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Abstract: Background. Hepcidin antimicrobial peptide (HAMP) is a key factor in maintaining iron
metabolism, which may induce ferroptosis when upregulated. However, its prognostic value and
relation to immune infiltrating cells remains unclear. Methods. This study analyzed the expression
levels of HAMP in the Oncomine, Timer and Ualcan databases, and examined its prognostic potential
in KIRC with R programming. The Timer and GEPIA databases were used to estimate the correlations
between HAMP and immune infiltration and the markers of immune cells. The intersection genes
and the co-expression PPI network were constructed via STRING, R programming and GeneMANIA,
and the hub genes were selected with Cytoscape. In addition, we analyzed the gene set enrichment
and GO/KEGG pathways by GSEA. Results. Our study revealed higher HAMP expression levels in
tumor tissues including KIRC, which were related to poor prognosis in terms of OS, DSS and PFI. The
expression of HAMP was positively related to the immune infiltration level of macrophages, Tregs,
etc., corresponding with the immune biomarkers. Based on the intersection genes, we constructed the
PPI network and used the 10 top hub genes. Further, we performed a pathway enrichment analysis
of the gene sets, including Huntington’s disease, the JAK-STAT signaling pathway, ammonium ion
metabolic process, and so on. Conclusion. In summary, our study gave an insight into the potential
prognosis of HAMP, which may act as a diagnostic biomarker and therapeutic target related to
immune infiltration in KIRC.

Keywords: HAMP; kidney cancer; biomarker; prognosis; immune infiltration

1. Introduction

Clear cell renal cell carcinoma (ccRCC), also known as kidney renal clear cell carcinoma
(KIRC), is among the most common malignancies worldwide, representing 80% of kidney
malignancies [1]. As it is prone to metastasis, the prognosis of KIRC patients is poor,
especially for patients in the late clinical stage [2,3]. One study showed that the 5-year
overall survival rate (OS) of early stage KIRC could reach 96%, but it was no more than 10%
for advanced stages [4]. Although advanced KIRC can be treated with molecular targeted
therapy and immunotherapy, the long-term efficacy is still unsatisfactory [3]. Therefore,
in order to prolong the overall survival of patients with KIRC there is a pressing need to
screen potential diagnostic biomarkers, or identify the potential therapeutic targets related
to tumorigenesis, metastasis and prognosis [5,6].

Notably, KIRC cells exhibit substantially higher sensitivity to ferroptosis than normal
renal cells, which possess a basal level of ferroptosis sensitivity. The import, export, storage
and turnover of iron impact ferroptosis sensitivity [7,8]. Moreover, previous studies have
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shown that the sensitivity of cells to ferroptosis is tightly controlled by iron homeostasis [9].
Nowadays, cancer cells are known to stockpile intracellular iron through dysregulation of
the iron metabolism, partly by upregulating the genes involved in iron uptake [10]. HAMP,
the hepcidin antimicrobial peptide gene, can produce hepcidin, which is a polypeptide
hormone with an important role in the maintenance of iron homeostasis [11].

The HAMP gene is composed of three exons on chromosome 19q13.12 and yields
the active hormone of hepcidin-25 peptide [12,13]. It is well known that HAMP plays an
essential negative role in iron homeostasis, and its production of hepcidin was proven
to be expressed in many cancers and non-cancer tissues [14,15]. In addition, a previous
study showed that HAMP induced aggressive hepatocellular carcinoma (HCC), colorectal
cancer (CRC) and skin cutaneous melanoma (SKCM), so we can infer that HAMP may be a
potential prognostic and diagnostic biomarker for KIRC [16–18].

Moreover, hepcidin is reported to be an acute-phase protein involved in the innate
immune reactions related to interleukin-6 (IL-6), conventional dendritic cells (cDCs) and so
on [19,20]. Hepcidin can regulate the iron levels through the macrophages to influence in-
flammation, infection and possibly cancer [21,22]. In recent studies, iron metabolism within
the tumor microenvironment has been uncovered to play a more critical role in tumors,
especially in malignant transformation, and to affect both tumor-associated macrophages
and tumor-infiltrating lymphocyte functions. Therefore, our study aimed to find how the
expression of HAMP correlated to infiltrating immune cells and whether HAMP is the
novel immune related therapeutic target for KIRC [23].

To confirm this inference, we used publicly available cancer databases and R program-
ming to assess the expression of HAMP in KIRC and its prognostic and predictive role.
Furthermore, we studied the link between HAMP expression and immune infiltration of
tumors, and we evaluated the protein–protein network and genomic alterations by means
of multi-dimensional analysis. Our results revealed the important function of HAMP in
KIRC and confirms its possibility of becoming a potential biomarker for KIRC diagnosis
and treatment.

2. Materials and Methods
2.1. Data Acquisition

We downloaded the gene expression profiles and clinical information from patients
with renal clear cell carcinoma from the Cancer Genome Atlas (TCGA, https://tcga-data.
nci.nih.gov/tcga/, accessed on 21 July 2022), a public repository of high-throughput
experimental data. The type of data was RNAseq-FPKM, including 539 tumor tissues and
72 adjacent tumorous tissue samples.

2.2. Oncomine Database Analysis

The Oncomine database is one of the popular data-mining platforms, which we used
to analyze the differential expression of HAMP in different cancer types [24]. In this study,
the thresholds of the p-value, fold change and gene rank were, respectively, set as 0.001,
2 and the top 10%.

2.3. Timer Database Analysis

The Timer (Tumor Immune Estimation Resource) database is a comprehensive tool
mainly used to analyze immune infiltrates by RNA-seq [25]. The website contains over
10,000 samples in 32 different cancer types from TCGA [26]. We studied the differential
expression of HAMP between tumor and normal tissues through use of the “Diff Exp” mod-
ule. In addition, we used the “Correlation” module to analyze the expression scatterplots
between HAMP and the immune marker genes in KIRC. Moreover, the “SCNA” module
was used to evaluate the differences in tumor infiltration with different copy number
alterations for HAMP.

https://tcga-data.nci.nih.gov/tcga/
https://tcga-data.nci.nih.gov/tcga/
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2.4. Ualcan

Ualcan is an online resource with an interface that allows the user to analyze the
relative expression levels of a query protein or set of proteins across specific tumor sub-
groups [27]. In the CPTAC confirmatory/discovery datasets, we analyzed the total protein
expression levels of HAMP in KIRC.

2.5. GeneMANIA Database Analysis

GeneMANIA is a website for generating hypotheses about genes’ functions using the
available genomic and proteomic data [28]. In our study, HAMP was submitted to the
website to select the 50 most closely related genes.

2.6. STRING Databases Analysis

STRING is designed to analyze gene–gene and protein–protein interactions, which are
shown in a PPI network [29]. We used the STRING database’s “multiple proteins” function
to construct a PPI network of HAMP and its correlated genes.

2.7. GEPIA Database Analysis

GEPIA is a web server that provides expression analysis functions for TCGA and
GTEx data to predict genes’ correlations in cancer [30]. To pick the closest neighboring
genes, we inputted HAMP in KIRC to find and download the 100 most similar genes, which
we later used to make an intersection with another group selected by R.

2.8. Cytoscape Software

Cytoscape is a software package which is often used to visualize and construct func-
tional networks and make further explorations [31]. We inputted the file downloaded from
STRING and formed a PPI, then used the “cytoHubba” app to select the top 10 hub genes.

2.9. Gene Set Enrichment Analyis

Gene set enrichment analysis (GSEA) is a computational method that determines
whether a predefined set of genes has statistically significant, concordant differences
between two biological states [32]. To evaluate whether the selected gene, HAMP, was
expressed significantly differentially in KIRC, we divided the samples into the high and low
groups according to the differences in the expression and selected the enriched pathways.

2.10. Statistical Analysis

The data in this study were mostly analyzed by R 3.6.3, a package downloaded from
Bioconductor. We compared the expression of HAMP between tumors and normal tissues
in paired and non-paired samples by Wilcoxon’s rank-sum test, and the difference showed
statistical significance. The differences in the expression levels between Stages T1–T2 and
Stages T3–T4 were evaluated through Wilcoxon’s rank-sum test. Various factors including
sex, stage, age, and so on, were included to analyze the probability of survival by univariate
and multivariate Cox regression. Results with p < 0.05 were considered to be significant.

To analyze the prognosis of KIRC, we used Kaplan–Meier curves to analyze the
disease-specific survival, overall survival and progression-free survival under low and
high expression levels of HAMP. Furthermore, we used the ROC and time-based ROC to
evaluate the sensitivity of HAMP in diagnosis. The “Survival” and “survminer” packages
in R were used in the survival analysis, the pROC and timeROC packages were used for
the ROC analysis, and the ggplot2 package was used to visualize the results.

Next, we used the data from CIBERSORT to create a violin plot with the R package
vioplot. We also compared the 22 types of immune cells with each other to make a heatmap
to select the most correlated cells with the R package pheatmap. To analyze the Pearson
correlations between genes and immune cells, the R programming ssGSEA was used to
calculate the correlations between the expression levels of HAMP and tumor-infiltrating
immune cells.
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To find the correlated genes and construct a PPI network, we first applied a single-
gene correlation screening, and created an intersection with the similar genes selected
from GEPIA to find the superposition, which established a foundation for further study.
Meanwhile, with the coincident gene group, we drew a co-expression heatmap with the
R.ggplot 2 package.

3. Results
3.1. Differential Expression of HAMP in KIRC

Given that HAMP may be a potential biomarker for KIRC, we first used the Oncomine
database to analyze the mRNA expression levels of HAMP in multiple types of cancer and
normal tissues. Significantly, higher expression levels of HAMP were found in brain, breast,
color, kidney and lung cancers compared with the adjacent normal tissues (Figure 1A).
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Figure 1. Differential HAMP expression levels in tumors and normal tissues. (A) Expression levels of
HAMP in different cancers compared with normal tissues in the Oncomine database. (B) Comparison
of the expression levels of HAMP in different cancers from the TCGA database. (C,D) The unpaired
and paired expression levels of HAMP, compared between tumor ccRCC tissues (n = 539) and normal
tissues (n = 79) in the TCGA database. (E) The hypermethylation level of HAMP in ccRCC tissues
analyzed by the Ualcan database (*** p < 0.005).

After removing the tumors without data for comparison, among all the TCGA tumors
HAMP was upregulated in breast cancer (BRCA), cervical cancer (CESC), colon cancer
(COAD), large B-cell lymphoma (DLBC), esophageal cancer (ESCA), glioblastoma (GBM),
head and neck cancer (HNSC), kidney chromophobe (KICH), kidney clear cell carcinoma
(KIRC), kidney papillary cell carcinoma (KIRP), low-grade glioma (LGG), lung adenocar-
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cinoma (LUAD), lung cancer (LUSC), ovarian cancer (OV), rectal cancer (READ), skin
cutaneous melanoma (SKCM), stomach cancer (STAD), testicular cancer (TGCT), thyroid
cancer (THCA), thymoma (THYM), endometrioid cancer (UCEC) and uterine carcinosar-
coma (UCS), but was downregulated in bile duct cancer (CHOL), liver cancer (LIHC) and
pancreatic cancer (PRAD) compared with the corresponding normal tissues (Figure 1B).

Furthermore, as Figure 1C shows, the median expression level of HAMP in tumors is
much higher than in normal tissue. To eliminate other mixing factors we analyzed paired
samples, and the trend was consistent and maintained a significant difference (Figure 1D).

Since epigenetic alterations have been proven to play a role in cancer biology, we
also explored the promoter methylation level of HAMP in KIRC and normal samples with
UALCAN. Interestingly, the expression level in primary tumors was significantly lower
compared with normal tissues, and the normal-vs.-primary statistic was 1.62 × 10−12

(Figure 1E).

3.2. The Clinical Correlation and Prognostic Value of HAMP in KIRC

To assess the correlation between the expression of HAMP and clinical pathologic
outcomes in tumors, we explored the pathological stage of KIRC patients. The results
revealed that the gene HAMP was significantly upregulated in Stages T3–T4 compared
with Stages T1–T2 (Figure 2A).

In addition, we constructed a nomogram to visualize the prognostic model of the Cox
regression analysis and found that the concordance was 0.762 (0.738–0.786) (Figure 2B).
Further, we performed univariate and multivariate Cox regressions to find the correlations
between HAMP and age, stage, etc. (Supplementary Table S1).

To evaluate the prognostic significance of HAMP in KIRC, we compared the patients
with high and low expression levels in terms of overall survival (OS), disease-specific
survival (DSS) and progression-free interval (PFI), and the results were HR = 1.53 (1.55–3.51;
p < 0.001) for DSS, HR = 1.82 (1.33–2.48; p < 0.001) for OS and HR = 1.68 (1.22–2.32; p = 0.001)
for PFI. The outcomes indicate that HAMP is a dangerous factor for KIRC, which plays an
important role in prognosis (Figure 2C–E).

Furthermore, we used the ROC to construct a model to predict the probability of
survival and found that the AUC was 0.911 (0.879–0.944) in the ROC curve, which showed
that HAMP is a significant predictive index in diagnosis (Figure 2F). Similarly, the AUC
in the ROC for OS was 0.649 (0.601–0.698) and the AUC of the time-dependent ROC
predicted that the 1-year, 3-year and 5-year outcomes were, respectively, 0.686, 0.631 and
0.627 (Figure 2G,H).

3.3. Correlation between Immune Cells and HAMP Expression Levels in KIRC

As we know, tumor-infiltrating immune cells are one of the representative cellular
components of the host’s anti-tumor immune responses and tumor immune escape [33].
Therefore, we explored the correlation between HAMP expression levels and immune
infiltration levels to confirm the effect of HAMP in prognosis in KIRC. According to the
HAMP expression levels, we divided the samples into the tumor and normal expression
groups and analyzed the differences in 22 immune cells. The results revealed that CD8T
cells, CD4 memory resting T cells and M2 macrophage cells were actively expressed, and
regulatory T cells (Treg) and neutrophils were closely related to the HAMP expression
levels. Interestingly, regulatory T cells (p = 0.012) were much higher in the normal tissue
group than in the tumor group, while neutrophils (p = 0.015) showed a completely opposite
pattern (Figure 3A).
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Figure 2. Prognosis and diagnosis based on HAMP expression levels. (A) The overexpression of
HAMP in Stages T3−T4 compared with Stages T1−T2. (B) The scores of several factors with HAMP
expression levels (T/N/M stage, age, 1/5/10 year survival probability). (C–E) Survival curves of OS,
DSS and DFD correlated with HAMP expression levels in TCGA kidney cancer cohorts. (F–H) The
diagnostic ROCs of status, OS and survival time based on HAMP expression levels in KIRC. OS,
overall survival; DSS, disease-specific survival; PFI, progression-free interval. (*** p < 0.005).
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Figure 3. Infiltration of immune cells in KIRC patients. (A) The differences in 22 subtypes of immune
cells between high and low expression levels of HAMP in kidney cancer. The group with a high
expression level of HAMP is shown in red and the low−HAMP group is shown in blue. (B) Heatmap
of the immune infiltration cells in tumor samples. (C) Lollipop chart comparing the degree of
infiltration of the 24 immune cells in KIRC.

In addition, a correlation heatmap was used to visualize the relational degree within
the subpopulation of immune cells. CD8 T cells were the most negatively related to CD4
memory resting T cells and closely positively related to regulatory T cells (Figure 3B).

We also used a lollipop chart to clearly compare the degree of correlation among the
24 immune cells and selected the most representative immune cells for further exploration.
Moreover, we used the TIMER database to analyze the correlation between the expression
levels of HAMP and the representative immune markers (Table 1). As shown in Figure 4A,
the top 8 immune cells selected in Figure 3C with a Pearson correlation of >0.4 all had a
linear relationship with the expression levels of HAMP (Figure 3C).
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Table 1. Correlation analysis for HAMP and the marker genes of immune cells in TIMER.

Cell Type Gene Markers

KIRC

None Purity

Cor P Cor P

CD8+ T cell
CD8A 0.382 5.72 × 10−20 0.353 5.99 × 10−15

CD8B 0.37 1.06 × 10−18 0.337 1.03 × 10−13

T cell (general)
CD3D 0.44 1.1 × 10−26 0.413 2.27 × 10−20

CD3E 0.422 2.12 × 10−24 0.396 8.37 × 10−19

CD2 0.429 2.88 × 10−25 0.402 2.33 × 10−19

B cell
CD19 0.376 2.38 × 10−19 0.337 1.02 × 10−13

CD79A 0.425 8.58 × 10−25 0.396 1.13 × 10−12

Monocyte CD86 0.546 0.17 × 10−42 0.537 7.34 × 10−36

CD115 (CSF1R) 0.443 4.87 × 10−27 0.419 4.81 × 10−21

TAM
CCL2 0.016 7.18 × 10−01 −0.044 3.43 × 10−01

CD68 0.456 0.01 × 10−28 0.477 1.57 × 10−27

IL10 0.417 6.93 × 10−24 0.375 7.19 × 10−17

M1 Macrophage
INOS (NOS2) −0.273 1.52 × 10−10 −0.332 2.43 × 10−13

IRF5 0.274 1.18 × 10−10 0.273 2.64 × 10−09

COX2 (PTGS2) 0.062 0.51 × 10−01 0.017 1.10 × 10−01

M2 Macrophage
CD163 0.343 3.58 × 10−16 0.34 6.06 × 10−14

VSIG4 0.483 0.87 × 10−32 0.48 5.74 × 10−28

MS4A4A 0.412 2.79 × 10−23 0.386 8.67 × 10−18

Neutrophils
CD66b (CEACAM8) −0.107 1.34 × 10−02 −0.103 2.64 × 10−02

CD11b (ITGAM) 0.434 7.38 × 10−26 0.436 9.54 × 10−22

CCR7 0.366 2.32 × 10−18 0.342 4.51 × 10−14

Natural killer cell

KIR2DL1 −0.109 1.18 × 10−02 −0.114 1.44 × 10−02

KIR2DL3 −0.074 8.94 × 10−02 −0.057 2.25 × 10−01

KIR2DL4 0.177 3.86 × 10−05 0.154 8.88 × 10−04

KIR3DL1 −0.135- 1.75 × 10−03 −0.115 1.34 × 10−02

KIR3DL2 0.01 8.25 × 10−01 0.008 8.57 × 10−01

KIR3DL3 0.026 5.5 × 10−01 0.011 8.16 × 10−01

KIR2DS4 −0.096 2.73 × 10−02 −0.096 4.03 × 10−02

To further find the mechanism of how HAMP expression acts on the immune cells,
we drew scatterplots between HAMP expression levels and the immune marker genes
of M1/M2 macrophages, T cells and B cells in KIRC based on the TIMER database. The
results showed statistical significance (Figure 4B–E). Moreover, the correlations between
HAMP and the related marker genes of B cells, T cells and macrophages in KIRC are listed
in Table 2.

After we had analyzed the somatic copy number alterations (SCNAs) in KIRC, there
were significant differences in B cells, CD8+ T cells, CD4+ cells, neutrophils and dendritic
cells, which confirmed the prediction that HAMP may regulate the tumor process through
immune infiltration (Figure 4G). We also assessed the correlations between the most com-
mon immune checkpoints and the expression levels of HAMP to further strengthen the
potential mechanism between the expression levels of HAMP and immune cells (Figure 4F).

3.4. The Network of HAMP Expression in KIRC

In cancer research, constructing a PPI network is a useful method for revealing co-
expressed and related genes [34]. We constructed a PPI network of HAMP and another
50 interacting proteins in GeneMANIA. (Figure 5A) Moreover, we used the GEPIA database
and R programming to find the top 100 similar genes of HAMP and constructed a Venn
diagram to make an intersection (Figure 5C). There were 39 co-expressed genes, as shown
in Supplementary Table S2. The interactions of the 39 genes and HAMP were visualized
with STRING.
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Figure 4. Correlation between expression levels of HAMP and immune infiltration levels in KIRC.
(A) The enrichment in macrophages, Treg, Th1 cells, T cells, B cells and aDC based on the expression
levels of HAMP in tumors. (B−E) Expression scatterplots between the expression levels of HAMP
and the immune marker genes of M1/M2 macrophages, T cells and B cells in KIRC based on the
TIMER database. (F) The immune checkpoint infiltration level versus the expression levels of HAMP
in KIRC based on the TIMER database. (G) Significant differences in the somatic copy number
alterations (SCNAs) in KIRC (** p < 0.01, *** p < 0.005).

In addition, we plotted a heatmap of HAMP’s co-expressed genes to analyze the
correlations, and the results showed a highly consistent trend, which means that these
39 co-expressed genes have significant positive correlations with the key gene, HAMP
(Figure 5D).

We used the “cytoHubba” module on the PPI network to calculate the nodes’ scores
and selected the top 10 hub nodes as ranked by MCC. The key genes extracted and the
shortest paths between the hub genes are displayed in Figure 5E.
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Table 2. Correlation analysis between HAMP and the related marker genes of monocytes and
macrophages in GEPIA.

Cell Type Gene Markers

KIRC

Tumor Normal

R P R P

B cell
CD19 0.031 0.48 0.22 0.06

CD79A 0.15 4.8 × 10−4 0.2 0.098

T cell
CD3D 0.24 2.9 × 10−08 0.62 5.2 × 10−09

CD3E 0.26 2.2 × 10−09 0.55 4.2 × 10−07

CD2 0.27 2.7 × 10−10 0.51 5.7 × 10−06

M1 Macrophage
INOS (NOS2) −0.11 0.014 0.32 0.12

IRF5 0.19 8.2 × 10−06 −0.037 0.76
COX2 (PTGS2) −0.021 0.64 0.082 0.49

M2 Macrophage
CD163 0.43 0 0.44 1 × 10−04

VSIG4 0.59 0 0.49 1.3 × 10−05

MS4A4A 0.37 0 0.48 1.9 × 10−05

3.5. Enrichment Analysis of HAMP in KIRC

As GSEA has been extensively utilized in the context of differential expression analysis,
we also analyzed the intersection genes described above to uncover the likely functional
interpretations [35]. Gene Ontology (GO) is commonly used for describing our knowledge
of the biological domain with respect to three aspects: molecular function, biological
processes, and location in the cellular component [36]. In total, 269 GO terms (251 terms for
BP, 10 terms for CC and 8 terms for MF) were enriched, with an adjusted p-value of <0.05
and a q-value of <0.2. For biological process, regulation of lymphocyte activation, synapse
pruning, and phagocytosis were enriched. For the cellular component, tertiary granules,
collagen trimers and secretory granule membranes were the main locations. In the MF
category, amyloid-beta binding, immunoglobulin binding and IgG binding were enriched.
In addition, KEGG enrichment analysis was applied to find some pathways where the
genes were enriched, such as Fc gamma R-mediated phagocytosis, Staphylococcus aureus
infection, osteoclast differentiation, and so on (Figure 6A). Based on the GO and KEGG
pathway enrichment analyses, the networks of the genes, terms and their interactions were
visualized (Figure 6B).

In addition, based on the groups with low and high expression levels of HAMP in KIRC,
we explored the HAMP-related signaling pathways in the GO and KEGG enrichment analyses,
which showed significant differences (FDR < 0.05 and p < 0.05). The selected pathways in
the groups with high and low expression are listed in Supplementary Tables S3 and S4. The
KEGG pathway analysis revealed two pathways that were positively correlated with high
expression levels of HAMP, namely the oxidative phosphorylation and T cell receptor
signaling pathways, and six negatively related pathways: autoimmune thyroid disease, the
B cell receptor signaling pathway, Huntington’s disease, the JAK-STAT signaling pathway,
non-small cell lung cancer, pancreatic cancer and small cell lung cancer (Figure 6C). Two
GO items, namely the ammonium ion metabolic process and beta catenin binding, showed
an upregulation of HAMP according to the FDP q-values and NOM p-values (Figure 6D).
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4. Discussion

HAMP is closely related to ferroptosis, which is a key factor of the iron overload disease
hemochromatosis [37]. It is reported ubiquitously expressed in cancers and can, to some
extent, be a cancer-driving gene [38]. We found that HAMP was highly expressed in KIRC,
KIRP, LUAD, SKCM, and so on, which corresponds to Liu’s former study [13]. Significant
differences between normal and tumor tissues in KIRC were explored. In a previous study,
KIRC patients had a poor prognosis, especially those in advanced T stages [3]. Our study
has proven the overexpression of HAMP in later stages of the disease. We also observed
that the expression level of HAMP is closely related to the probability of survival and
the higher the expression, the worse the DDS, OS and PFS. In addition, our results also
showed the mechanism of how HAMP affects prognosis, namely the interactions among
the expression level of HAMP and the degree of immune infiltration and different immune
markers. Based on all these results, HAMP can be considered as a potential diagnostic and
prognostic biomarker and could be an immune-related treatment target.

We first analyzed the mRNA expression levels of HAMP in different cancers with
Oncomine and R programming based on the TCGA database. There were discrepancies
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in the differential expression levels of HAMP in different cancer types among the differ-
ent databases, which may reflect the differences in the data gathering methods and the
fundamental mechanisms in terms of biological characteristics. With the same results in
different methods, we can safely draw the conclusion that HAMP plays a significant role
in cancers. In addition, it can be said that methylation in the promoter genes related to
tumors is significantly connected to the clinical behavior of cancers [39,40]. Our UALCAN
results showed the lower promoter methylation level of HAMP in KIRC, further confirming
HAMP as a dangerous factor for epigenetic alteration.

Moreover, since the mRNA and protein expression levels of HAMP varied between
normal and tumor tissues in KIRC, it showed high prognostic potential. In terms of
prognosis, the T stage is one of the well-known prognostic factors, and a higher T stage
indicates poor prognosis [41]. Upregulated expression levels of HAMP are related to the
clinical stage and are highly likely to be a key factor in a lower probability of survival.
Our study also found that a high expression level of HAMP is related to the diagnosis
of KIRC. However, further steps are needed to explore the specific mechanisms and find
strong support.

As we know, the immune system plays a major role in the control and progression
of cancer [37]. Some studies have also reported that immune infiltration has an influence
on the therapeutic responsiveness and prognosis of KIRC patients [42]. Thus, we have
provided insight into the relationship between the expression levels of HAMP and immune
cell infiltration in KIRC. In this study, the results showed that the expression level of HAMP
has a converse correlation with the infiltration level of regulatory T cells and neutrophil.
Former studies have shown that the neutrophil recruitment/activation results in tumor cell
death, while Treg cells are recruited into the tumor microenvironment to mediate immune
suppression, which is the reason for their positive and negative relationship, respectively,
with the expression level of HAMP [43,44]. The results also showed that the expression level
of HAMP has a strong positive correlation with the extent of infiltration of macrophages,
Treg, Th1 cells, T cells and B cells. Moreover, the relationship between the expression level
of HAMP and various immune cells’ gene markers indicates that HAMP could regulate the
tumor immune microenvironment. The gene markers of M1 macrophages (NOS2, IRF5 and
PTGS2) had a weak relationship with HAMP expression, whereas those of M2 macrophages
were strongly correlated with HAMP, which predicted the regulatory function of HAMP in
TAM polarization. In addition, the infiltration of a large number of Treg cells into tumor
tissues is often associated with poor prognosis [45]. The increased expression of HAMP
was found to have a significant correlation with Treg cells’ gene markers in KIRC. These
findings suggested that HAMP plays a role in the recruitment and functioning on the
immune infiltrating cells in KIRC.

After we constructed a PPI network of HAMP’s co-expressed genes in STRING and
found their intersections in R, the collected 48 genes showed a strong relationship with
HAMP. In addition, the selected 10 hub genes revealed a high degree of interaction, thus
indicating potential biomarkers of KIRC. Based on the GO and KEGG pathway analyses,
we found that HAMP was significantly associated with several immune response pathways
and cancer pathways. Our study showed that HAMP is related to the biological processes
of regulating lymphocyte activation, synapse pruning and phagocytosis, which correspond
to the tumor immune environment. Moreover, the GO and KEGG pathways revealed the
differentially enriched gene sets between the groups with high and low expression levels.
The JAK-STAT signaling pathway and the related pathways were associated with increased
mortality rates in renal cancer [46].

However, there are some defects and imperfections in our experiment. Although
we used multiple databases for a comprehensive analysis, there were differences in the
algorithms among the databases which may have led to deviations in the results. Similarly,
as the data came from TCGA, we could not exclude whether the patients’ survival and
other indicators were interfered with by external factors such as drug use. In addition,
the specific mechanisms underlying the role of genes in cancer diagnosis remain to be
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explored, as the relationship between immune infiltration markers and gene expression
is not sufficient to support this hypothesis. Nevertheless, our experiment is the first to
investigate the effect of a high expression level of HAMP in KIRC on the prognosis of tumor
patients, and it provides a possible target for clinical treatment.

5. Conclusions

In summary, our study has provided an insight into the potential prognostic use of
HAMP, and thus it may act as a diagnostic biomarker and therapeutic target related to
immune infiltration in ccRCC.

We found through bioinformatic analyses that the ferroptosis-related gene HAMP is a
key gene in the KIRC. The expression of HAMP significantly increased in KIRC, and the
evaluated expression levels of HAMP played a potentially important role in the diagnosis
and prognosis of KIRC. Additionally, HAMP expression is positively related to immune
infiltration in KIRC. Moreover, we found 39 genes that are similar to HAMP and selected
10 hub genes, which function in several KEGG and GO pathways.
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