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Abstract: Environmental air pollution remains a major contributor to negative health outcomes and 

mortality, but the relationship between socially vulnerable populations and air pollution is not well 

understood. Although air pollution potentially affects everyone, the combination of underlying 

health, socioeconomic, and demographic factors exacerbate the impact for socially vulnerable 

population groups, and the United States Clean Air Act (CAA) describes an obligation to protect 

these populations. This paper seeks to understand how air pollution monitor placement strategies 

and policy may neglect social vulnerabilities and therefore potentially underestimate exposure 

burdens in vulnerable populations. Multivariate logistic regression models were used to assess the 

association between being in an ozone-monitored area or not on 15 vulnerability indicators. It was 

found that the odds of not being in an ozone-monitored area (not covered, outside) increased for 

the predictor mobile homes (OR = 4.831, 95% CI [2.500–9.338] and OR = 8.066, 95% CI [4.390–14.820] 

for the 10 and 20 km spatial units, respectively) and decreased for the predictor multiunit structures 

(OR = 0.281, 95% CI [0.281–0.548] and OR = 0.130, 95% CI [0.037, 0.457] for the 10 and 20 km spatial 

units, respectively) and the predictor speaks English “less than well” (OR = 0.521, 95% CI [0.292–

0.931] for 10 km). These results indicate that existing pollution sensor coverage may neglect areas 

with concentrations of highly vulnerable populations in mobile homes, and future monitoring 

placement policy decisions must work to address this imbalance. 
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1. Introduction 

Over seven million people die annually from the global problem of air pollution [1]. 

Ozone air pollution has both health and environmental effects and is of particular interest 

because it damages agriculture, harms respiratory functions, and contributes to climate 

change [2–6]. Higher concentrations of air pollutants occur in urban environments, driven 

primarily by the energy and transportation needs [5,7,8]. Field pollution 

monitors/sensors, required by the Environmental Protection Agency (EPA), are the 

primary method of measuring pollution for health advisories and pollutant reduction. 

Estimating ozone pollution is challenging as concentrations vary significantly in urban 

environments and fixed site monitoring is limited in predicting personal exposures [9]. 

Many sensor placement strategies do not consider population demographics (EPA, 

2021), and consequently, air pollution networks may produce inequities and 

disproportionate health burdens on vulnerable populations [10,11]. Unfortunately, this 

practice conflicts with the National Ambient Air Quality Standards (NAAQS) and the 

Clean Air Act, as its regulatory framework contains provisions for the protection of 

sensitive groups, leading to an “adequate margin of safety for the entire population” 

[12,13]. Similarly, Miranda et al. (2011) evaluated the intent of the CAA in representing 
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both advantaged and disadvantaged populations and found that race, age, and poverty 

demographics were significant indicators of increased pollution [14]. Consequently, low-

income, Black communities experienced higher ambient pollution levels. The study also 

concluded that the current US pollution monitoring networks leave large portions of the 

population without exposure representation (monitoring data) [14]. 

The integration of a pro-vulnerability policy in designing air pollution networks can 

provide a more comprehensive approach to addressing inequities [15]. Consequentially, 

socially vulnerability theory suggests that adverse circumstances do not affect population 

groups uniformly [16,17]. Vulnerabilities are defined as an inability to protect oneself from 

different types of harm [18,19]; vulnerability is less about resources and more about power 

or powerlessness. The place vulnerability theory suggests that vulnerable people live in 

vulnerable places [20–23]. Using a vulnerability index in conjunction with other effects, 

such as urban heat islands, Sabrin et al. (2020) was able to target and prioritize areas with 

enormous social challenges and ozone and PM exposure [24]. Similarly, Wright and Diab 

(2011) developed a vulnerability-to-risk prioritization framework to ascertain at-risk 

communities and reduce pollution exposure impacts [25]. For air pollution, focusing on 

vulnerable populations is a necessary approach to public health protection [17,26], but it 

is missing from current air pollution–monitoring policy. We use the vulnerability 

framework as a tool to identify vulnerable populations that are at an increased risk of air 

pollution exposure. 

In this paper, we investigate the associations and explore the measurement of the 

effect between areas of no data coverage (census tracts outside of sensor/monitor range) 

and the US Census vulnerability indicators in four themes from the Centers for Disease 

Control Agency for Toxic Substances and Disease Registry Social Vulnerability Index 

(CDC/ATSDR SVI): socioeconomic status, household characteristics, racial and ethnic 

minority status, and housing type/transportation. Consequently, the intent of this paper 

is to build knowledge about areas of no coverage and population social vulnerability 

characteristics, exploring whether the social vulnerability index (SVI) variables are 

significant effect modifiers of the relationship between no coverage and ozone air 

pollution. 

2. Materials and Methods 

Dallas–Fort Worth (DFW) was selected as the study area, comprising 10 counties, 

1292 census tracts, and a population of over 7 million people [27]. It contains 17 regulatory 

ozone monitors, and the (9-county, not including Wise County) region is currently 

designated in noncompliance with the NAAQS for ozone [28]. This means that the region 

exceeds the regulatory standard of 70 parts per billion (2015), as the fourth-highest daily 

maximum 8-hour concentration, averaged across 3 consecutive years [28,29]. 

Continuous data to visualize the spatial patterns in Dallas–Fort Worth (DFW) are 

from the SVI created by the CDC/ATSDR at the census tract level [27]. The SVI uses the 

American Community Survey [30] 5-year data (2014–2018) and ranks each tract on 15 

social factors grouped into 4 themes: socioeconomic status, household composition, 

race/ethnicity/language, and housing/transportation. The SVI also contains dichotomized 

data identifying the 90th-percentile or the most vulnerable populations within each social 

factor. The decision-making structure for the evaluation of populations covered or not 

covered by air pollution sensors in DFW from Northeim, Oppong, and Tiwari (2021) is 

applied to the spatial scales (service radii) of 4, 6, 10, and 20 km in the DFW region [31,32]. 

First, we use the independent samples t-test (IBM SPSS Statistics 27) to evaluate the 

difference in population social vulnerability continuous variables inside and outside each 

spatial scale. Outside the spatial scale is deemed “uncovered, outside coverage”, and 

conversely, inside the spatial scale is “covered, inside coverage”. The goal is to assess 

whether the social vulnerability characteristics of those within the coverage distance are 

different from those outside. Next, a geospatial analysis and visualization of the SVI 

throughout DFW is performed using the standard deviation classification scheme on ESRI 
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ArcMap 10.7.1/ArcGIS Pro 2020. This method reduces bias without adding more classes 

and made a consistent comparison to the independent samples t-test. We use choropleth 

maps for spatial pattern visualization. 

Then, to examine the risk measurement of the effect, we perform a multinomial 

logistic regression for classification and predictive analysis for the 10 and 20 km spatial 

scales because they most closely represent actual sensor coverage in DFW. As in 

Northeim, Tiwari, and Oppong (2021), Voronoi catchment areas and proximal allocation 

heuristic modeling are used to estimate and categorize the regions and populations served 

by the existing monitoring network [31]. Finally, using the CDC/ATSDR SVI 

dichotomized data, we examine all 15 variables to identify the 90th percentile and 

calculate the odds ratio as a measure of association between the exposure and the outcome 

[33,34]. These 90th-percentile values are the census tracts in the top 10% and are identified 

as the most vulnerable populations [35]. 

3. Results 

Independent samples t-test were performed. Table 1 shows that at the 4 km spatial 

scale, the covered population was not statistically different from the uncovered 

population (p > 0.05). At the 6 km spatial scale, the covered and uncovered populations 

were significantly different (p < 0.05). The uncovered area had a higher presence of mobile 

homes, while per capita income, speaks English “less than well”, multiunit structures, and 

crowding were higher in the covered area. At the 10 km spatial scale, the covered and 

uncovered population means were also significantly different. The uncovered area had a 

higher presence of people living below poverty, no high school diploma, aged 65 or older, 

aged 17 or younger, older than age 5 with a disability, single-parent households, and 

mobile homes (Table 1). Similarly, per capita income and multiunit structures were higher 

in the covered area. Finally, at the 20 km spatial scale, the covered and uncovered 

population means were significantly different. The uncovered area had a higher presence 

of people living below poverty, no high school diploma, aged 65 or older, aged 17 or 

younger, older than age 5 with a disability, single-parent households, and mobile homes. 

Following a similar trend, per capita income, multiunit structures, and no vehicle were 

higher in the covered area. 

We show each map with its corresponding statistical findings in Figures 1–4. The 

rings show the coverage distance (4, 6, 10, and 20 km service radius) for each of the SVI 

indicators, and the centroids represent the existing monitoring facility. For example, 

Figure 1A. highlights the SVI variable of below poverty using five colored classifications. 

The mean of the independent samples t-test is significant and greater for the not covered 

or outside of the service radii for 10 and 20 km. Areas that are covered tend to have a 

lower percent below poverty. Meanwhile, areas that are not covered tend to have higher 

levels of people living below poverty. Large portions of DFW display orange and yellow 

census tracts with values lower than the standard deviation for below poverty (indicating 

less severity), while clusters in southeast Dallas, central and eastern Tarrant County, and 

outliers in all other counties show values greater than the standard deviation for below 

poverty (indicating more severity). This variable is the opposite of the per capita income 

variable (Figure 1C.). 

Table 1. Independent samples t-test on SVI variables by spatial scale. 

Scale 
Not Covered = Outside Spatial Scale Covered = Inside Spatial Scale 

Variable Description Variable Description 

4 km – not significant – not significant 

6 km E_MOBILE ** Mobile homes E_PCI * Per capita income 
   E_LIMENG * Speaks English “less than well” 
   E_MUNIT * Multiunit structures 
   E_CROWD * Crowding 
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10 km E_POV * Below Poverty E_PCI ** Per capita income 
 E_NOHSDP * No High School Diploma E_MUNIT ** Multiunit structures 
 E_AGE65 ** Aged 65 or Older   

 E_AGE17 * Aged 17 or Younger   

 E_DISABL ** Older than Age 5 with a Disability   

 E_SNGPNT * Single-Parent Households   

 E_MOBILE ** Mobile Homes   

20 km E_POV * Below Poverty E_PCI ** Per capita income 
 E_NOHSDP ** No High School Diploma E_MUNIT ** Multiunit structures 
 E_AGE65 ** Aged 65 or Older E_NOVEH * No Vehicle 
 E_AGE17 ** Aged 17 or Younger   

 E_DISABL ** Older than Age 5 with a Disability   

 E_SNGPNT * Single-Parent Households   

 E_MOBILE ** Mobile Homes   

Note: * p < 0.05, ** p < 0.001. Dallas–Fort Worth group statistics at all spatial scales. Note: All effect 

sizes were small. 

 

Figure 1. Dallas—Fort Worth: SD classification scheme of social variables for socioeconomic status. 

The CDC/ATSDR SVI variables include Figures; (A) below poverty; (B) unemployment; (C) per 

capita income; (D) no high school diploma. 
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Figure 2. Dallas—Fort Worth: SD classification scheme of social variables for minority status, 

language and transportation. The CDC/ATSDR SVI variables include Figures; (A) minority status; 

(B) speaks English, “less than well”; (C) no vehicle. 

 

Figure 3. Dallas—Fort Worth: SD classification scheme of social variables for household 

composition and disability. The CDC/ATSDR SVI variables include Figures; (A) aged 65 or older; 

(B) age 17 or younger; (C) older than 5 with a disability; (D) single parent households. 
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Figure 4. Dallas—Fort Worth: SD classification scheme of social variables for housing type. The 

CDC/ATSDR SVI variables include Figures; (A) multi-unit structures; (B) mobile homes; (C) 

crowding; (D) group quarters.  

Table 2 displays the multivariate logistic regression Exp(B) odds ratios between the 

SVI 90th-percentile variables and the not-covered (outside) modality. The logit was 

performed in IBM SPSS version 27. 

Table 2. Multinomial logistic regression of 90th-percentile SVI variables by spatial scale for not 

covered, on 15 individual variables (N = 1293 census tracts). 

Variable Description  Odds Ratio (95% CI) 

–  10 km 20 km 

F_POV Below Poverty 0.563 (0.288–1.101) 0.619 (0.142–2.694) 

F_UNEMP Unemployment 0.847 (0.485–1.481) 0.585 (0.169–2.024) 

F_PCI Per Capita Income 1.753 (0.913–3.3640) 1.138 (0.377–3.437) 

F_NOHSDP No High School Diploma 0.958 (0.541–1.697) 1.715 (0.638–4.613) 

F_AGE65 Aged 65 or Older 0.955 (0.576–1.583) 0.841 (0.304–2.326) 

F_AGE17 Aged 17 or Younger 1.018 (0.679–1.528) 2.177 (1.159–4.092) 

F_DISABL Older than Age 5 with a Disability 0.717 (0.302–1.700) 2.189 (0.498–9.628) 

F_SNGPNT Single-Parent Households 1.886 (1.242–2.863) 2.094 (1.066–4.117) 

F_MINRTY Minority Status 0.939 (0.524–1.682) 0.493 (0.142–1.711) 

F_LIMENG Speaks English “Less Than Well” 0.521 (0.292–0.931) 0.762 (0.259–2.242) 

F_MUNIT Multiunit Structures 0.392 (0.281–0.548) 0.130 (0.037–0.457) 

F_MOBILE Mobile Homes 4.831 (2.500–9.338) 8.066 (4.390–14.820) 

F_CROWD Crowding 0.972 (0.609–1.549) 0.453 (0.174–1.176) 

F_NOVEH No Vehicle 1.467 (0.885–2.432) 0.367 (0.091–1.479) 

F_GROUPQ Group Quarters 0.723 (0.432–1.209) 2.593 (1.224–5.493) 

Note: The reference modality is covered (2).  



Int. J. Environ. Res. Public Health 2023, 20, 1807 7 of 10 
 

 

4. Discussion 

As in Cutter et al. (2003), a social vulnerability index was created for this study to 

examine the spatial patterns of natural hazards at a county level in the US to understand 

more about at-risk populations. By identifying the locations of vulnerable populations 

and their proximity to air pollution sensors, we assert that such approaches reveal 

potential disproportionate exposure to ozone pollution and probably underestimate the 

exposure of the vulnerable. In addition, current ozone alerts may be irrelevant to those 

who live in such uncovered areas. Previous indicators of vulnerability in the literature 

vary depending on the method and the design of the study, although evidence continues 

to support the concept that air pollution networks designed without a vulnerability 

framework in mind introduce inherent biases and errors [36]. 

Current research suggests that underserved or vulnerable populations are more 

likely to experience premature death and serious health effects from exposure to pollution 

[1,37,38]. Simoni et al. (2015) reported that frailty and pre-existing diseases increase 

susceptibility to mortality caused by air pollution [39]. Thus, the elderly with chronic 

exposure to air pollution had higher incidences of chronic obstructive pulmonary disease 

(COPD), bronchitis, asthma, and emphysema [39]. Vulnerable populations are at risk of 

air pollution because large-scale disasters likely affect the health of these fragile 

communities [40,41]. Identifying factors and mapping social vulnerability are important 

pieces in environmental management [42].  

Our t-test results show that the characteristics of the populations inside the spatial 

scale of coverage were statistically different from the populations outside the coverage 

areas. Clearly, socially vulnerable populations are less likely to be covered within the 

current sensor network. Out of the 15 SVI variables, only minority status, unemployment, 

and group quarters were not significantly different at the 6, 8, and 20 km scales. At the 4 

km spatial scale, there is no significant difference in any of the variables. The maps 

support this result (Figures 1–4). 

Initially, we expected to find minority status to be a significant predictor of no 

coverage, but that is not the case (Figure 2A). Upon close inspection, Figure 2A shows that 

much of the population with minority status is concentrated in the Tarrant and Dallas 

counties. A small portion of the southeastern Dallas and southern Tarrant counties are not 

within the service radius (4, 6, 10, and 20 km), but owing to the vast number of 

nonminority clusters in the urban fringe, the difference was not significant. 

The Census defines urbanized areas to have populations greater than 50,000 and 

urban clusters of at least 2500 but not greater than 50,000 [43]. Reporting social 

characteristics by census tract enables us to visualize urban or rural status, allowing for a 

deeper examination or interpretation of spatial patterns because the community 

structures are vastly different [44]. An interpretation of the delineation of geographical 

areas for SVI in DFW shows a potential pattern of urban versus rural place characteristics. 

For example, significant disparities already exist within the rural population owing to 

access to healthcare and a lack of resources [45,46], and in this case, there is spatial 

evidence, where urban air pollution influences could complicate rural social disparities. 

We expected to find social variables that predicted pollution data coverage but found 

the place characteristics of the vulnerable to be more important. A clear example is Wise 

County, which is the only county in DFW without an ozone air pollution monitor/sensor. 

In fact, the county has 100% no coverage until the service radius reaches 10 km (coverage 

less than 5%) and 20 km (coverage less than 25%) (Figures 1–4) [31]. Wise County is in the 

northwest corner of DFW and most likely has the largest ozone exposures [47,48]. 

In the logit regression analysis, the variable that predicted no coverage was mobile 

homes (OR = 4.831, 95% CI [2.500–9.338] and OR = 8.066, 95% CI [4.390–14.820] for the 10 

and 20 km spatial units, respectively). Moreover, this may indicate that established 

neighborhoods or select parts of DFW are more likely to have coverage, whereas newer 

areas, outside the population center, are less likely to have coverage. Consequentially, this 

raises questions whether the current placement policy adequately accommodates 



Int. J. Environ. Res. Public Health 2023, 20, 1807 8 of 10 
 

 

population increases or new developments. The variables that predicted coverage most 

frequently were multiunit structures (no coverage, OR = 0.281, 95% CI [0.281–0.548] and 

OR = 0.130, 95% CI [0.037, 0.457] for the 10 and 20 km spatial units, respectively) and 

speaks English “less than well” (no coverage, OR = 0.521, 95% CI [0.292–0.931] for 10 km). 

The speaks English “less than well” clustering in Figure 4A. shows much of the population 

in the urban center, covered by air pollution centers. The multiunit structures result is 

consistent with expectations in that most of the multiunit structures are in highly 

populated environments (including downtown), and this is true in DFW (Figure 4A.). We 

conclude that there are spatial variations in coverage characteristics that leave some 

highly vulnerable mobile home populations at high risk to levels of unknown air 

pollution. 

5. Conclusions 

We investigated the relationship between socially vulnerable populations and ozone 

air pollution–monitoring coverage in DFW. Areas with a higher concentration of mobile 

homes were a significant effect modifier of the relationship between no coverage and 

ozone air pollution and were more likely to have no coverage. Air pollution–monitoring 

policy needs to take proper measures to address this and other potential imbalances to 

ensure reliable and equitable air quality–forecasting predictions for all places, including 

those occupied by mobile homes. In fact, because of the well-known impact of air 

pollution on human health, especially for vulnerable populations, social vulnerability 

characteristics should be explicitly considered in future air pollution–monitoring sensor 

placement. Our results provide insights for optimizing sensor placements in the future to 

ensure equitable pollutant control for all. 
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