statistical analysis of the differences in concentration levels of substances studied
between particular bat colonies was made up with GraphPad Prism version 9.2.0 (GraphPad
Software, San Diego, CA USA) and a Kruskal–Wallis test was used. The differences were
considered statistically significant at p < 0.05.

3. Results

During the present investigation, parabens were present in guano samples collected
in all bat colonies (Table 2).

Among parabens, MeP was a substance that was quantified in all samples ana-
lyzed in concentration levels. Its levels fluctuated from 14.00 ng/g dry weight (dw.)
to 142.00 ng/g dw. The second most common paraben was EtP, which had concentration
levels higher than MQL, was observed in 62.5% of guano samples, and its concentration
levels fluctuated from <0.05 ng/g dw to 239 ng/g dw. In turn, PrP in concentration lev-
els above MQL was noted in 42.4% of samples with a range from <0.05 ng/g dw. to
229 ng/g dw. The least common paraben in the samples included into the study was BuP.
The concentration levels of this paraben higher than the method detection limit (MDL) were
noted only in two guano samples (5% of all samples). In one of them BuP concentration
levels achieved 3.61 ng/g dw, and in the second 27.5 ng/g dw.

Contrary to parabens, BPA concentration levels in the vast majority of samples did not
exceed MDL. Only in one sample the value was slightly higher but did not exceed MQL
(Tables 2 and 3).

During the present study, clear differences in parabens concentration levels between
particular animals in one colony were noted. The most visible such differences were
noted in bat colony no. 1 (Table 2). Moreover, statistically significant differences in MeP
concentration levels were noted between colonies. The highest mean concentration of this
paraben was found in colony no. 3, where this value was statistically significantly higher
than values noted in colonies no. 1 and no. 4 (Table 4). Differences in concentration levels
of other parabens between colonies were not statistically significant (Table 4).

Moreover, differences in the frequency of occurrence of EtP, PrP and BuP in concentra-
tions higher than MQL were noted between colonies. The highest frequency was noted in
colony no. 1, and the lowest in colony no. 4 (Table 4).

Table 2. Concentration levels (ng/g dw) of parabens and bisphenol A in bat guano samples.

Bat Colony
No.

Sample
No.

Concentration (ng/g)

MeP EtP PrP BuP BPA

1

1 31.1 0.68 0.41 <MDL <MDL
2 25.5 0.65 0.30 <MDL <MDL
3 27.8 0.75 0.48 <MDL <MDL
4 20.7 0.23 0.08 <MDL <MDL
5 52.7 35.3 18.6 <MDL <MDL
6 25.1 1.48 0.81 <MDL <MDL
7 25.6 1.89 2.09 <MDL <MDL
8 56.1 55.3 46.4 3.61 <MDL
9 142 239 229 27.5 <MQL
10 26.9 3.48 4.38 <MDL <MDL

2

1 33.6 2.27 2.59 <MDL <MDL
2 50.3 1.73 1.51 <MDL <MDL
3 60.4 2.38 1.59 <MDL <MDL
4 43.8 0.95 0.99 <MDL <MDL
5 35.9 0.60 0.42 <MDL <MDL
6 40.6 0.41 <MQL <MDL <MDL
7 38.6 0.55 <MQL <MDL <MDL
8 35.9 0.46 <MQL <MDL <MDL
9 37.2 0.67 <MQL <MDL <MDL
10 43.7 <MQL <MQL <MDL <MDL
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Table 2. Cont.

Bat Colony
No.

Sample
No.

Concentration (ng/g)

MeP EtP PrP BuP BPA

3

1 70.2 1.60 1.33 <MDL <MDL
2 72.7 0.92 <MQL <MDL <MDL
3 46.6 <MQL <MQL <MDL <MDL
4 80.3 0.84 <MQL <MDL <MDL
5 73.5 1.07 <MQL <MDL <MDL
6 96.4 <MQL <MQL <MDL <MDL
7 86.4 <MQL <MQL <MDL <MDL
8 100 1.28 1.34 <MDL <MDL
9 71.2 <MQL <MQL <MDL <MDL
10 119 0.70 <MQL <MDL <MDL

4

1 50.8 <MQL <MQL <MDL <MDL
2 24.4 <MQL <MQL <MDL <MDL
3 14.0 <MQL <MQL <MDL <MDL
4 22.6 <MQL <MQL <MDL <MDL
5 22.9 <MQL <MQL <MDL <MDL
6 24.2 <MQL <MQL <MDL <MDL
7 24.4 <MQL <MQL <MDL <MDL
8 25.4 <MQL <MQL <MDL <MDL
9 45.3 <MQL <MQL <MDL <MDL
10 24.3 <MQL <MQL <MDL <MDL

Compound acronyms: MeP: methylparaben; EtP: ethylparaben; PrP: Propylparaben; BuP: butylparaben;
BPA: bisphenol A; <MQL: Below Method Quantification Limit EtP = 0.05 ng/g dw; PrP = 0.05 ng/g dw.;
BPA = 5 ng/g dw.); <MDL: Below Method Detection Limit (BuP = 0.02 ng/g dw.; BPA = 2.00 ng/g dw.).

Table 3. (ng/g dw.) and frequency of detection of parabens and bisphenol A in the analyzed guano
samples (n = 40)—cumulative data.

Compound Range (ng/g) Arithmetic Mean Geometric Mean Median Frequency of Detection above MQL

MeP 14.00–142.00 48.70 41.81 39.6 100
EtP <0.05–239 14.21 1.61 0.95 62.5
PrP <0.05–229 18.37 1.78 1.45 42.5
BuP <0.02–27.5 15.56 9.96 15.56 5
BPA <2.00–<5.00 - - - 0

Compound acronyms: MeP: methylparaben; EtP: ethylparaben; PrP: Propylparaben; BuP: butylparaben;
BPA: bisphenol A; MQL—Method Quantification Limit.

Table 4. Concentration values (ng/g dw.) and frequency of detection of parabens and bisphenol A in
the analyzed guano samples taking into account the place of collection.

Bat Colony Number 1 2 3 4

MeP

Number of samples, in which levels were higher than MQL 10 10 10 10
Minimum 20.70 33.60 46.60 14.00
Maximum 142 60.40 119 50.80

Mean ± SD 43.35 ± 36.7 A 42.00 ± 8.13 81.63 ± 19.97 AB 27.83 ± 11.21 B

EtP

Number of samples in which levels were higher than MQL 10 9 6 0
Minimum 0.23 0.41 0.7 -
Maximum 239 1.97 1.6 -

Mean ± SD 33.88 ± 74.51 1.11 ± 0.79 1.07 ± 0.33 -

PrP

Number of samples in which levels were higher than MQL 10 5 2 0
Minimum 0.08 0.42 1.33 -
Maximum 229 2.17 1.34 -

Mean ± SD 30.26 ± 71.34 1.42 ± 0.8 1335 ± 0.01 -

BuP

Number of samples in which levels were higher than MDL 2 0 0 0
Minimum 3.61 - - -
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Table 4. Cont.

Bat Colony Number 1 2 3 4

Maximum 27.5 - - -
Mean ± SD 15.56 ± 16.89 - - -

BPA

Number of samples in which levels were higher than MQL 0 0 0 0
Minimum - - - -
Maximum - - - -

Mean ± SD - - - -

Statistically significant differences A—between bat colony 1 and 3 (p = 0.0084), B—between bat colony 3 and 4
(p < 0.0001). Compound acronyms: MeP: methylparaben; EtP: ethylparaben; PrP: Propylparaben; BuP: butyl-
paraben; BPA: bisphenol A; MQL—Method Quantification Limit; MDL—Method Detection Limit.

4. Discussion

The results obtained during the present investigation have shown that parabens are
present in guano samples, which indicates the exposure of wild bats to these substances.
MeP, a paraben with the shortest functional group, has been noted in the highest concentra-
tion levels in all samples studied. In turn, other parabens studied in this investigation have
been found less frequently and in lower concentration levels. Generally, it is in agreement
with the previous investigations, which have reported that MeP is the paraben that is most
commonly and abundantly found in the natural environment, including water, soil and
air [8,53,54], as well as in humans [55,56] and wild marine animals [39–42].

Moreover, in the present study differences in parabens concentration levels in guano
samples between particular bat colonies were clearly visible. It is in agreement with
previous observations concerning both human [5,6,8,54] and wild animal exposure (Table 5)
to parabens, which unequivocally confirm that paraben levels noted in the living organisms
depend to a large extent on the place, where the study is performed.

It relates to the human origin pollution of the natural environment, human population
density, industrialization, as well as the frequency of using cosmetics, personal care prod-
ucts and medicines by the inhabitants of a given area [1,5,6]. Moreover, clear differences
in parabens concentration levels in particular guano samples collected in the same colony
were also noted in the present study. This situation has been also observed in previous
studies on parabens levels in wild animals (Table 5) and in humans living in the same
area. For example, the levels of MeP in the human urine samples collected in Queensland
(Australia) ranged from 74.4 to 1180 ng/mL [55], and samples collected in Seville (Spain)
achieved from 68.3 to 14,187 ng/g [56]. The present results strongly confirm that local
factors may influence on the parabens levels in particular individuals and also in wild bats.

Table 5. Selected previous studies on paraben concentration levels in wild animals. Paraben concen-
tration levels are shown in ng/g (in solid matrices) or ng/mL (in liquid matrices).

Species Localization Matrix n
Concentration Levels Ref.

MeP EtP PrP BuP

Dolphin (various
species)

Gulf of Mexico, Florida
(USA)

liver 17 <41.1–865 n.d. <2.05–3.47 n.d.

[39]

blubber 17 n.a.–<8.21 n.d. n.d. n.d.

Pygmy sperm whale Atlantic ocean/Anciote
river

liver 3 <20.5–37.7 n.d. <4.10 n.d.
blubber 3 n.a. n.d. n.d. n.d.

Sea otter
California Coast (USA)

liver 25 n.a.–126 <4.1–11.8 <1.03–3.95 n.d.
kidney 10 n.a.–360 n.d. n.d. n.d.
brain 10 5.99–77.2 <1.03–3.26 n.d. n.d.

Washington Coast
(USA) liver 18 <20.5–358 n.d. n.d. <4.1–31.8

Northern sea otter Alaskan Coast (USA) liver 14 n.a.–686 <8.21–31.6 n.d. n.d.

Polar bear Alaska (USA) liver 10 <4.10–16.9 n.d. n.d. n.d.
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Table 5. Cont.

Species Localization Matrix n Concentration Levels Ref.

MeP EtP PrP BuP

Common dolphin Korean coastal waters

blubber 6 1.3–7.9

[40]

muscle 6 13–121
melon 6 4.8–12

stomach 6 44–118
liver 6 13–224

testis/
ovary 6 26–76

brain 5 4.2–50
uterus 2 37–74

Finless porpoises Korean coastal waters

blubber 6 6.4–21
muscle 6 12–88
melon 6 21–71

stomach 6 75–228
kidney 6 181–359

liver 6 235–569
testis/ovary 6 44.3–256

stomach
content 2 59–76

Fish (various species) Greater Pittsburgh
Area (USA) brain 58 n.d. n.d. n.d. n.d. [41]

Fish (various species Taihu Lake (China) muscle 199 88.1–1200 33.6–450 55.3–543 <LOQ–40.0 [57]

Fish and bivalves
(various species)

Atlantic ocean, pacific
Ocean, Mediterranean

Sea, Victoria lake
(Uganda)

body 64 0.8–32 n.d. n.d. n.d. [58]

Fish (various species) New York State (USA) muscle 50 n.a.−690 n.d. n.d. n.d.

[42]

Fish (various species) Florida (USA)

liver 6 <2.01–44.3 n.d. n.d. n.d.
muscle 6 n.a.–43.9 n.d. n.d. n.d.
kidney 1 18.8 n.d. n.d. n.d.

gill 1 71 n.d. n.d. n.d.
brain 1 735 n.d. n.d. n.d.

Black bear Michigan (USA) liver 2 33.5–58.2 n.d. n.d. n.d.
kidney 2 24.0–37.6 n.d. n.d. n.d.

Sea eagle Baltic Sea area liver 20 <8.01–657 n.d. n.d. n.d.

Albatrosses (various
species)

Sand Island, Midway
(USA)

liver 15 <8.01–23.4 n.d. n.d. n.d.
kidney 16 <8.01–18.2 n.d. n.d. n.d.
brain 12 <1.99–6.66 n.d. n.d. n.d.

fat 10 n.a. n.d. n.d. n.d.
muscle 12 <2.01–15.7 n.d. n.d. n.d.

eggs 13 n.a. n.d. n.d. n.d.

Bald eagle Michigan (USA)

liver 1 796 n.d. n.d. n.d.
plasma 15 <0.2–0.37 n.d. n.d. n.d.
kidney 1 580 n.d. n.d. n.d.
muscle 2 87.4–169 n.d. n.d. n.d.

Herring gull Michigan (USA) eggs 9 <1.99–14.0 n.d. n.d. n.d.
Common cormorant Michigan USA) eggs 4 n.a. n.d. n.d. n.d.

Loon Carteret County (USA) liver 10 <8.01–336 n.d. n.d. n.d.

Loon Maine and New
Hampshire (USA) eggs 15 <1.99–22.2 n.d. n.d. n.d.

Fish (various species) Yangtze river (China) plasma 36 11.6–39.5 0–10.5 0–6.97 0–b1.46 [38]

Fish (various species) Yangtze river (China) bile 35 8.17–21.9 0–31.6 2.19–112 0–4.42 [59]

Fish (various species) Spain/various rivers muscle 59 n.d.–84.69 n.d.–0.82 n.d.–7.43 [60]

Striped Catfish Colombia/various
rivers muscle 20 <20–32.0 [61]
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Table 5. Cont.

Species Localization Matrix n Concentration Levels Ref.

MeP EtP PrP BuP

Clams

Antarctica

body 7 <2.1–5.8 n.d. n.d.–5.3 n.d.

[62]
Sea urchin body 1 5.7 n.d. n.d. n.d.

Fish (Emerald
rockcod)

body 7 5.1–26.9 n.d. n.d n.d.
liver 1 2.4 n.d. n.d. n.d.

MeP: methylparaben; EtP: ethylparaben; PrP: Propylparaben; BuP: butylparaben; n.a.—not available; n.d.—not
detected; Ref.—references.

The comparison of present results with previous investigations is difficult, because in
spite of the fact that paraben levels have been determined in some species of wild animals
(Table 5), till now, according to the best knowledge of authors, feces/guano samples
were not used at all in this type of research. Moreover, the majority of previous studies
concern marine animals (fish, birds or mammals), and only very limited observations have
been conducted on terrestrial animals (Table 5). In addition previous studies have been
conducted in in completely different parts of the world than the present research.

For these reasons, it is difficult to relate the results concerning MeP concentration
levels in bat guano to data from previous literature (Table 5). On the other hand, levels of
other parabens observed in bat guano samples are higher than those noted in the majority
of previous studies on wild animals, in which these parabens were usually not detected
(Table 5). Due to such a high correlation between the study site and exposure to parabens,
it seems advisable to analyze the levels of parabens in Poland to better understand the
obtained results. It should be pointed out that knowledge about this issue is relatively
limited in comparison to studies in other parts of the world. It is known that parabens are
present in surface water in Poland. In lake water, MeP concentration level amounted from
1.7 to even 1578 ng/L [63]. The levels of other parabens are clearly lower and achieved
values 0.8–27.5 ng/L for EtP, 0.5–93.9 ng/L for PrP and 0.6–22.6 ng/L for BuP [63]. Much
higher levels of parabens have been observed in wastewater, where limits of MeP, EtP,
PrP and BuP achieved 2235.0–40,898.6 ng/L, 791.2–8169.4 ng/L, 542.2–7803.3 ng/L and
68.8–710.7 ng/L, respectively [64]. Moreover, parabens have also been found in the fur of
dogs living in Poland. In this case mean concentration levels of MeP, EtP and PrP achieved
176 ng/g, 48.4 ng/g and 79.8 ng/g, respectively [28].

Despite other matrices used in previous studies and the comparative difficulties
resulting from this, it can be concluded that the parabens levels in wild bat guano in
Poland are generally lower than the levels of these compounds in humans and domestic
animals [28,65–67]. This is logical due to the fact that humans create these environmental
pollutants and are exposed to them through the use of cosmetics, personal care products,
medicines and food containers [1,5,6]. In turn, companion animals, which live in close
proximity to humans, have direct contact with the owners and are exposed to similar factors
as humans [28]. Unlike humans and domestic animals, bats that are exposed to parabens,
which can be found in the environment such as in water, air or food, tend to have a lower
degree of exposure, even if their summer colonies are located near human populations.

In addition to parabens, the presence of BPA in bat guano samples was also found in
the present study. However, BPA concentration levels were lower than MQL in all samples
investigated. To date, only one study has described bat exposure to BPA. In that study,
BPA in the median concentration level of 397 ng/g was described in bat carcasses collected
in the northeastern United States [68]. Therefore, BPA concentration levels noted in the
present study are clearly lower. Other previous studies (more numerous than studies on
parabens) have described BPA in various aquatic animals including fish, mussels, prawns,
mollusks, as well as seabirds [34–37].

Similarly to parabens, the degree of exposure to BPA depends greatly on where the
study is conducted [2–4]. Therefore, to evaluate the degree of bat exposure noted in the
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present study, it is important to show results of earlier research on BPA in the living
organisms and environment in Poland (Table 6).

Table 6. Previous studies on BPA concentration levels (in ng/g for solid matrices and ng/mL in
liquid matrices) in living organisms and environment in Poland.

Matrix n BPA Concentration References

Human hair
42 26.1–1498.6 [34]
20 3.6–52.9 [69]

Human blood serum

155 0.11–112.1 [70]
245 0.05–4.017 [71]
40 4.4–55.1 [72]
52 4.3–55.3 [73]

Human breast milk 20 0.09–11.56 [74]
Human urine 250 0.05–53.1 [75]

Seal blood serum 108 <LOQ–81.58 [76]
Seal milk 44 0.1–406 [76]
Seal fur 17 <LOQ–137.2 [34]

Seal feces 60 20.06–75,659.78 [36]
Dog fur 30 <MDL–436 [32]

Pig muscles 5 13.77–49.86 [33]
Water bird whole body 10 19.7–440.1 [77]

Water bird feather 26 29.3–512.4 [34]
Water bird intestine 52 6.6–1176.2 [78]

Water bird blood 53 <0.07–30.6 [78]
Water bird lungs 53 <2.0–331.7 [78]

Water bird guano 7 41.6–2701.9 [77]
30 41.85–1666.54 [36]

Sea fish muscles 12 25.4–798.4 [77]

Sea mussels
10 6.8–197.2 [77]

148 Nd–273.6 [79]

Sea zooplankton 5 105.7–769.2 [77]

Sea water
120 <LOQ–0.2779 [80]
71 0.00377–0.82271 [36]

Inland surface water 105 NQ–0.095 [63]
Sea sediment 72 0.08–26.39 [36]
Beach sand 71 0.83–15.80 [36]

LOQ—limit of quantification; MDL—method detection limit; NQ—not quantified.

It should be pointed out that feces/guano samples have extremely rarely been used
to analyze the exposure to BPA. Such studies have been conducted on feces collected
from Baltic seals, but these animals were not wild, but kept in the Marine Station in Hel
(Poland) belonging to the Institute of Oceanography of the University of Gdansk [36].
These studies have shown the presence of BPA in the seals’ feces with a concentration
ranging from 20.06 ng/g to 75,659.78 ng/g, i.e., much higher than results obtained in the
present study [36]. A similar situation occurred in the case of wild seabird guano, where
the concentration of BPA ranged from 41.85 ng/g to 2701.9 ng/g [36,77]. Comparing the
previous data with the current results, it can be concluded that BPA concentration levels in
bat guano are significantly lower than levels of this substance both in the feces samples,
as well as other matrices collected from humans, domestic and aquatic animal species in
Poland (Table 6).

It should be underlined that the unequivocal explanation of the sources of parabens
and BPA in bat guano, as well as the differences in paraben concentration levels between
particular bat colonies, is rather difficult without comprehensive studies of the environment,
where the colonies are located for the presence of parabens and BPA in the surface water,



Int. J. Environ. Res. Public Health 2023, 20, 1928 11 of 17

air, soil, and insects, which are the food of bats. It can only be supposed that bat exposure
to parabens and BPA is mainly connected with contamination of surface water and bat
food with these substances. Such conclusion is supported by the fact that the presence
of parabens and BPA in the surface water in various parts of the world is commonly
known [2,8–10,63]. Regarding the food of bats, the matter is less clear. The greater mouse-
eared bats are insectivorous and till now, the exposure of land insects to parabens and
BPA has not been studied. On the other hand, the common presence of these substances
in the soil and water [8–10,63,81–84] strongly suggests that also the body of beetles—the
main food of the greater mouse-eared bats—may contain these substances. The third major
source of bat exposure to parabens and BPA is likely to be the air. Many previous studies
have reported parabens and BPA in the indoor air and house dust, what is connected
with the presence of these substances in the building materials, paints, varnishes, epoxy
resins, furniture and other items used by the inhabitants [85–88]. The fact that bat colonies
included into the study are located in buildings used by people strongly suggests that the
indoor air and dust may be the important source of bat exposure to parabens and BPA.

Differences in paraben levels noted between particular bat colonies may result both
from local factors including disparities in the buildings, where colonies are located (different
construction and finishing materials, different purpose of the building), but confirmation
of this thesis requires thorough environmental studies. Differences may also result from
general environmental pollution and industrialization. The highest MeP levels have been
noted in the colony no. 3 located in Pulawy, which is the largest town among the towns
included in the study. Additionally, the chemical industry company is located in Pulawy.
In turn, higher levels of EtP, PrP and BuP (although without statistical significance) have
been noted in colony no. 1, located in Brenna. Brenna is a rather small village, but it is
located relatively close to Upper Silesia—the most industrialized region in Poland and
Ostrawa—which is a large industrial center in the Czech Republic. This fact seems to affect
the bat exposure to parabens, because lowest parabens concentration levels have been
noted in colony no. 2 in Sliwice—a small village situated on agricultural land and colony
no. 4 in Opole Lubelskie—a small town without industrial centers.

The question arises whether fecal samples are a suitable matrix for studying the ex-
posure of wild animals to parabens and BPA. Previous experimental studies have shown
that after oral and transdermal administration of parabens, not only a large percentage
of these substances (about 4%) was excreted through the gastrointestinal tract, but the
majority of parabens was extracted through urine [44]. However, the present results, which
have shown the presence of parabens in bat guano samples, strongly suggest that this
matrix is suitable to perform paraben biomonitoring in wild animals. The situation is
slightly different with BPA. In spite of the fact that BPA common in the natural environ-
ment and living organisms (Table 6), the concentration levels of this substance noted in
present study were relatively low and did not exceed the level of MQL. On the other hand,
previous studies on farm animals, including cows, pigs and chickens [89,90], as well as
the aforementioned studies on seals and seabirds [36,77], have proven that feces/guano
samples can be used to assess animal exposure to BPA. Moreover, it is known that BPA
levels in feces reflect the degree of exposure to BPA administered by both the oral route
and (to a lesser extent) transdermal adsorption [43]. Therefore, the results obtained in the
present study in which BPA concentration levels were significantly lower than those noted
in previous studies (Table 6) may conversely indicate a relatively low exposure of wild
bats in Poland to BPA, and on the other hand—a reduced level of BPA in guano resulting
from the metabolism of this substance in bats. Due to the fact that till now there is no
information about BPA metabolism in bats, the exact elucidation of this issue requires
further comprehensive studies.

The next important question that arose during the current research concerns the possi-
bility to determine of correlations between the content of parabens and BPA in the guano
and the dose of these compounds to which bats are exposed. Based on the data obtained in
the present study, this is difficult, because such determinations require thorough studies of
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the content of studied compounds in individual elements of the environment. Moreover,
metabolism of endocrine disruptors and thus the main route of their elimination from the
body may be different in different species of mammals [2,22,91,92]. As mentioned above,
parabens and BPA metabolism in bats has not been studied so far. Therefore, determination
of doses of these substances to which bats are exposed may be only hypothetical and
based on experimental studies conducted on other animal species. However, considering
such experimental studies [43,44,93,94], it can be assumed that doses of parabens and
BPA to which bats are exposed may be from a few to even several dozen times higher
than the concentration of these substances in the guano samples. In the light of previous
experimental studies conducted on other mammal species, such doses of parabens and
BPA, due to their endocrine disrupting properties may, influence on the reproductive,
nervous and endocrine systems, as well as on the immune cells [95–99]. However, it must
be remembered that natural environment significantly differs from experimental conditions.
In the laboratory, the experiment status health of animals is rather good, and their age
and condition is usually equalized. Moreover, usually only one toxic factor is studied. In
the case of animals in the natural environment, their condition and health may be very
different, and often numerous toxic substances with synergistic action may affect the animal
organism. Therefore, although studies of the toxicity of parabens and BPA in bats have
not been performed so far, it can be assumed that in this species the exposure to endocrine
disruptors has a similar effect to that noted in experimental investigations.

However, despite the necessity of further research in order to explain the aforemen-
tioned doubts, guano/feces samples seem to be a good alternative to “classic” matrices
in studies on the exposure of wild animals to parabens and BPA. Feces sample collection,
contrary to collection of urine and blood samples, is completely stress-free and does not
involve the need to capture the animal, which is particularly important in the case of
protected animals.

5. Conclusions

The present study has described for the first time the presence of parabens and BPA
in guano samples of the wild bats, which indicates the exposure of wild animals to these
substances, confirming previous observations regarding the widespread distribution of
parabens and BPA in the natural environment. In the present study, the highest con-
centration levels were noted in the case of MeP, which is an agreement with previous
investigations that describe this substance as the most common paraben in the surface
water, air and living organisms. On the other hand, the levels BPA noted in the present
study were clearly lower than those noted in the feces of seals and guano of seabirds, which
may suggest that bats are less exposed to BPA than aquatic species. In the light of present
study, it can be assumed that parabens and BPA, as endocrine disruptors, may influence on
the status of wild bat health.

Current research also confirms the usefulness of feces/guano samples (as an easily
obtained material) for studies on the degree of exposure of wild animals to parabens and
BPA, which is of particular importance in protected animals. However, due to intraspecies
differences between parabens and BPA metabolism and toxicity and body distribution,
further research is needed to evaluate all aspects connected with wild bat exposure to
endocrine disruptors which pollute the environment, as well as the use of feces/guano
samples for this type of research.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijerph20031928/s1. Table S1. MRM conditions used for LC-MS/MS of
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river and lake water as a function of season. Anal. Lett. 2016, 11, 1734–1747. [CrossRef]

55. Heffernan, A.L.; Baduel, C.; Toms, L.M.; Calafat, A.M.; Ye, X.; Hobson, P.; Broomhall, S.; Mueller, J.F. Use of pooled samples
to assess human exposure to parabens, benzophenone-3 and triclosan in Queensland, Australia. Environ. Int. 2015, 85, 77–83.
[CrossRef]

56. Martín, J.; Santos, J.L.; Aparicio, I.; Alonso, E. Exposure assessment to parabens, bisphenol A and perfluoroalkyl compounds in
children, women and men by hair analysis. Sci. Total Environ. 2019, 695, 133864. [CrossRef]

57. Wang, N.; Hu, X.; Lu, S.; Ma, S.; Kang, L.; Liao, S.; Yu, Y. Interrelationship of anthropogenic activity and parabens in fish from
Taihu Lake during 2009–2017. Environ. Pollut. 2019, 252 Pt B, 1002–1009. [CrossRef]

58. Chiesa, L.M.; Pavlovic, R.; Panseri, S.; Arioli, F. Evaluation of parabens and their metabolites in fish and fish products: A
comprehensive analytical approach using LC-HRMS. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2018, 35,
2400–2413. [CrossRef]

59. Yao, L.; Lv, Y.Z.; Zhang, L.J.; Liu, W.R.; Zhao, J.L.; Liu, Y.S.; Zhang, Q.Q.; Ying, G.G. Determination of 24 personal care products in
fish bile using hybrid solvent precipitation and dispersive solid phase extraction cleanup with ultrahigh performance liquid
chromatography-tandem mass spectrometry and gas chromatography-mass spectrometry. J. Chromatogr. A 2018, 1551, 29–40.
[CrossRef]

60. Pico, Y.; Belenguer, V.; Corcellas, C.; Diaz-Cruz, M.S.; Eljarrat, E.; Farré, M.; Gago-Ferrero, P.; Huerta, B.; Navarro-Ortega, A.;
Petrovic, M.; et al. Contaminants of emerging concern in freshwater fish from four Spanish Rivers. Sci. Total Environ. 2019, 659,
1186–1198. [CrossRef]

61. Cacua-Ortiz, S.M.; Aguirre, N.J.; Peñuela, G.A. Methyl paraben and carbamazepine in water and striped catfish (Pseudoplatys-
toma magdaleniatum) in the Cauca and Magdalena Rivers. Bull. Environ. Contam. Toxicol. 2020, 105, 819–826. [CrossRef]

62. Emnet, P.; Gaw, S.; Northcott, G.; Storey, B.; Graham, L. Personal care products and steroid hormones in the Antarctic coastal
environment associated with two Antarctic research stations, McMurdo Station and Scott Base. Environ. Res. 2015, 136, 331–342.
[CrossRef] [PubMed]
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