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Abstract: Characteristics of the urban environment (e.g., building density and road network) can
influence the spread and transmission of coronavirus disease 2019 (COVID-19) within cities, especially
in high-density high-rise built environments. Therefore, it is necessary to identify the key attributes
of high-density high-rise built environments to enhance modelling of the spread of COVID-19. To
this end, case studies for testing attributes for modelling development were performed in two
densely populated Chinese cities with high-rise, high-density built environments (Hong Kong and
Shanghai).The investigated urban environmental features included 2D and 3D urban morphological
indices (e.g., sky view factor, floor area ratio, frontal area density, height to width ratio, and building
coverage ratio), socioeconomic and demographic attributes (e.g., population), and public service
points-of-interest (e.g., bus stations and clinics). The modelling effects of 3D urban morphological
features on the infection rate are notable in urban communities. As the spatial scale becomes larger,
the modelling effect of 2D built environment factors (e.g., building coverage ratio) on the infection
rate becomes more notable. The influence of several key factors (e.g., the building coverage ratio
and population density) at different scales can be considered when modelling the infection risk in
urban communities. The findings of this study clarify how attributes of built environments can be
applied to predict the spread of infectious diseases. This knowledge can be used to develop effective
planning strategies to prevent and control epidemics and ensure healthy cities.

Keywords: urban environment; COVID-19; infection rate; population

1. Introduction

The coronavirus disease 2019 (COVID-19) has emerged as an international public
health emergency and affected millions of people worldwide since its outbreak in late 2019.
According to the World Health Organization, as of 6 January 2023, more than 0.65 billion
people have been infected across more than 188 countries and territories, and 6.6 million
people have died. Compared with previous outbreaks of severe acute respiratory syndrome
and Middle East respiratory syndrome, COVID-19 is more contagious and more widely
transmitted within the communities [1]. The high infection rate coupled with large-scale
population movement, particularly in large and densely populated cities, have increased
the speed and scope of disease spread, and adversely affected public health and safety, and
economic development [2].

The outbreak of COVID-19 has stimulated multidisciplinary research pertaining to
its origins and mechanisms [3]. Epidemiologists have used mathematical models to un-
derstand its development and transmission patterns [4], and public health scientists and
geographers have used geographic information system (GIS) data to explore COVID-19 risk
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factors and spreading patterns [5]. Overall, research on the risk factors and transmission
routes has attracted substantial interest across domains.

The spread of COVID-19 is influenced by socioeconomic factors (e.g., population
density [6], income, and race [7]), built-environment factors (e.g., road density [8], building
density [9], floor area ratio [10], and parks and vegetation [11,12]), environmental factors
(e.g., air pollution [13] and humidity and temperature [14]), and public service factors
(facilities such as bus stations, clinics, and restaurants [15]). The factors driving the spread
of COVID-19 may differ by scale, e.g., country, city, and urban district [16]. At the country
or city scale, the infection rate of COVID-19 is mainly influenced by human factors such
as population density, per capita GDP, population mobility, and travel intensity [8]. Large
and densely populated cities are typically associated with high infection risk. With the
increase in the available infection data, several researchers have investigated the impact of
urban environments on the infection risks of COVID-19 at fine spatial scales, e.g., streets
and districts, also known as the microscale [7,17]. The urban environment has been noted
to considerably influence the spread of COVID-19 [16,17].

According to preliminary results, widely tested microscale urban environmental
characteristics have included the urban form, medical and health facilities, residential
density, land use, transportation and municipal infrastructures, and green spaces and
parks [7,17,18]. Among these, urban density, regarding either population or buildings, has
been confirmed to positively affect the spread of infectious diseases, as high-densely urban
areas tend to create more social contacts in their daily lives of residents and thus cause
higher infection risk [19]. Other than urban density, some public facilities (e.g., clinics) have
also been found to increase the infection rate. For example, clinics and restaurants are two
built environments that have been shown to influence the number of confirmed cases [15].
This might be due to the high usage of public facilities with increased exposure risk of the
virus, and thus confronted with high infection risk [17]. Similarly, road networks seem
to increase the risk of COVID-19 transmission in some cities such as Hong Kong, China
and Massachusetts, US [15,20]. In addition, some studies have shown that socioeconomic
conditions (e.g., race and income) influence infection rates in some American cities [20,21],
although these factors have not been significant in other areas, such as Hong Kong and
Iran [22,23]. Interestingly, urban climatic conditions (e.g., air temperature and ventilation)
are thought to be associated with the pandemic, as warmer temperatures tend to suppress
the spread of infectious diseases [24,25]. Moreover, some factors, such as the presence of
urban greenspaces, were negatively associated with the infection rate [26].

Although certain studies have highlighted that various built-environment factors
influence the infection risk in urban districts, some uncertainties and issues remain. The
driving factors have varied across cities and contrasting results have been obtained in
some studies. For example, Hamidi [19] indicated that metropolitan size more strongly
influenced the transmission risk of COVID-19 than did population density, whereas other
researchers have reported the stronger influence of population density [22,27]. In Hong
Kong, Yip [15] discovered that social facilities, such as clinics, restaurants, and public
markets, are the main drivers influencing the prevalence of COVID-19, while Kwok [22]
indicated that urban geometry has a stronger influence on infection rates than do socio-
demographic characteristics. Using indicators such as green space, some studies have
shown a negative relationship [26], while others have reported a positive association with
the spread of COVID-19 [28].

Strong evidence also remains lacking regarding the associations between urban de-
signs and infection risk, which restricts public health officials to simulate at-risk neighbour-
hoods and urban planners in developing effective health planning strategies to facilitate
healthy urban development [19,22]. Specifically, Asian cities are very different from Eu-
ropean/American cities because of its high-rise, high-density built environment with a
large population density. Without considering factors regarding three-dimensional (3D)
urban design/morphology in modelling, it may be difficult to simulate the COVID-19 risk
accurately [22].
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More importantly, many studies have emphasized the importance of urban morphol-
ogy to the epidemic; however, most such studies have only examined a few morphological
parameters, which becomes a limitation regarding how to consider a range of variables
fully reflect the impact of urban morphology on COVID-19 risk in simulation/modelling.
For example, Kan [9] observed that a higher building density corresponds to more local
confirmed cases, while Guan [8] suggested that road network settings contribute more to
the infected cases than other factors. Compared with the two-dimensional (2D) building
density, the 3D morphological parameter of building floor ratio, was found to have more
significant influence on the infections at Wuhan [29], nevertheless, a contrasting result
was obtained at London [18]. Similar with building floor ratio, sky view factor is another
typical 3D morphological parameter, which was found to be a good indicator in mod-
elling infection risk [22,28]. Moreover, urban climatic conditions (e.g., urban ventilation)
have recorded to be associated with the pandemic, as finer ventilation conditions tend
to suppress the spread of infectious diseases [30,31]. As two representative indicators in
measuring urban ventilation [32,33], frontal area density and building height to width ratio,
might have great potential in modelling infection risk.

To fill this knowledge gap, this study aimed to investigate key attributes of high-rise,
high-density built-environment that can be used to develop prediction model of COVID-19
risk. All the above-mentioned urban morphological parameters were tested and system-
atically assessed in this study, in order to obtain a full understanding about the impact
of urban morphology on the transmission of infectious disease for modelling, and thus
establish appropriate planning parameters and develop indicators of risk reduction before
a new pandemic occurs. Specifically, two typical densely populated Chinese cities with
high-rise, high density (Hong Kong and Shanghai) were selected as empirical cases in this
study. The modelling influences of 2D and 3D urban morphology factors, and socioeco-
nomic, demographic, and natural parameters on infection rates were explored using both
correlation and regression methods. The findings will help (1) public health officials to
locate at-risk neighbourhoods with high infectious risk for emergency management and
(2) urban planners to formulate appropriate prevention and control strategies and policies
to ensure the health of the population.

2. Methods
2.1. Study Area

Hong Kong (22◦ N, 114◦ E) is a Special Administrative Region of China in the eastern
Pearl River Delta (Figure 1). It is a high-density city with average and maximum building
heights of over 40 m and several hundred meters, respectively. Hong Kong consists of
a group of islands and a peninsula, covering an area of 1000 km2, with a population of
7.5 million. The city has a hilly topography, and only 25% of the land is developed. Since
the initial outbreak, Hong Kong has experienced five waves of COVID-19. The fifth wave
emerged in late December 2021 and remains ongoing at the time of drafting this paper.
According to the government’s statistical report on Hong Kong, published on 27 September
2022, COVID-19 has infected more than 0.9 million people in Hong Kong and claimed
9921 lives.

Shanghai (31◦ N, 121◦ E) is the most prosperous and largest city in China. Similar to
Hong Kong, Shanghai is a coastal city, being near the east coast of China (Figure 1). It is
located on the alluvial plain of the Yangtze River Delta, with a permanent population of
more than 24 million. Shanghai consists of 16 districts, seven of which (Huangpu, Xuhui,
Changning, Jing’an, Putuo, Hongkou, and Yangpu) constitute the central urban area. The
other regions represent peri-urban or rural areas. Shanghai successfully prevented and
controlled COVID-19 transmission until the community outbreak on 1 March 2022, in which
0.6 million people were infected within two months. The city implemented a large-scale
lockdown policy and is the third large city in China, following Wuhan and Xi’an, to have
been subjected to large-scale and long-term lockdown.
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Figure 1. Locations of Hong Kong and Shanghai in China.

These two cities were selected in this study for the following two reasons. First, both
cities are highly dense and compact, as the averaged building height for Hong Kong and
Shanghai were 55 m and 17 m, respectively, while the building coverage ratio could reach
above 40% at the core areas of both cities. Moreover, both cities faced similar environmental
issues, such as poor air quality and ventilation condition [32,34]. Their analyses were
thus expected to provide valuable knowledge regarding how to select key attributes for
modelling influence of urban density on the spread of COVID-19, which can facilitate
the formulation of effective urban planning strategies for the prevention and control of
COVID-19 in high-densely urban districts. Second, the cities adopted different prevention
and control policies. Shanghai implemented the “dynamic zero COVID-19” policy, which
involved mass testing and strict quarantine measures to mitigate the outbreak of COVID-19
before community transmission could occur. The policy adopted in Hong Kong was less
stringent, although frequent outbreaks have occurred. As in some Western countries,
measures such as vaccination and non-pharmaceutical interventions (e.g., the use of face
masks and limits on gathering sizes) have been introduced in both cities. The comparative
assessment of both cities with different control policies can help clarify the transmission
mechanisms of COVID-19 to facilitate the formulation of adaptable prevention strategies
for sustainable development.

2.2. Datasets
2.2.1. Infection Data

To identify key attributes for modelling the impact of the urban environment on the
spread of COVID-19, data regarding confirmed cases from Hong Kong and Shanghai were
collected. Data for Hong Kong, including records of 59,233 cases between 12 February 2020,
and 6 February 2022, were collected from its government website (https://data.gov.hk,
accessed on 18 March 2022). Each record included the characteristics of the individuals,
including age, gender, and location information. Data for Shanghai, including records of
112,956 confirmed cases, were acquired from the official website of the Shanghai municipal
health commission (https://wsjkw.sh.gov.cn/, accessed on 15 July 2022). Each record
included location information.

Figure 2a,b shows the distributions of confirmed cases in Hong Kong and Shanghai,
respectively. The number of infected cases is presented by a colour gradient, with red and
green representing areas with more and fewer infected cases, respectively. High-density
and populous urban areas had more infection cases than other regions. Specifically, most
of the high-risk areas (marked in red) in Hong Kong were downtown regions such as
the Kowloon Peninsula and Central District. Similarly, in Shanghai, the central urban

https://data.gov.hk
https://wsjkw.sh.gov.cn/
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areas (e.g., Huangpu and Hongkou) included more red regions than the other areas (e.g.,
Baoshan).
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2.2.2. Built-Environment Factors

In this study, 13 indicators were used to quantify the high-rise, high-density built
environment. These include six urban morphological indicators (sky view factor (SVF);
floor area ratio (FAR); frontal area density (FAD); height to width ratio (HW); building
coverage ratio (BCR); road density (RD)), four land cover attributes (densities of restaurants
(D_Res), bus stations (D_Bus), clinics (D_Cli), and shops (D_Sho)), one environmental
index(vegetation index (VI)), and two socioeconomic indices (nightlight intensity (NL); and
population (POP)). The selection of all variables was aimed to model COVID-19 risk based
on the impacts of 2D/3D urban morphology [22,29], land use facilities, and socioeconomic
status [15,22], which have been noted as factors associated with infectious diseases based
on prior research [16,17]. The descriptions and basic statistics of these factors are provided
in Table 1.

Table 1. Built-environment factors and their descriptions.

Variable
Median (IQR)

Hong Kong Shanghai

Amount of sky that can be seen from the ground (SVF) 0.54 (0.43–0.65) 0.68 (0.61–0.75)
Ratio of a building’s floor area to the site area (in which the
building is located) (FAR) 10.20 (7.52–14.90) 4.65 (3.42–5.82)

Density of a building’s frontal area to the site area (FAD) 0.36 (0.26–0.49) 0.17 (0.11–0.23)
Ratio of the average building height to the width of the
street abutting the building (HW) 3.52 (2.58–4.79 1.57 (1.23–1.89)

Ratio of the building coverage area to the site area (BCR) 0.20 (0.14–0.28) 0.24 (0.19–0.29)
Ratio of the road area to the site area (RD) 0.26 (0.19–0.35) 0.13 (0.09–0.17)
Number of restaurants in a site area (D_Res) 1.23 (0.59–2.49) 1.05 (0.53–1.73)
Number of bus stations in a site area (D_Bus) 0.62 (0.37–0.84) 0.72 (0.39–1.40)
Number of clinics in a site area (D_Cli) 1.14 (0.52–2.14) 0.25 (0.12–0.43)
Number of shops in a site area (D_Sho) 0.19 (0.10–0.32) 0.09 (0.05–0.13)
Ratio of the vegetation area to the site area (VI) 0.23 (0.16–0.34) 0.15 (0.13–0.17)
Nightlight intensity in a site area (NL) 72.27 (52.17–87.05) 37.08 (31.66–43.97)
Population of a site area (POP) 502.9 (301.8–724.4) 268.1 (161.6–470.7)

Urban GIS data of the buildings and roads for Hong Kong and Shanghai were collected
from the respective planning departments and used to calculate the urban morpholog-
ical parameters. Data regarding urban facilities, such as restaurants, clinics, and shops
were acquired by crawling the point-of-interest data from Baidu maps. The VI was deter-
mined using Landsat-8 satellite data. Data regarding human factors (i.e., economic and
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demographic data) were obtained from the open data products of several organizations.
Specifically, the Luojia nightlight data product was used to obtain the economic level, and
the global population data product provided by WorldPop (https://www.worldpop.org/,
accessed on 19 March 2022) was used to obtain the POP for both cities.

To ensure consistency across the factors, all the datasets were spatially aggregated
into averaged values based on a defined fishing grid at certain resolutions (e.g., 500 m by
500 m). Figures 3 and 4 show the gridded sample data for both Hong Kong and Shanghai,
including the SVF, BCR, RD, D_Sho, POP density, and infections, respectively. The data are
consistent in terms of the locations and resolutions.
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2.3. Identification of Key Attibutes for Modelling COVID-19 Risk

Correlation and regression analysis methods were used to identify key attributes of
the built environment that can be used to model the influence of COVID-19 risks. First, a
correlation analysis was performed to identify the factors associated with infections. Given
that some of the tested variables might not be linearly correlated, the nonparametric corre-
lation methods, including both Spearman and Kendall’s tau-b, were used. Subsequently,
multiple linear regression and stepwise linear regression methods were used to analyse
the modelled impact of these factors on the infection risks. Given that the distribution of
confirmed cases is skewed, a log-transform was applied to obtain an approximately normal
distribution [35]. The log-transformed infection data were then further normalized into the
range of 0 to 1 as a measure of the infection rate or infection risk.

The multiple linear regression model can be expressed as follows [29]:

y = β_0 + β_1 x_1 + β_2 x_2 +· · ·+ β_i x_i + ε (1)

where β_i represents the regression coefficient of the i-th factor, x_i represents the built-
environment factor, and y represents the density of infections in a site area.

Based on the above linear regression model, a stepwise regression can be built via
a step-by-step construction of a linear regression model. In each step, the method must
examine the statistical significance of each independent variable, so that the potential
explanatory variable can be added and removed in each iteration. Based on different
selection criteria, the stepwise regression model includes different running strategies, such
as forward selection, backward elimination and bidirectional elimination. In this study, a
bidirectional elimination strategy was used to select most of the appropriate variables.

3. Results
3.1. Association Analysis for Variable Selection

By dividing each city into multiple grid cells (i.e., 500 m by 500 m), hundreds of valid
values were obtained for each variable (i.e., the built-environment factors and infection
rate). Using the multiple values of each variable, both Kendall’s tau-b and Spearman
correlation analyses were performed to investigate the associations between the urban
environment factors and infection rate for modelling variable’s selection.

Table 2 shows the correlation statistics among the 13 tested built-environment factors
and the infection rate for Hong Kong and Shanghai. Other than the indicator of HW, all the
factors were consistently correlated with the infection rate. As expected, the sky view factor
and green space were negatively correlated with the infection rate. Notably, D_Cli, and
POP were strongly correlated with the infections in both cities, as the coefficients with either
Spearman or Kendall’s tau-b methods were above 0.4. HW and NL were weakly correlated
with the infection rate. In particular, HW was not significantly correlated with the infection
rate in Hong Kong. Given that HW was weakly correlated with the infection rate in
Shanghai; however, it was retained in the following analysis. This result indicated that the
infection rate is likely to be driven by a few specific factors rather than all of the variables.
According to the correlation analysis, some common factors, such as BCR, D_Cli and POP,
have consistent correlation coefficients for both Hong Kong and Shanghai, which indicate
that both cities have some similar characteristics in terms of COVID-19 transmission.

Table 2. Correlation coefficients between the selected built-environment features and COVID-19 risks
for Hong Kong (HK) and Shanghai (SH).

Variable
Hong Kong Shanghai

Kendall’s Tau-b Spearman Kendall’s Tau-b Spearman

Sky view (SVF) −0.38 ** −0.54 ** −0.45 ** −0.64 **
Floor area (FAR) 0.30 ** 0.42 ** 0.42 ** 0.59 **
Frontal area (FAD) 0.37 ** 0.52 ** 0.43 ** 0.60 **
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Table 2. Cont.

Variable
Hong Kong Shanghai

Kendall’s Tau-b Spearman Kendall’s Tau-b Spearman

Height to width (HW) 0.03 0.05 0.22 ** 0.32 **
Building coverage (BCR) 0.37 ** 0.53 ** 0.49 ** 0.67 **
Road (RD) 0.36 ** 0.52 ** 0.22 ** 0.31 **
Restaurant (D_Res) 0.47 ** 0.54 ** 0.35 ** 0.49 **
Bus (D_Bus) 0.36 ** 0.52 ** 0.36 ** 0.51 **
Clinic (D_Cli) 0.48 ** 0.65 ** 0.43 ** 0.60 **
Shop (D_Sho) 0.44 ** 0.61 ** 0.25 ** 0.36 **
Green space (VI) −0.26 ** −0.37 ** −0.32 ** −0.44 **
Nightlight (NL) 0.14 * 0.23 * 0.22 ** 0.31 **
Population (POP) 0.41 ** 0.57 ** 0.46 ** 0.64 **

Note: * p value < 0.05, ** p value < 0.01.

3.2. Regression for Model Construction

To further identify the factors that were most strongly correlated with the infection
rate that can be used to simulate COVID-19 risk, a stepwise regression method was applied
to model the infection risk in both cities.

According to the regression results, RD, D_Sho, D_Cli, and POP were the main driving
factors for Hong Kong, whereas BCR, RD, D_Sho, D_Cli, and POP were the main driving
factors for Shanghai. Table 3 presents the regression results for both cities. The left and
right sides show the regression results for Hong Kong and Shanghai, respectively, with the
columns presenting the unstandardized coefficients, standardized coefficients, and p-values.
The R squares of the regression models for both Hong Kong and Shanghai reached 0.60
and 0.49, respectively, indicating that most of the variability in the infections for both cities
could be explained.

Table 3. Stepwise regression results (e.g., regression coefficients and p values) for Hong Kong
and Shanghai.

Factor
Hong Kong Shanghai

Unstandardized Standardized p-Value Unstandardized Standardized p-Value

Constant 0.31 0.00 −0.02 0.43
BCR 0.86 0.27 0.00
RD 0.67 0.29 0.00 0.30 0.10 0.00

D_Cli 0.03 0.18 0.04 0.13 0.18 0.00
D_Sho 0.31 0.20 0.02 0.29 0.09 0.01
POP 0.003 0.40 0.00 0.001 0.30 0.00

Hong Kong: R2 = 0.60, F = 45.35, p < 0.01. Shanghai: R2 = 0.49, F = 87.28, p < 0.01.

3.3. COVID-19 Risk Mapping

The stepwise models from the above results were used to simulate infection risk maps
for Hong Kong and Shanghai, as shown in Figures 5a and 6a, respectively. Red and green
indicate areas with high and low infection risks, respectively. The observed infection cases
in both cities are presented in Figures 5b and 6b for comparison. Compared with the actual
observations, the predicted results provide finer spatial detail regarding the high-risk areas
and can clarify the infection risk for regions in which actual infection data are not available.
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Based on these results, it is apparent that most of the high-risk neighbourhoods (areas
with a red colour) are located in the core urban areas of both cities, such as Yau Tsim Mong
and Wan Chai districts, Hong Kong, and Huangpu district, Shanghai. These results might
be vital in assisting urban planners to develop reasonable prevention and control plans
in advance.

4. Discussion

This study identified key attributes of built environment and developed empirical
models that can be used to simulate COVID-19 risk in high-rise, high-density cities based on
case studies from two Chinese cities with similar urban morphology. The regression results
for both cities highlighted that several urban features, such as the BCR, RD, POP, D_Sho,
and D_Cli, considerably useful to modelling community transmission risk of COVID-19.
All these important parameters could be classified into three categories, including urban
morphological attributes (e.g., BCR and RD), socio-economic activities (e.g., shops and
clinics), and demographic characteristic at the neighbourhoods.

The variable selections of our empirical models are consistent with results of previous
studies. Take the impact of building density for example, Kan [9] and Hamidi [19] confirmed
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that the urban density took effect for some US cities and Hong Kong, nevertheless, a
contrasting result was recorded at London [18], which might be due to the impact of some
control variables (i.e., socioeconomic factors). Other than building density, dense road
network was found to contribute more infections in high-densely cites of Hong Kong
and Shanghai, whereas similar discovers were only found for some cities with low-rise
low-dense urban morphology [8]. Results of this study also indicated that POP takes an
important effect at the communities, as the overcrowding increases the opportunities with
face-to-face infections. Similar findings have been recorded in previous studies [22,27].
Moreover, this study indicated that social activities have made almost equal contributions
to the prevalence of COVID-19, compared with urban morphology as well as POP, as the
standard regression coefficients of different variables were comparable for both cities (see
Table 3). Similar findings were also obtained in Hong Kong by Kwok [22]. Overall, our
empirical models were accurate, and this approach of model development could be applied
to other cities with similar urban environment.

However, as it is a study for model development, uncertainty regarding this empirical
model should be noted. Thus, the later subsections included (1) to describe the performance
and spatial uncertainty of potential variables for future modelling, and (2) to identify
key messages for planning recommendations and public health management that can be
extracted from our results.

4.1. Performance of Different Factors

According to the correlation and regression results, certain factors, such as BCR, RD,
POP, and D_Sho, were strongly correlated with the infection rate. Scatterplots with fitted
lines were constructed to investigate the influence of several typical factors (BCR, RD, POP,
D_Sho, D_Cli, and VI) on the infection rate. Figures 7 and 8 show these scatterplots between
the selected factors and the infection rate in Hong Kong and Shanghai, respectively. The
x and y coordinates represent the factor and the normalized infected cases, respectively.
The R squared value for each factor is also provided to evaluate how closely the points are
fitted to the trendline.
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The following conclusions were made. First, most of the selected factors were linearly
correlated with the normalized infection rate, although the fitted lines of some indices
are not that satisfactory, such as the VI for both cities. Second, the impacts of different
factors varied across cities. For example, in Shanghai, BCR and POP (R squared values
of more than 0.3) were more strongly correlated with the infection rate than were other
indices (R values below 0.3). In contrast, the dominant factors for Hong Kong were D_Cli
and D_Sho. Third, no single factor could explain the infection rate in communities. The
consideration of multiple factors, particularly the combination of both the built environment
and socioeconomic factors, enhanced the prediction and simulation of infection risks for
both cities.

4.2. Scale Effect

To clarify the driving force associated with all factors at different scales, the impact
of all variables on infection risk at different scales was analysed. To conduct a valid
statistical analysis, the spatial scale could not be excessively large, as the sample size may
be insufficient. Moreover, the statistical unit could not be too large owing to the limited
data on confirmed cases in both cities. Thus, spatial scales of 200 m, 400 m, and 600 m were
selected for Hong Kong, while 300 m, 600 m, and 900 m were selected for Shanghai.

Table 4 presents the stepwise regression results at different spatial scales; based on this
information, the following conclusions can be derived.

First, the influencing factors varied across scales. The effect of many factors was
notable at finer spatial scales, whereas few factors influenced the infection rate at larger
scales. For example, in Hong Kong, seven factors influenced the infection rate at the scale
of 200 m, while fewer factors were influential as the scale increased to 600 m. Second,
certain key factors (e.g., BCR and POP) remained dominant at all scales, indicating that
these factors might drive the community spread of COVID-19. In addition to BCR and POP,
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RD was an influential factor at finer spatial scales (e.g., 200 and 400 m). However, its impact
disappeared at larger scales for both cities. Third, the results of both cities were similar.
Some common factors, including POP and BCR, greatly impacted the community infection
rate in both cities. Other than POP and BCR, socioeconomic activities, such as D_Sho and
D_Cli, also affected both cities, although D_Sho was more significant in Hong Kong, and
D_Cli in Shanghai. This difference might be attributable to the distinct control policies
of the two cities: Hong Kong citizens were free to shop outdoors during the pandemic,
while most citizens of Shanghai could not, which reduced the risks associated with outdoor
shopping activities in the latter city. Fourth, the scale of 400–600 m was suitable for the
analysis as it reflected the spatial details at the community level of both cities and ensured
an acceptable prediction accuracy. This scale was also recommended by Niu [29].

Table 4. Stepwise regression results at different spatial scales for Hong Kong and Shanghai.

Variable

Standardized Coefficients

Hong Kong Shanghai

200 m × 200 m 400 m × 400 m 600 m × 600 m 300 m × 300 m 600 m × 600 m 900 m × 900 m

SVF −0.28 ** - - −0.56 ** - -
FAR −0.18 ** - - −0.50 ** - -
FAD - - - 0.30 ** - -
HW - - - −0.16 ** −0.09 * -
BCR - 0.21 ** 0.30 ** 0.30 ** 0.23 **
RD 0.18 ** 0.26 ** - 0.15 ** 0.10 ** -

D_Res - - - 0.10 ** - -
D_Bus - - - - - -
D_Cli 0.23 ** - - 0.06 * 0.23 ** 0.35 **
D_Sho 0.13 ** 0.29 ** 0.39 ** - - -

VI - - - −0.08 ** - -
NL 0.08 * - - - - -

POP 0.19 ** 0.32 ** 0.35 ** 0.24 ** 0.36 ** 0.39 **
R2 = 0.31 R2 = 0.51 R2 = 0.65 R2 = 0.43 R2 = 0.58 R2 = 0.69

**: p value < 0.01; *: p value < 0.05.

4.3. Implications

Generally, our results showed the importance of developing empirical models for
infection risk assessment and mapping. Rapid acquisition of fine-scale epidemic data
is crucial for developing epidemic prevention and control policies. The lack of precise
infection data (e.g., before the outbreak of an epidemic) limits the assessment of infection
risk and formulation of appropriate prevention and control plans, which are important to
the urban planning of healthy cities [36]. This study provided evidence that the microscale
urban environment is strongly associated with epidemic disease transmission and proposed
a rapid and efficient epidemic simulation method.

Considering the impact of different factors based on variable selection, the following
recommendations can be provided for the design of urban environments to reduce trans-
mission risks. First, the results revealed that urban morphology, particularly BCR and RD,
greatly influenced the infection rates in both cities. The finding is partly consistent with the
study conducted by Kwok [22] in Hong Kong, but the authors of that study found that the
road network was negatively associated with the COVID-19. This difference might be due
to the lower number of infections and larger statistical scale used. As in some prior stud-
ies [22,37], the proposed urban morphology parameters, including the BCR and RD, could
effectively reflect the level of infection risk and thus might guide (1) public health officials
to reduce population exposure and social contact in areas with higher BCR and RD and
(2) planners in developing appropriate design strategies to improve ventilation and reduce
population density in these risky areas for minimizing the infection risks in communities.
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Second, areas with higher population densities had a higher infection risk in both
cities. However, population density is impossible to reduce naturally. Thus, health offi-
cials and planners should develop plans to improve spatiotemporal mobility of different
individuals in order to reduce the density of communities in various time slots, despite
overall population density cannot be changed. Given that some morphology parameters
(e.g., SVF) were highly associated with population density, the infection risk could also be
reduced through volumetric design, in order to maintain total population of space usage at
the same time reducing people clustering in areas with poor ventilation.

Third, in addition to the urban morphology and POP, social activities, such as those
at shops and clinics, may increase COVID-19 transmission risk, as similarly observed
in the results of Yip [15]. Given that these factors reflect the flow of the population, it
can be concluded that the transmission risk is considerably influenced by population
movement. Thus, the spatial scales of public services must be appropriately designed,
and population mobility patterns must be changed to ensure healthy cities. Particularly,
whether centralized urban design with huge population density in several central business
districts or scattered urban design with multiple small blocks having a high land use mix
should be considered.

Fourth, although the performance of negative indicators, such as HW and green space,
had some uncertainties, their negative correlations with the infection risk are clear in this
study, which might indicate that the transmission risk of COVID-19 could be reduced with
finer ventilation conditions and more green space.

5. Conclusions

Statistical methods were applied to infection data from two Chinese cities to develop
empirical model for assessing impact of microscale urban environment features (e.g., urban
morphological indices, green spaces, urban facilities, and socioeconomic and demographic
data) on transmission and infection rates. A correlation analysis was performed to identify
key urban environmental factors associated with the infection rate for modelling. Moreover,
a stepwise regression method was used to evaluate the impacts of different factors and
their modelling capabilities.

Experimental results indicated that the results of empirical models for both cities were
similar. Some common factors, including urban density, population, and social activities,
were noted to influence the spread of COVID-19 in communities for both cities, which were
suitable for model development. The difference is that different socioeconomic factors take
the main effect, as the density of shops was more significant in Hong Kong, and density of
clinics in Shanghai. This difference might be attributable to the distinct control policies of
both cities, as Hong Kong citizens were free to shop outdoors during the pandemic, while
most citizens of Shanghai could not. Moreover, the impact of the factors varied across
scales. Specifically, as the scale increased, the influence of several factors disappeared.
Factors such as building density and social activities had an impact on larger scales, while
some 3D urban morphological parameters, such as SVF and FAR, only had an impact on
smaller scales.

Overall, this study (1) highlighted the notable attributes of the urban environment that
can be used to model the transmission mechanism of infectious disease at the community
level and (2) clarified the modelled influence of various built-environment factors on the
infection rate along with their scaling effects. An efficient infection risk warning model
was built and verified. This model can be used to identify high-risk urban areas in advance.
The proposed methods and findings can provide a reference for epidemic risk assessment
and promote the development of reasonable prevention and control strategies.
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