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Abstract: The outbreak of an epidemic disease may cause a large number of infections and a slightly
higher death rate. In response to epidemic disease, both patient transfer and relief distribution
are significant to reduce corresponding damage. This study proposes a two-stage multi-objective
stochastic model (TMS-PTRD) considering pre-pandemic preparedness measures and post-pandemic
relief operations. The proposed model considers the following four objectives: the total number of
untreated infected patients, the total transfer time, the overall cost, and the equity distribution of
relief supplies. Before an outbreak, the locations of temporary relief distribution centers (TRDCs) and
the inventory levels of established TRDCs should be determined. After an outbreak, the locations
of temporary hospitals (THs), the locations of designated hospitals (DHs), the transfer plans for
patients, and the relief distribution should be determined. To solve the TMS-PTRD model, we address
an improved preference-inspired co-evolutionary algorithm named the PICEA-g-AKNN algorithm,
which is embedded with a novel similarity distance and three different tailored evolutionary strategies.
A real-world case study of Hunan of China and 18 test instances are randomly generated to evaluate
the TMS-PTRD model. The finding shows that the PICEA-g-AKNN algorithm is better than some
most widely used multi-objective algorithms.

Keywords: patient transfer; relief distribution; two-stage stochastic model; multi-objective optimization

1. Introduction

From ancient times to the present, epidemics have been threatening the lives of people.
Typical outbreaks in recent years include coronavirus disease 2019 (COVID-19) [1], H1N1
influenza [2], and Ebola [3,4]. In 2020, 80,000 people were infected with COVID-19 in
Wuhan, the most severely affected city in China. To control the spread of the COVID-19
disease, the urban area of Wuhan was effectively blocked; that is, people and vehicles could
not contact the outside world without permission.

In a lockdown area, emergency management must transfer infected patients to hospi-
tals and provide relief supplies to ensure infected patients receive timely medical treatment.
Because of the sudden outbreak of an epidemic, lockdown areas are often unable to access
relief supplies in time. Given the time required to replenish relief supplies and set up new
emergency facilities in affected areas, it is necessary to prepare relief supplies in advance to
deal with the early stages of an outbreak. In order to predict the number of infected patients
in the future, we can build a time-varying diffusion model. Although diffusion dynamics
models have been applied to many studies on emergency management, it is unrealistic to
predict with perfect accuracy an epidemic. Because the outbreak of an epidemic disease is
highly unpredictable, one of the most important goals is to fully consider the uncertainty
of the disaster.

Int. J. Environ. Res. Public Health 2023, 20, 1765. https://doi.org/10.3390/ijerph20031765 https://www.mdpi.com/journal/ijerph

https://doi.org/10.3390/ijerph20031765
https://doi.org/10.3390/ijerph20031765
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com
https://orcid.org/0000-0002-1869-320X
https://doi.org/10.3390/ijerph20031765
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com/article/10.3390/ijerph20031765?type=check_update&version=2


Int. J. Environ. Res. Public Health 2023, 20, 1765 2 of 25

For most disasters, providing relief supplies to injured people or infected patients
is not enough. Transferring affected people from disaster areas to hospitals ensures they
receive better treatment. During an epidemic outbreak, transferring patients is of great
significance for maintaining the stability of affected areas and avoiding further outbreaks
of infectious diseases. Although there is much research on relief supplies allocation, the
interaction between patient transfer and relief distribution has not been well addressed
in epidemic outbreaks. In this study, we not only transfer patients to hospitals but also
provide these patients with relief supplies.

Because various stakeholders are concerned about emergency management, one of
the major challenges of emergency management is to ensure fair emergency relief for all
affected people. On the other hand, the unfair distribution of relief supplies may cause
panic and psychological stress among the affected people. Furthermore, if the emergency
operations only transfer patients without providing relief supplies, it may lead to the
deterioration of infected people after transfer.

This paper focuses on emergency management during an epidemic outbreak to en-
sure that epidemic patients are treated and relief supplies are provided, considering the
uncertainties and the control measures. In this study, coordination between patient transfer
and relief distribution considers pre-pandemic preparedness measures and post-pandemic
relief operations. At the same time, emergency relief plans provide reasonable decision
support to decision makers in terms of equity, efficiency, and economics. The contribu-
tions of our study are as follows: first, the TMS-PTRD model is proposed to address the
locations of TRDCs and the inventory levels of relief supplies in the preparedness state,
and to address the locations of THs, patient transfer, and relief distribution for epidemic
disasters; second, a multi-objective programming model for patient transfer and relief
distribution problems is proposed to balance the efficiency, the fairness, and the economy
of the emergency management system; finally, an improved multi-objective algorithm is
proposed for large-scale TMS-PTRD problems, and the insights of emergency management
are obtained.

The rest of this article is arranged as follows. The Section 2 reviews the literature
and analyzes the gaps in the existing research. The Section 3 introduces the problem
and constructs the TMS-PTRD model. The Section 4 designs an improved multi-objective
algorithm. The epidemic simulations and numerical experiments are carried out in the
Section 5. The last section expresses the conclusions and future research.

2. Literature Review

In order to reduce the damage caused by disasters, theoretical research and practical
applications of emergency management have attracted more attention in recent years.
Existing research can generally be divided into two categories: relief distribution and
patient transfer.

An important measure of emergency management is relief distribution to the affected
areas. Effective distribution of relief supplies (such as medicines, blood supplies, and
emergency supplies) is a huge challenge for emergency logistics [5]. Considering population
distribution and resource constraints, Duhamel et al. presented a location–allocation model
to seek optimal solutions for post-disaster operations [6]. Moreno et al. [7] developed a
multi-period, multi-commodity relief location-routing model and proposed a customized
heuristics model based on time, stage, and scenario. In this research, vehicle reuse was
considered to achieve coordination between different participants in emergency logistics.
Because of the transportation system caused by an earthquake, a multi-objective, multi-
period relief distribution model considering road repair was developed by Vahdani et al. [8].
Ghasemi et al. [9] considered several types of casualties and failure of emergency centers
in an earthquake. The total cost and satisfaction of relief materials were considered in the
disaster relief network. Elci et al. [10] considered a relief network problem to determine the
capacities and locations of emergency facilities in an uncertain post-disaster environment.
In general, emergency management consists of four main phases: mitigation, preparedness,
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response, and recovery [11]. Grass and Fischer [12] considered that two-stage programming
is suitable for some emergency management because some decisions must be made before
a disaster, and some decisions can only be made after the disaster. Ahmadi et al. [13]
proposed a two-stage humanitarian location-routing model that takes into account random
travel time to determine the locations of distribution centers and vehicle path planning. In
view of its outstanding performance of two-stage planning in emergency preparedness and
response, it has received more and more attention in recent years [14]. Vahdani et al. [15]
studied a humanitarian logistics model to provide effective relief distribution supplies
after an earthquake. In addition, in order to deal with the uncertain factors caused by the
disaster, a robust optimization method was used. Considering primary and secondary
disasters, Zhang et al. [16] proposed a multi-stage emergency logistics model to address the
relief allocation problem. Mansour et al. [17] considered humanitarian logistics regarding
pre-position and post-disaster. They presented a two-stage stochastic programming model
for the disaster relief problem under such uncertain disaster scenarios.

Another important operation of disaster relief is to transfer the affected patients, which
means transporting infected people from affected areas to shelters or hospitals [18,19]. Con-
sidering there is a large number of injured people in public emergencies, emergency man-
agers need to formulate strategies for transferring injured people [20,21]. Flores et al. [22]
presented a dynamic transfer model, in which affected people were classified. Goerigket [23]
proposed a bus transfer model to move affected people to shelters during a disaster.
Lim et al. [24] represented a capacity-constrained network model for the short-notice trans-
fer problem. A greedy heuristic model was improved to optimize maximizing total
weighted patient outflow. Shahparvari and Abbasi [25] developed an emergency man-
agement model to optimize transfer vehicle scheduling in unstable road scenarios after a
disaster. Shahparvari et al. [26] developed a short-notice bushfire transfer model to ensure
that the maximum number of critical patients can be safely transferred to shelters. As
difficult as the relief distribution, patient transfer needs to deal with multiple uncertainties
about the affected areas, time, and the scale of a disaster. Bayram and Yaman [27] studied
the patient transfer problem considering the uncertainty caused by the destruction of road
networks and shelters. Liang et al. [28] considered that transferring victims to shelters dur-
ing disasters can keep them safe. Considering the uncertainty in the demands of disasters,
they proposed a location and evacuation model based on minimizing total transfer time.

Because patient transfer and relief distribution are considered separately, a single emer-
gency operation has a poor result for emergency management [29]. At present, few articles
have considered the importance of combining patient transfer with relief distribution for
emergency management. Sabah et al. [30] proposed an integrated affected people transfer
and relief distribution model to optimize vehicle scheduling. However, the number of the
affected people and the relief demand were considered certain in this research. Generally,
accurate information is almost impossible to obtain in a disaster. Setiawan et al. [31] pro-
posed a series of humanitarian logistics models to deal with relief distribution and victim
transfer problems after a disaster. This research considered coordination among rescue
strategies but did not take into account uncertain parameters.

Emergency management should consider not only costs and benefits but also hu-
manitarian issues [32,33]. In addition, non-profit indicators reflect the humanistic care
of emergency management [34]. Fereiduni and Shahanaghi [35] presented an emergency
network to make optimal choices about location, allocation, and transfer simultaneously.
However, the study did not consider humanitarian issues because only the cost objective
was considered. Vahdani et al. [36] proposed an emergency location-routing problem to
optimize relief supplies delivery and patient transfer. In this study, a fuzzy credibility
theory was used to formulate the fuzzy demand of the patients. However, the study only
focuses on the setup cost for ELCs, transportation costs, and the fixed cost for vehicles.

Some researchers have taken into account the uncertainty parameters and humanitar-
ian issues in emergency management. Furthermore, a few studies have not obtained an
excellent Pareto solution or designed a suitable algorithm for large-scale cases. Considering
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the demand of different refugees, Wang et al. developed a location–allocation model to op-
timize total transfer distance, total cost, and total unmet resources. However, this research
converted multiple objectives into one objective using a weighting method and did not
obtain the actual Pareto solution [37]. Ghasemi et al. [38] developed a victim transfer and
relief distribution model to optimize three objectives: the untreated victims, the satisfac-
tion with emergency supplies, and the total cost. However, the research did not consider
transfer time, which is very important in emergency management. Mohammadi et al. [39]
proposed a multi-objective location–allocation model to optimize victim transfer and relief
distribution after a disaster. This study attempts to decide on setting up relief suppliers,
selecting locations of relief distribution centers and emergency centers, and transferring
injured people and distributing relief.

Based on this review, the conclusions of relevant studies can be drawn as follows:

(1) Many studies have considered victim transfer and relief distribution separately, but
few studies have considered the coordination between the two operations.

(2) Some studies of emergency management have considered humanitarian issues, but
few studies have been able to obtain a real Pareto optimal solution set.

(3) No study has considered the characteristics of epidemic diseases and the control
measures in a multi-objective victim transfer and relief distribution problem.

Therefore, we propose a two-stage multi-objective stochastic model (TMS-PTRD)
considering patient transfer and relief distribution to deal with an epidemic disease. In
addition, emergency management is a typical NP-hard problem involving the location of
emergency facilities, personnel transfer, material distribution, and vehicle routing. So, it
poses a great challenge for multi-objective optimization algorithms. Exact algorithms have
been shown to solve small-scale emergency management problems. However, evolutionary
algorithms such as NSGA-II [40] and MOPSO [41] have been usually used to solve large-
scale multi-objective emergency management problems. When solving problems with more
than three objectives, some classical multi-objective optimization algorithms are likely to
have poor performance [42]. In order to solve the problem with more objectives, researchers
have developed some many-objective algorithms such as MOEA/D [43] and HypE [44].
The principle of the above many-objective algorithms is based on the relationship between
multiple objectives rather than the dominant relationship between solutions. A novel con-
cept of decision-maker preference co-evolution has been designed for the many-objective
problem (excess of three objectives) [45]. Based on the concept, a preference-inspired co-
evolutionary algorithm (PICEA-g) was developed by Wang et al. [46,47]. Previous studies
have shown that one heuristic algorithm is usually not suitable for different models [7].
Hence, it is important to design a tailored algorithm for the TMS-PTRD model proposed in
this paper.

3. Problem Definition and Formulation

The TMS-PTRD model addresses patient transfer and relief distribution during an
outbreak. We consider the problem (see Figure 1) as an integrated emergency network,
consisting of TRDCs, fever clinics, THs, and DHs. In the preparation phase, the locations of
the TRDCs and the inventory levels of relief supplies are determined. After the outbreak,
emergency decisions include the locations of the THs, the locations of the DHs, the relief
distribution for the fever clinics, and the transfer plan for different types of infected people.

In Figure 1, black arrows represent relief distribution. The blue arrows show the
flows of infected people, and the red arrows show the flows of critical patients. The main
assumptions are as follows:

(1) Each community has a fever clinic, in which the general physicians in the community
diagnose illnesses and transfer confirmed cases to the appropriate hospitals;

(2) The confirmed cases consisting of the infected people and critical patients can be
estimated by the modified SEIR model;
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(3) We assume that untransferred confirmed cases do not affect the forecast results,
because only a small number of confirmed cases are not transferred in time and will
be preferentially transferred in the next period;

(4) The infected people need to be transferred to the THs and the critical patients need to
be transferred to the DHs;

(5) The fever clinics provide a set of medical and ancillary supplies (such as an N95 mask
and an additional protective suit) for each infected patient and critical patient;

(6) Each established TRDC can distribute relief supplies to each fever clinic using a
vehicle with a homogeneous capacity.

Note that the planning horizon is a period of time (such as a week) at the beginning of
the epidemic, after which the affected areas can get external relief supplies and build more
emergency facilities. How measures are implemented goes beyond our research scope.
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Figure 1. Patient transfer and relief distribution network in lockdown area of epidemic.

3.1. Time-Varying Epidemic Prediction Model

The relief demand depends on the number of confirmed cases during an epidemic.
When making emergency management plans, it is necessary to assess the development
of the epidemic in advance. The SEIR models were applicable to epidemic diffusion
research [48,49]. Considering epidemic outbreaks are usually short-lived, we assume
that the population in the affected areas will not change significantly. In the SEIR model,
we assume that the recovered individuals receive lifelong immunity. Hence, ordinary
differential equations can be used to describe the epidemic spread as follows.

dS(t)/dt = −rβI(t)S(t)
dE(t)/dt = rβI(t)S(t)−ωE(t)
dI(t)/dt = ωE(t)− γI(t)
dR(t)/dt = γI(t)

(1)

where N is the total population of the infected areas, S(t) is the number of susceptible
people in an outbreak, E(t) is the number of exposed people in contact with the infection,
I(t) is the number of infected people with all symptoms, R(t) is the number of recovered
people, r is the exposure ratio, β is the transmission probability, ω is the morbidity of
patients in the latent period, and γ is the recovery rate.

For many diseases such as SARS and COVID-19, patients in the latent period can
also spread to susceptible people. In practice, transferring confirmed cases to hospitals
can control these patients from spreading the disease. Considering the interventions of
epidemic diseases, the susceptible people in isolation (SI), the exposed people in isolation
(EI), and the critical patients (H) in urgent need of hospitalization are added to the modified



Int. J. Environ. Res. Public Health 2023, 20, 1765 6 of 25

model. Based on the above point of view, we use a modified SEIR model to evaluate the
epidemic [50]. 

dS(t)/dt = −[rβ + rq(1− β)]S(t)[I(t) + θE(t)] + λSq(t)
dE(t)/dt = rβ(1− q)S(t)[I(t) + θE(t)]−ωE(t)
dI(t)/dt = ωE(t)− (δI + κ + γI)I(t)
dSI(t)/dt = rq(1− β)S(t)[I(t) + θE(t)]− λSI(t)
dEI(t)/dt = rβqS(t)[I(t) + θE(t)]− δqEI(t)
dH(t)/dt = δI I(t) + δqE(t) − (κ + γH)H(t)
dR(t)/dt = γI I(t) + γH H(t)

(2)

where q is the isolation ratio, θ is the transmission coefficient in the latent period, λ is
the rate of release from quarantine, κ is the death rate, δq is the morbidity of quarantined
patients in the latent period, δI is the probability that infected people will be isolated for
treatment, γH is the recovery rate of hospitalized patients, and γI is the recovery rate of
infected people.

Given the initial values and related parameters, the modified SEIR model can be used
to assess the time series data of patients. We define the relief supplies required by each
patient in a day as θ. The infected people need to be transferred to the THs for isolation
and treatment, and the critical patients need to be transferred to the DHs for specialty
treatment [50]. Before reaching the hospitals, relief supplies must be provided to the
infected people and critical patients to ensure that the disease is not spread during transfer.
So, the demand for relief supplies is formulated as:

d = θ[I(t) + H(t)] (3)

3.2. Notation

Sets and Index:

S: Set of scenarios, s ∈ S;
T: Set of planning periods, t ∈ T;
I: Set of TRDCs, i ∈ I;
C: Set of fever clinics, c ∈ C;
J: Set of THs, j ∈ J;
H: Set of DHs, h ∈ H.

Model Parameters:

Ps: Probability of scenario s;

tp
nm: Transportation time from the node n to the node m;

Fci: Fixed cost of the TRDC i;
Ftj: Fixed cost of the TH j;
Fdh: Fixed cost of the DH h;

c1: Holding cost of a relief supply;

c2: Penalty cost of a unit of relief supply;

CM
cj : Transfer cost for the infected people from the fever clinic c to the TH j;

CS
ch: Transfer cost for a critical patient from the fever clinic c to the DT h;

CVR
ic : Transport fees for one vehicle from the TRDC i to the fever clinic c;

CRi: Maximum capacity of the TRDC i;
Cav: Capacity of a vehicle to carry the relief supplies;

Cmj: Maximum capacity of the TH j;
Csh: Maximum capacity of the DH h;
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Ĩ pts
c : Number of infected people at the fever clinic c in scenario s;

C̃pts
c : Number of critical patients at the fever clinic c in scenario s;

φS: Priority of satisfying the critical patient;

α: Confidence levels of the chance-constrained model;

Mbig: A large positive number.

Decision Variables:

Yi: 1, if the TRDC i is established, 0 else;
Zs

j : 1, if the TH j is established under scenario s, 0 else;

Ks
h: 1, if the designated hospital h be established under scenario s, 0 else;

VNi: Amount of inventory at the TRDC i;
Xts

ic : Number of relief supplies transported from the TRDC i to the fever clinic c in scenario s.

3.3. Model Formulation

Equation (4) minimizes the number of patients not transferred at different periods.
Equation (5) minimizes the transfer time. Equation (6) minimizes the fixed cost of the
TRDCs and pre-stored relief supplies in the first phase. In the second phase, the objective
function minimizes the fixed THs, the fixed DHs, the cost of distributing relief supplies,
and the cost of transferring patients. Equation (7) minimizes the dissatisfaction with relief
service. Equations (8)–(10) indicate only one emergency facility can be established at each
point. Equation (11) describes that only established TRDCs can be applied. Equation (12)
describes the amount of unused relief supply. Equation (13) describes the carrying capacity
of the transportation vehicles. Equation (14) describes the capacity of established THs.
Equation (15) describes the capacity of the designated hospitals. Equation (16) defines
the unserved confirmed patients in the fever clinics. Equation (17) defines a satisfaction
function for the fever clinics. Equations (18) and (19) describe the binary variables and the
non-negative variables.

min f1 = ∑
s∈S

∑
t∈T

∑
c∈C

Ps ·

 t

∑
τ=1

Ĩ pτs
c −

t

∑
τ=1

∑
j∈J

PMτs
cj

+ φS

(
t

∑
τ=1

C̃pτs
c −

t

∑
τ=1

∑
h∈H

PSτs
ch

) (4)

min f2 = ∑
s∈S

Ps ·

∑
t∈T

∑
c∈C

∑
j∈J

tcjPMts
cj + φS ∑

t∈T
∑
c∈C

∑
h∈H

tchPSts
ch

 (5)

min f3 = ∑
i∈I

Fci ·Yi + ∑
i∈I

c1 ·VNi + ∑
s∈S

Ps ·
(

∑
j∈J

Ftj · Zs
j + ∑

h∈H
Fdh · Ks

h + ∑
t∈T

∑
i∈I

∑
c∈C

CVR
ic VRts

ic+ ∑
t∈T

∑
c∈C

∑
j∈J

CM
cj PMts

cj+

∑
t∈T

∑
c∈C

∑
h∈H

CS
chPSts

ch + ∑
i∈I

c2 ·UVNs
i

) (6)

min f4 = ∑
s∈S

∑
t∈T

∑
c∈C

Ps · ϕ
(
Uts

c
)

(7)

Yi ≤ 1, ∀i ∈ I (8)

Zs
j ≤ 1, ∀j ∈ J (9)

Ks
h ≤ 1, ∀h ∈ H (10)

VNi ≤ CRi ·Yi, ∀i ∈ I (11)

VNi − ∑
t∈T

∑
c∈C

Xts
ic ≤ UVNs

i , ∀i ∈ I, s ∈ S (12)

Xts
ic ≤ cav ·VRts

ic , ∀c ∈ C, i ∈ I, t ∈ T, s ∈ S (13)

∑
t∈T

∑
c∈C

PMts
cj ≤ CmjZs

j , ∀j ∈ J, s ∈ S (14)
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∑
t∈T

∑
c∈C

PSts
ch ≤ CshKs

h, ∀h ∈ H, s ∈ S (15)

Uts
c ≤ 1−

∑
i∈I

Xts
ic

Ĩ pts
c + C̃pts

c
, ∀c ∈ C, t ∈ T, s ∈ S (16)

ϕ
(
Uts

c
)
= e

−Uts
c

1−Uts
c , ∀c ∈ C, t ∈ T, s ∈ S (17)

Yi, Zs
j , Ks

h ∈ {0, 1}, ∀i ∈ I, j ∈ J, h ∈ H, s ∈ S (18)

VNi, Xts
ic , VRts

ic , UVNs
i , PMts

cj , PSts
ch ≥ 0&Integer, ∀c ∈ C, i ∈ I, j ∈ J, h ∈ H, t ∈ T, s ∈ S (19)

3.4. A Chance-Constrained Model for Patient Transfer and Relief Distribution

Considering the results predicted by the modified SEIR model will partially deviate
from the actual data, this may have stochastic characteristics in the two-stage patient trans-
fer and relief distribution problem. The stochastic model is provided with a predetermined
reliability level (α) by using chance constraints. So, we used the chance-constraint model to
define reliable sets as follows [51].

min
x∈X

fk(x) =
n

∑
j=1

c̃kjxj, k = 1, 2, ..., K (20)

Pr

{
N

∑
j=1

aijxj ≥ b̃i

}
≥ αi, i = 1, 2, ..., M (21)

x ∈ X (22)

where X is the deterministic feasible region, f(x) is the value of the minimized function, and
α is the confidence level of the chance-constrained optimization. According to the inverse
function theorem, the chance constraint is rewritten are as follows:

min
x∈X

fk(x) = E

(
N

∑
j=1

c̃kjxj ≥ b̃i

)
, k = 1, 2, ..., K; i = 1, 2, ..., M (23)

Pr

{
I

∑
i=1

ãijxi ≥ b̃i

}
≥ αi, i = 1, 2, ..., M (24)

x = (x1, x2, ..., xn) (25)

x ∈ X (26)

Based on the above theory, the summary can be rewritten as follows.

E

(
n

∑
j=1

c∗kjxj − f−k

)
− ϕ−1(αk)

√
Var

(
n

∑
j=1

c∗kjxj − f−k

)
≥ 0, k = 1, 2, ..., K (27)

E

(
n

∑
j=1

c∗kjxj − f+k

)
+ ϕ−1(αk)

√
Var

(
n

∑
j=1

c∗kjxj − f+k

)
≤ 0, k = 1, 2, ..., K (28)

where f−k = minc∗kjxj and f+k = maxc∗kjxj.

E

(
n

∑
j=1

ãijxj − b̃i

)
− ϕ−1(1− αi)

√
Var

(
n

∑
j=1

ãijxj − b̃i

)
≥ 0, i = 1, 2, ..., M (29)
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Making use of the auxiliary variables W1
stc and W2

stc, we rewrite the first objective
function as a deterministic model at the confidence level α as follows:

min f1 = ∑
s∈S

∑
t∈T

∑
c∈C

Ps ·
(

W1
stc + φSW2

stc

)
(30)

E

(
t

∑
τ=1

Ipts
c

)
+ ϕ−1(1− αj

)√
Var

(
t

∑
τ=1

Ĩ pts
c

)
−

t

∑
τ=1

∑
j∈J

PMτs
cj ≤W1

stc (31)

E

(
t

∑
τ=1

Cpτs
c

)
+ ϕ−1(1− αj

)√
Var

(
t

∑
τ=1

C̃pτs
c

)
−

t

∑
τ=1

∑
h∈H

PSτs
ch ≤W2

stc (32)

W1
stc, W2

stc ≥ 0 (33)

Similarly, Equation (16) is modified as follows:

Uts
c ≤ 1−

∑
i∈I

XSts
ic(

Ipts
c + Cpts

c
)
+ ϕ−1

(
1− αj

)√
Var

(
Ĩ pts

c + C̃pts
c
) , ∀c ∈ C, t ∈ T, s ∈ S (34)

Finally, the chance-constrained model for the TMS-PTRD problem is represented
as follows.

Min. (30), (5), (6), and (7)
S.t. (8)~(15), (17)~(19), (31)~(34).

4. Solution Algorithm
4.1. ε-Constraint Algorithm

In the ε-constraint algorithm, the highest priority objective is selected based on the pref-
erences of the decision maker, and other objectives are converted to constraints. The Pareto
front is obtained by changing the upper and lower boundaries of these constraints [52].
The ε-constraint algorithm is as follows:

min f1(X) (35)

S.t.
f2(X) ≤ ε2 (36)

fm(X) ≤ εm (37)

where X is a feasible set. We use the epsilon parameters to show the range of each ob-
jective function. The upper and lower bounds of the objective function are shown in
Equations (38) and (39).

εi = min{ fi(x)|x ∈ X } (38)

ε
−i

= max{ fi(x∗1), fi(x∗2), ... fi(x∗m)} (39)

We use Equation (40) to calculate the ε parameters.

εiji = ε
−i
−

 ε
−i
− εi

qi

 · ji, ji = 0, 1, ..., qi (40)

where qi represents the number of intervals between the upper and lower bounds. In this
algorithm, a payoff constrain table of the ε-constraint algorithm is as follows:
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Step 1: Calculate a payoff table  f2
(

x∗1
)

f3
(
x∗1
)

... fm
(
x∗1
)

...
f2(x∗2) f3(x∗3) ... fm(x∗m)


x∗i = argx∈Xmin fi(x), i = 1, 2, ..., m

Step 2: Set εi = fi
(

x∗i
)
, ε

i
= fi

(
x∗1
)
, i = 1, 2, ..., m a

Step 3: P =
{

x∗1 , x∗2 , ..., x∗m
}

, F =
{

f1
(
x∗1
)
, f2(x∗2), ..., fm(x∗m)

}
Step 4: Solve x∗ = opt

(
f1, ε2j2 , ε3j3 , ..., εmjm

)
f2(X) ≤ ε2j2 for j2 = 0 : 1 : q2

f3(X) ≤ ε3j3 for j3 = 0 : 1 : q3

. . .
fm(X) ≤ εmjm for jm = 0 : 1 : qm

Step 5: P = P ∪ {x∗}, F = F ∪ { f1(x∗), f2(x∗), ..., fm(x∗)}
Step 6: Return P and F

Given the priority of the objective functions, the ε-constraint algorithm can obtain the
Pareto front of multi-objective problems.

4.2. An Improved PICEA-g Algorithm

Evolutionary algorithms have been applied to solve multi-objective problems. Nu-
merous studies have shown that utilizing neighborhood information can make significant
progress in algorithm research [53,54]. Considering it is very difficult to define the neigh-
borhood of the TMS-PTRD model using Euclidean distance, a novel similarity distance
is designed to construct the K-nearest neighborhood. The PICEA-g-AKNN algorithm is
proposed by integrating the presented K-nearest neighborhood into the framework of the
preference-inspired co-evolutionary algorithm (PICEA-g). At the same time, we use an eval-
uation method according to the fitness of the solutions and assign a tailored evolutionary
strategy for each type of chromosome to improve the efficiency of the algorithm.

4.2.1. An Adaptive K-Nearest Neighborhood Method Based on a Novel Similarity Distance

We introduce an intuitive definition for similarity distance to determine the neigh-
borhood for each chromosome. The two types of similarities between chromosomes are
defined as follows:

1. The similarity of the locations of emergency facilities

This type of similarity between X and X′ are measured by the location of the emergency
facilities. Considering two factors (locations and size), the similarity of the emergency
facilities is formulated as:

SD1(X, X′) =
1
|I||L|∑i∈I

∑
l∈L

ϕ1
(

xil , x′il
)

(41)

ϕ1
(

xi, x′i
)
=

{
1, i f xil = x′il
0, otherwise

(42)

where xil is one if emergency facility I is established; otherwise, xil is zero. The example in
Figure 2 illustrates the encoding process for emergency facility locations.
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Figure 2. An encoded chromosome for emergency facility location.

In Figure 2, Chromosome (a) chooses to establish the second TRDC at Size 1 and the
fourth TRDC at Size 3. Chromosome (b) chooses to establish the second TRDC at Size 1,
the third TRDC at Size 2, and the fourth TRDC at Size 2.

2 The similarity between distribution planning and transfer planning

The similarity of the patient flows between solution X and solution X′ can be measured
by the number of patients transferred. Similarly, the similarity of the relief flows is measured
by the transportation quantity of relief supplies.

SD2(X, X′) = ∑
i∈N

∑
j∈M

1
|N||M| ϕ2

(
αstij, α′stij

)
(43)

At the decision period t, αstij, and α′stij are the number of relief supplies transported
from the TRDC i to the clinic j in scenario s.

ϕ2

(
αstij, α′stij

)
=


αstij/α′stij, i f α′stij > αstij

α′stij/αstij, i f αstij > α′stij
1, i f αstij = α′stij

(44)

The example in Figure 3 illustrates the encoding process of the patient flows and the
relief flows.
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Figure 3. An encoded chromosome for relief planning.

From Figure 3, 100 relief supplies are transported from the second TRDC to Clinic 2,
and 300 relief supplies are transported from the second TRDC to Clinic 4 in Chromosome
(a). Similarly, 300 relief supplies are transported to Clinic 2 and Clinic 3.

Considering the two-stage stochastic model, we construct the similarity distance
between two chromosomes as follows:

SD(X, X′) = SD1(X, X′) +
1
|S||T|∑s∈S

∑
t∈T

SD2(X, X′) (45)

The K-nearest neighborhood has been proven useful in the field of computer science
and engineering [55,56]. Generally speaking, a smaller neighborhood size can enhance local
search ability, while a larger neighborhood size can improve global search ability [57]. So, an
adaptive K-nearest neighborhood method is used to dynamically adjust the neighborhood
size to balance exploitation ability and exploration ability. By evaluating the evolutionary
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state of the solutions, the adaptive K-nearest method decreases the neighborhood radius
k to enhance the exploitation ability when the solution is in a continuous evolution state
and increases the neighborhood radius k to improve the exploration ability when the
solution is in a state of stagnant evolution. The adaptive K-nearest construction method is
as Algorithm 1.

Algorithm 1: Framework of the K-nearest neighborhood method

Input: solution S, neighborhood size K1 and K2

1. set the current neighborhood size Kc and K1;
2. for gen = 1 : genMax;
3. Find non-dominated solutions NS in S;
4. Generate offspring solutions OS based on neighborhood size Kc;
5. if mod(gen, 5) == 0
6. Find non-dominated solutions NOS in OS;
7. if x′ ≺ x, x ∈ S, x′ ∈ OS
8. Kc = Kc − 1;
9. else
10. Kc = Kc + 1;
11. end if
12. end if
13. if Kc > K1

14. Kc = K1;
15. else
16. Kc = K2

17. end if
18. end for

4.2.2. The PICEA-g-AKNN Algorithm

In the presented algorithm, all solutions are divided into three evolutionary states
by an assessment method. In addition, each state is assigned a customized evolutionary
strategy. The assessment method and crossover operation for individuals are as follows.

1 We define a dominant individual if the solution dominates all of the neighborhoods.
It is probable that the dominant individual is close to the Pareto front. Therefore,
an SBX local search strategy is used to modify this individual. The SBX local search
strategy not only enables the dominant individual to move close to the Pareto fronts
but also does not cause a large disturbance for the outstanding individual. Let Pc is
the probability of executing SBX and the SBX is described as Equation (46).

cxil =

0.5 ·
[
(1 + β)xil + (1− β)xjl

]
, i f rc ≤ Pc

0.5 ·
[
(1 + β)xil − (1− β)xjl

]
, otherwise

(46)

where rc is a randomly generated number in the range [0, 1]. Note that if cxil ≤ 0,
we assign that cxil is equal to zero. If xil = xjl , then assign cxil to xil , where cxil is the
offspring xi in the l dimension, xj is a parent chromosome selected at random from
the neighborhood, and β is a random number generated as follows according to [58].

β =

 (2 · rand)
1

1+η , i f rand ≤ 0.5

[1/(2− 2 · rand)]
1

1+η , otherwise
(47)

where η is a parameter that represents the degree of learning from the parent individual.

2 A solution is defined as an exploring individual if it is not dominated by any neigh-
borhood and there are other non-dominant individuals in the neighborhood. The
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exploring individual is likely to obtain useful information from the non-dominant
individual in the neighborhood. We use a classic and robust DE operator named
“DE/rand/1” to generate offspring. Because more parents can be referenced in the
DE, children individuals can exchange excellent information with individuals in the
neighborhood [59]:

cxil = xil + F · (xr1,l − xr2,l) (48)

where cxi is the children individual of xi, and xr1 and xr2 are randomly selected from
the non-dominant individuals in the neighborhood. When there is only one non-
dominant solution of xi in the neighborhood, the other parent individual is selected
randomly from the other individuals in the neighborhood. F ∈ (0, 2) is the mutation
factor. We assign cxil is equal to zero if cxil ≤ 0, and assign cxil to xil if xil = xjl .

3 A solution is defined as a learning individual if it is dominated by individuals in
the neighborhood. For the learning individual, it is necessary to try to learn from
the outstanding individuals in the neighborhood. A directional search DE named
“DE/current-to-dominance” has good global search ability and is used to generate
offspring [60].

cxil = xil + K · (xdl − xil) + F · (xr1,l − xr2,l) (49)

where xd is an individual that dominates the current individual in the neighborhood,
K ∈ (0, 1) is another mutation factor, and xr1 and xr2 are randomly selected from
the individuals that dominate xi. If only one solution dominates xi, the other parent
individual can choose from the non-dominated solution of xi. We assign cxil when it
is equal to zero if cxil ≤ 0, then assign cxil to xil if xil = xjl .

In the PICEA-g-AKNN algorithm, the fitness value of the candidate solution is posi-
tively correlated with the number of goal vectors dominated by this candidate solution,
but the fitness value of the target vector is inversely proportional to the number of candi-
date solutions dominating this target vector. The PICEA-g-AKNN algorithm is shown in
Figure 4.
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5. Computational Examinations

For validating the TMS-PTRD model, a case study is presented based on coronavirus
disease 2019 (COVID-19) in Wuhan, Hubei, China. Moreover, we design a series of TMS-
PTRD models to verify the PICEA-g-AKNN algorithm.

5.1. Simulation of Forecasting Phase

This part uses a modified SEIR epidemic dynamics model to evaluate COVID-19 in
Wuhan. Wuhan, which covers an area of 8483 km2 and has more than 10 million permanent
residents, was one of the most seriously affected areas during the COVID-19 outbreak. Since
23 January 2020, the urban area of Wuhan has been effectively blocked. According to the
Wuhan Novel Pneumonia Prevention and Control Headquarters, some temporary hospitals
were established to receive infected people with mild symptoms, and some designated
hospitals were selected to treat crucial patients. In Wuhan city, the population size within
the lockdown area has not changed significantly. Because of the intervention measures,
people were asked to stay at home to minimize contact with pedestrians.

The actual data were selected from the daily data of the COVID-19 epidemic in
Wuhan from 21 January to 21 April 2020 (wjw.hubei.gov.cn/, accessed on 25 April 2020).
The initial values were chosen as: N = 1,2320,000, E(0) = 149, I(0) = 440, R(0) = 28,
H(0) = 102, SI(0) = 2197, EI(0) = 1394, S(0) = N−E(0)−I(0)−R(0)−H(0)−SI(0)−I(0). In line
with Chao et al. [50], the parameters are shown in Table 1.

Table 1. Parameters in modified SEIR model.

Parameters r β q α δI δq γI γH

2 0.045 1.0 × 10−6 2.7 × 10−4 0.13 0.13 0.007 0.014

Note that because of changes in statistical methods, official figures of the cases have
risen sharply since 12 February, and the model parameters have been modified appro-
priately. Figure 5 shows that the number of confirmed patients predicted by the SEIR
model reaches a maximum at around 19 February. Considering the results show that the
correlation coefficient between the predicted number and the actual number is more than
90%, there is no statistically significant difference between the actual number and the
predicted number. So, this forecasting accuracy is enough for emergency management
decision making.
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5.2. Simulation of the Second Stage

Suppose that the lockdown city has 10 affected areas, and each affected area has a
fever clinic where the general physicians diagnose illnesses and transfer confirmed cases
to the appropriate hospitals. There are three TRDCs, three THs, and three DHs. We set
the planning horizon to one week, taking into account the availability of external relief
supplies and the additional emergency facilities in the affected areas for some time after
the epidemic outbreak. Because it is difficult to obtain the start date of the epidemic, a
certain time in the past is selected as the start date of the planning period. In a scenario, the
parameters of the affected areas are the same as Table 1, and the initial values are shown in
Table 2.

Table 2. Initial values of affected areas.

Affected Areas 1 2 3 4 5 6 7 8 9 10

N 150,005 113,553 175,424 226,502 200,740 164,807 187,551 159,922 210,337 209,542
E(0) 125 131 320 225 477 205 320 103 98 155
I(0) 5 3 9 8 5 7 9 4 7 3
R(0) 37 41 33 36 40 23 35 20 15 32
H(0) 1 3 5 4 2 5 2 3 0 1
SI(0) 219 178 409 291 611 321 400 184 129 233
EI(0) 139 171 230 180 320 189 306 99 102 174

The parameters of the above scenarios are based on the implementation of strict control
measures during the COVID-19 outbreak in Wuhan. So, hospital patients do not cause
infection, and the exposure ratio of the patient is zero. Because the exposure ratio is likely
to increase under conditions of inadequate intervention measures, we attempt to assess
scenarios with inadequate measures. In addition, there is a relationship between the value
of q and the number of infected cases. To analyze the quarantine during the COVID-19
outbreak, different isolation ratio scenarios are considered in the TMS-PTRD model. We
consider the case study consisting of four scenarios: S1 (r1 = r, q1 = q), S2 (r1 = 2r, q1 = q),
S3 (r1 = r, q1 = 0.8q), and S4 (r1 = 2r, q1 = 0.8q). Each scenario is assumed to occur with
equal probability (ps = 1

|S| ). Within the next week, the number of infected people and
critical patients in Disaster Area 1 is calculated by the modified SEIR model, as shown in
Table 3.

Table 3. Predicted information of Disaster Area 1.

dI(t)/dH(t) Period

Scenario 1 2 3 4 5 6 7

1 15/4 28/8 38/11 46/13 51/15 55/16 57/17
2 15/5 31/10 45/14 56/18 64/21 70/23 77/25
3 15/4 30/9 43/13 54/16 61/18 67/19 70/20
4 25/7 47/14 65/18 78/22 88/25 94/27 98/29

Assume that the transportation cost (cnm) and the delivery time (tnm) from point n to
point m are linear. The information is given in Table 4.

A standard carton is used as a transportation unit, including a set of medical and
ancillary supplies. The loading capacity of the transportation vehicle is 50. Tables 5 and 6
describe the parameters of the hospitals and the TRDCs, respectively.
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Table 4. Transportation cost and time distance.

cnm/tnm Fever Clinic

1 2 3 4 5 6 7 8 9 10

TRDC
1 5/1.2 5/1.1 6/2.0 7/1.6 3/1.1 6/1.5 4/2.2 7/3.0 9/2.5 4/1.3
2 7/2.0 4/2.2 5/2.3 3/1.5 2/1.0 5/1.3 5/1.3 6/1.5 4/1.8 6/2.4
3 4/1.5 5/1.7 3/1.0 5/1.5 6/2.0 3/1.1 7/2.6 4/1.6 6/1.7 7/1.9

TH
1 6/1.6 7/1.9 5/1.5 4/1.7 6/2.4 5/2.2 8/2.5 3/1.0 5/1.1 7/1.4
2 7/2.3 6/2.2 6/3.0 3/1.2 4/1.2 6/1.8 5/2.0 7/2.0 5/1.5 6/1.4
3 5/1.5 8/2.0 7/2.2 8/2.7 4/2.0 6/1.8 7/2.1 5/1.8 9/2.9 7/3.0

DH
1 5/1.2 6/2.0 3/1.4 6/1.8 4/1.1 7/1.5 5/1.1 8/2.4 3/1.1 8/2.0
2 7/1.9 5/1.5 7/2.6 6/2.5 5/1.4 8/2.0 8/3.2 6/1.5 3/2.0 7/2.3
3 5/2.4 6/2.1 4/1.5 6/1.9 7/2.0 3/1.1 6/1.6 9/2.0 5/1.8 4/1.1

Table 5. Hospital parameters.

Capacity Fixed Cost

TH 1 2000 30,000
2 3000 40,000
3 3000 44,000

DH 1 900 30,000
2 1000 50,000
3 800 40,000

Table 6. TRDC parameters.

Fixed Cost Variable Cost

TRDC 1 30,000 1.2
2 25,000 1.5
3 20,000 1.7

In this section, experimental results are provided. The initial values of the affected
areas were set as in Table 2, and the predicted values are shown in Table 3. In this case,
the key parameters are shown in Tables 4–6. The model was coded using CPLEX and
MATLAB software version R2019b, and the numerical experiments were run on a PC with
8 GB of RAM. In this study, we set the priority of critical patients to five. Considering the
correlation coefficient between the predicted number and the actual number is more than
90%, the variation domain/perturbation level is set to 10% and the budget parameter of
the confidence level is set to 95%.

Figures 6 and 7 show the results of solving a small-scale multi-objective problem by the
two methods of the ε-constraint algorithm and the PICEA-g-AKNN algorithm, respectively.
In the test problem, the first objective function is on a scale of 102, and the second function
is on a scale of 103. Similarly, the third objective function is on a scale of 105, and the fourth
function is on a scale of 10−1.

From Figures 6 and 7, we calculated that the mean error value of the two algorithms
in the first objective was 0.67%. Similarly, the mean error values of the second, third, and
fourth objectives were 0.55%, 1.02%, and 0.78%, respectively. So, the PICEA-g-AKNN
algorithm is credible in solving TMS-PTRD problems.

To analyze the uncertain parameters, the TMS-PTRD problems were tested under
different uncertain conditions, and the output of the TMS-PTRD implementation is shown.
In Figure 8, the main objective function increases when the uncertain environment gets
worse. The results also show that an accurate assessment of the uncertainty can positively
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impact the results, where a is the variation domain/perturbation level, and α is the budget
parameter of the confidence level.
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Table 7 shows the relief flows sent from the established TRDCs to the fever clinics for
all periods (a = 0.1, α = 0.95). For example, TRDCs 1 and 2 are established, and relief
supplies are distributed to 10 fever clinics through these two established TRDCs.
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Table 7. Relief commodities sent from established TRDCs to fever clinics.

Scenario TRDC
Fever Clinic

1 2 3 4 5 6 7 8 9 10

1
1 336 29 15 837 460
2 35 456 652 521 931 513 279 274
3

2
1 263 51 46 18 69 41 713 57 26 393
2 160 380 630 527 820 495 67 252 259 71
3

3
1 347 36 77 32 72 620 38 409
2 56 390 710 499 861 441 181 237 260 24
3

4
1 403 17 21 114 666 94 19 393
2 102 389 766 559 828 417 58 192 258 83
3

Tables 8 and 9 show the suitable locations for the established THs and DHs in each
scenario. For example, all of the THs (three temporary hospitals) are established under
Scenario 4, and we just need to establish two THs under Scenarios 1, 2, and 3. In addition,
Tables 8 and 9 determine the number of infected people and critical patients transferred
from each fever clinic to hospitals for all periods (a = 0.1, α = 0.95).

Table 8. Infected people transferred from each fever clinic to established THs.

Scenario TH
Fever Clinic

1 2 3 4 5 6 7 8 9 10

1
1 311 377 559 240 234 382
2 433 760 441 469
3

2
1 382 398 594 288 263
2 507 829 496 719 429
3

3
1 362 390 756 248 244
2 470 791 478 714 394
3

4
1 418 781 295 274
2 541 866 266 752 435
3 523 283

Table 9. Critical patients transferred from each fever clinic to established DHs.

Scenario DH
Fever Clinic

1 2 3 4 5 6 7 8 9 10

1
1 98 80 167 44 229 207 75
2
3 38 4 91 138 76 119

2
1 134 212 251 221 82
2
3 125 19 155 155 88 134

3
1 115 12 182 54 240 218 79
2
3 112 90 147 79 124

4
1 161 165 262 227 85
2 131 90
3 73 195 168 135
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5.3. Computational Performance Analysis

We consider the 20, 30, and 50 affected areas, that is, the number of fever clinics that
should be serviced. For each affected area, the parameters of the modified SEIR were
randomly selected from an interval. Eighteen instances were randomly generated to test
the performance of the PICEA-g-AKNN algorithm. In Table 10, for example, T-4-20-4-4-7-4
means that the case with three periods of two uncertain scenarios has 4 TRDCs, 20 fever
clinics, 4 THs, and 4 DHs. Initial values of the disaster areas were randomly generated in
the intervals shown in Table 11.

Table 10. Parameters of the test instances.

Instance |I| |C| |J| |H| |T| |S|

T-4-20-4-4-7-4 4 20 4 4 7 4
T-4-20-4-4-7-8 4 20 4 4 7 8
T-4-20-4-4-7-12 4 20 4 4 7 12
T-4-20-4-4-14-4 4 20 4 4 14 4
T-5-20-4-4-14-8 4 20 4 4 14 8

T-5-20-4-4-14-12 4 20 4 4 14 12
T-5-30-5-5-7-4 5 30 5 5 7 4
T-5-30-5-5-7-8 5 30 5 5 7 8
T-5-30-5-5-7-12 5 30 5 5 7 12
T-5-30-5-5-14-4 5 30 5 5 14 4
T-5-30-5-5-14-8 5 30 5 5 14 8

T-5-30-5-5-14-12 5 30 5 5 14 12
T-8-50-8-8-7-4 8 50 8 8 7 4
T-8-50-8-8-7-8 8 50 8 8 7 8
T-8-50-8-8-7-12 8 50 8 8 7 12
T-8-50-8-8-14-4 8 50 8 8 14 4
T-8-50-8-8-14-8 8 50 8 8 14 8

T-8-50-8-8-14-12 8 50 8 8 14 12

Table 11. Initial values of the starting time of the disaster areas.

Initial
Values N E(0) I(0) R(0) H(0) Sq(0) Eq(0)

[15,000~30,000] [100~200] [0~10] [0~10] [0~10] [100~200] [100~200]

Without loss of generality, we set the variation perturbation level at 10% and the
budget parameter of the confidence levels at 95%. Experimental results were obtained by a
personal computer with 2.50 GHz and 8 GB of RAM. Each test instance was run 10 times
to obtain the approximate solutions. The experimental results of the PICEA-G-AKNN
algorithm and PICEA-g, MOEA/D, and NSGA-II were compared. The parameters of the
algorithms are as Table 12.

Table 12. Algorithm parameters.

Parameters PICEA-g-ANK PICEA-g MOEA/D NSGA-II

Maximum generations maxGen
Population size N
Number of goal vectors Ng
Probability pc
Probability pm

5000
100
100
0.8
0.2

5000
100
100
0.8
0.2

5000
100
-
0.8
0.2

5000
100
-
0.8
0.2

Neighborhood size T N/20-N/5 - 20 -
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Set coverage (C-metric) is used to compare the efficiency of the multi-objective algo-
rithms [61]. In a minimization problem, the C-metric can be represented as follows.

C(A, B) =
{y ∈ B|∃x ∈ A : x ≺ y}

|B| (50)

where A is Pareto solutions obtained by one multi-objective algorithm, and B is Pareto
solutions obtained by another multi-objective algorithm. The C-metric mean values of the
numerical experiments are shown in Table 13.

Table 13. Results of the numerical experiments (A: PICEA-g-AKNN, B: PICEA-g, C: MOEA/D, D:
NSGA-II).

Instance C(A,B) C(B,A) C(A,C) C(C,A) C(A,D) C(D,A)

T-4-20-4-4-7-4 0.213 0.253 0.202 0.183 0.212 0.013
T-4-20-4-4-7-8 0.266 0.135 0.214 0.288 0.302 0.044
T-4-20-4-4-7-12 0.184 0.117 0.25 0 0.360 0.161
T-4-20-4-4-14-4 0.20 0.304 0.202 0.104 0.105 0.255
T-5-20-4-4-14-8 0.496 0.121 0.24 0.166 0.406 0

T-5-20-4-4-14-12 0.211 0.058 0.057 0.204 0.237 0.187
T-5-30-5-5-7-4 0.419 0.013 0.358 0.072 0.023 0.303
T-5-30-5-5-7-8 0.168 0.263 0.072 0.227 0.042 0.164
T-5-30-5-5-7-12 0.283 0.105 0.299 0.056 0.183 0.133
T-5-30-5-5-14-4 0.218 0.152 0.195 0.012 0.153 0.389
T-5-30-5-5-14-8 0.285 0.151 0.158 0.221 0.248 0.242

T-5-30-5-5-14-12 0.480 0 0.184 0.118 0.223 0.294
T-8-50-8-8-7-4 0.515 0.124 0.231 0.132 0.171 0.40
T-8-50-8-8-7-8 0.317 0.15 0.147 0.294 0.297 0.145
T-8-50-8-8-7-12 0.275 0.164 0 0.412 0.194 0.290
T-8-50-8-8-14-4 0.360 0.218 0.159 0.113 0.315 0.047
T-8-50-8-8-14-8 0.581 0 0.125 0.177 0.307 0.031

T-8-50-8-8-14-12 0.338 0.081 0.149 0.033 0.238 0.155
Average 0.3629 0.1506 0.2026 0.1758 0.2510 0.2031

From the results, the PICEA-g-AKNN algorithm outperforms the other three multi-
objective algorithms in solving the TMS-PTRD problems. In particular, the PICEA-g-AKNN
algorithm performs well in solving the TMS-PTRD problems with a large number of
scenarios and periods. Considering the characteristics of the multi-scenario and multi-
period problems, the novel neighborhood method proposed in Section 4.2.1 can reasonably
construct a neighborhood of the TMS-PTRD problems. In addition, in the PICEA-g-AKNN
algorithm, an appropriate method is used to evaluate the multi-objective solutions, and
different evolutionary strategies are assigned to different types of chromosomes, which can
effectively improve the efficiency of the multi-objective algorithm. We believe the proposed
algorithm has advantages in solving multi-objective problems with multi-scenario and
multi-period problems.

To analyze the epidemic interventions in the lockdown area of COVID-19, we consid-
ered different levels of epidemic interventions in the lockdown area. When strict interven-
tion is used, the isolation ratio q increases but the exposure rate r decreases. Conversely,
lax intervention leads to a decrease in the isolation ratio and an increase in the exposure
rate. We tested T-8-50-8-8-14-12 by the PICEA-g-AKNN algorithm and showed the results
as follows.

From Figures 9–12, we can see that with the increase in the exposure rate r, the first
three objectives increase significantly. However, the increase in the isolation ratio q has
no obvious effect on the results. We can conclude that reducing the average number of
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daily contacts and increasing the proportion of quarantined can reduce the expectation
of the objectives. The average number of contacts has a more important impact on the
development of the epidemic than the proportion quarantined. So, the first three objectives
are better when strict intervention has been used. As can be seen from the fourth objective,
the presented research can provide reliable equitable relief distribution under different
epidemic interventions.

Int. J. Environ. Res. Public Health 2023, 20, x FOR PEER REVIEW 22 of 26 
 

 

development of the epidemic than the proportion quarantined. So, the first three objec-

tives are better when strict intervention has been used. As can be seen from the fourth 

objective, the presented research can provide reliable equitable relief distribution under 

different epidemic interventions. 

 

Figure 9. Boxplot chart of the total number of untreated infected patients. 

 

Figure 10. Boxplot chart of the total transfer time. 

 

Figure 11. Boxplot chart of the overall cost. 

Figure 9. Boxplot chart of the total number of untreated infected patients.

Int. J. Environ. Res. Public Health 2023, 20, x FOR PEER REVIEW 22 of 26 
 

 

development of the epidemic than the proportion quarantined. So, the first three objec-

tives are better when strict intervention has been used. As can be seen from the fourth 

objective, the presented research can provide reliable equitable relief distribution under 

different epidemic interventions. 

 

Figure 9. Boxplot chart of the total number of untreated infected patients. 

 

Figure 10. Boxplot chart of the total transfer time. 

 

Figure 11. Boxplot chart of the overall cost. 

Figure 10. Boxplot chart of the total transfer time.

Int. J. Environ. Res. Public Health 2023, 20, x FOR PEER REVIEW 22 of 26 
 

 

development of the epidemic than the proportion quarantined. So, the first three objec-

tives are better when strict intervention has been used. As can be seen from the fourth 

objective, the presented research can provide reliable equitable relief distribution under 

different epidemic interventions. 

 

Figure 9. Boxplot chart of the total number of untreated infected patients. 

 

Figure 10. Boxplot chart of the total transfer time. 

 

Figure 11. Boxplot chart of the overall cost. Figure 11. Boxplot chart of the overall cost.



Int. J. Environ. Res. Public Health 2023, 20, 1765 22 of 25Int. J. Environ. Res. Public Health 2023, 20, x FOR PEER REVIEW 23 of 26 
 

 

 

Figure 12. Boxplot chart of criteria of equitable distribution. 

In this study, the TMS-PTRD model and the PICEA-g-AKNN algorithm have the ad-

vantages in tackling public health emergencies: (1) A reservation mechanism of relief sup-

plies in densely populated urban areas is very important for epidemic intervention; (2) A 

relatively accurate method of epidemic prediction can support the decision of emergency 

management, for instance, setting up a reasonable number of temporary hospitals in dif-

ferent scenarios; (3) The TMS-PTRD model can be used to coordinate patient transfer and 

relief distribution problems, and multi-objective results can support decision makers to 

make decisions in their preferences and actual situations; (4) A multi-objective algorithm 

developed according to the TMS-PTRD model structure is helpful to obtain better Pareto 

solutions; (5) Reducing person-to-person contact has a positive significance for emergency 

management in the epidemic. 

6. Conclusions  

In response to public health emergencies, scientific and reasonable emergency relief 

can reduce epidemic disaster losses. Because of the suddenness and unpredictability of an 

epidemic outbreak, the TMS-PTRD model has advantages in pre-disaster preparation and 

post-disaster rescue. Considering that humanitarian factors cannot be ignored in emer-

gency relief, timeliness and fairness are even more important than economy in emergency 

rescue. In order to ensure that the study can be more realistic, uncertainty factors and 

epidemic control measures were considered. This paper investigated the patient transfer 

and relief distribution problem in lockdown areas of COVID-19, which was depicted by a 

two-stage multi-objective stochastic model. The proposed model considers the following 

objectives: the total number of untreated infected patients at different periods, the total 

transfer time, the overall cost, and the equity distribution of relief supplies. To better cope 

with epidemic disasters, this paper considered setting up emergency facilities and storing 

a certain number of emergency supplies before an epidemic outbreak occurs. After an 

outbreak, the transfer plans of patients and the relief distribution are determined. Consid-

ering stochastic parameters, this study used chance-constraint programming to define the 

condition of a reliable set. To efficiently solve the large-scale TMS-PTRD problem, we pro-

posed the PICEA-g-AKNN algorithm based on a novel similarity distance and tailored 

evolutionary strategies. 

A real-world case study of Hunan of China and 18 test instances were generated to 

evaluate the TMS-PTRD model and the proposed algorithm. Numerical experiments 

show that the proposed method can well meet the needs of infected patients in an epi-

demic outbreak. In other words, hospital beds and relief supplies can be provided to in-

fected patients in a timely manner. At the same time, numerical experiments showed that 

exposure reduction is more effective than other control measures. In this paper, the im-

proved multi-objective algorithm can effectively solve large-scale TMS-PTRD problems. 

Figure 12. Boxplot chart of criteria of equitable distribution.

In this study, the TMS-PTRD model and the PICEA-g-AKNN algorithm have the
advantages in tackling public health emergencies: (1) A reservation mechanism of relief
supplies in densely populated urban areas is very important for epidemic intervention; (2) A
relatively accurate method of epidemic prediction can support the decision of emergency
management, for instance, setting up a reasonable number of temporary hospitals in
different scenarios; (3) The TMS-PTRD model can be used to coordinate patient transfer
and relief distribution problems, and multi-objective results can support decision makers
to make decisions in their preferences and actual situations; (4) A multi-objective algorithm
developed according to the TMS-PTRD model structure is helpful to obtain better Pareto
solutions; (5) Reducing person-to-person contact has a positive significance for emergency
management in the epidemic.

6. Conclusions

In response to public health emergencies, scientific and reasonable emergency relief
can reduce epidemic disaster losses. Because of the suddenness and unpredictability of an
epidemic outbreak, the TMS-PTRD model has advantages in pre-disaster preparation and
post-disaster rescue. Considering that humanitarian factors cannot be ignored in emergency
relief, timeliness and fairness are even more important than economy in emergency rescue.
In order to ensure that the study can be more realistic, uncertainty factors and epidemic
control measures were considered. This paper investigated the patient transfer and relief
distribution problem in lockdown areas of COVID-19, which was depicted by a two-
stage multi-objective stochastic model. The proposed model considers the following
objectives: the total number of untreated infected patients at different periods, the total
transfer time, the overall cost, and the equity distribution of relief supplies. To better
cope with epidemic disasters, this paper considered setting up emergency facilities and
storing a certain number of emergency supplies before an epidemic outbreak occurs. After
an outbreak, the transfer plans of patients and the relief distribution are determined.
Considering stochastic parameters, this study used chance-constraint programming to
define the condition of a reliable set. To efficiently solve the large-scale TMS-PTRD problem,
we proposed the PICEA-g-AKNN algorithm based on a novel similarity distance and
tailored evolutionary strategies.

A real-world case study of Hunan of China and 18 test instances were generated to
evaluate the TMS-PTRD model and the proposed algorithm. Numerical experiments show
that the proposed method can well meet the needs of infected patients in an epidemic
outbreak. In other words, hospital beds and relief supplies can be provided to infected
patients in a timely manner. At the same time, numerical experiments showed that exposure
reduction is more effective than other control measures. In this paper, the improved multi-
objective algorithm can effectively solve large-scale TMS-PTRD problems. Experimental
results show that the proposed PICEA-g-AKNN algorithm outperforms the PICEA-g,
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MOEA/D, and NSGA-II algorithms in solving the TMS-PTRD model. Moreover, the
proposed TMS-PTRD model and PICEA-g-AKNN algorithm can effectively deal with the
transfer of epidemic patients and the relief distribution.

In the future, the following extension issues can be considered. Patient migration
and psychological panic should be considered in emergency management. Second, it is
necessary to consider the routing and scheduling of delivery vehicles for the patients and
the relief supplies. Third, more epidemiological interventions in lockdown areas need to be
considered in emergency management.
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