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Abstract: Beijing has experienced rapid economic development since the reforms and opening up.
However, the traditional development model based on excessive energy consumption has posed
great challenges to the ecological environment. To curb environmental degradation and achieve
sustainable social development, Beijing has proposed to achieve carbon neutrality by 2050. As
an important indicator of energy consumption, it is necessary to clarify how energy intensity (EI)
affects carbon emissions (CE) to achieve carbon neutrality in Beijing by 2050. This study first
decomposes the drivers of CE in Beijing from 2010 to 2020 using the logarithmic mean Divisia index
(LMDI) method and comparatively analyses the impact of EI on CE. Then, the spatial Dubin model
(SDM) is used to analyse the spatial spillover effect of EI on CE at the regional level. Finally, the
macro moderating role of economic development in the effect of EI on CE is analysed. The results
show that the effect of EI has been the main driver of CE reduction in Beijing. Among the industrial
sectors, manufacturing and transportation have had the greatest success in reducing CE through EI
reduction. At the regional level, there is a spatial spillover effect of EI on CE, and the effect of carbon
reduction through the spillover effect of EI is greater than the direct effect of EI. Economic factors
have an enhanced moderating effect on the process of EI affecting CE, and this moderating effect has
threshold properties.

Keywords: Beijing; energy intensity; carbon emissions; LMDI; spatial spill over effect

1. Introduction

Climate change is a major challenge for the sustainable development of human soci-
eties [1–4], and carbon emissions (CE) are the main cause of climate change [5–9]. As the
world’s largest CO2 emitter [10], the Chinese government has been actively responding to
climate change and has made a number of commitments to reduce CE [11–13]. For example,
an action target was announced at the United Nations General Assembly in September 2020
to “reach the peak by 2030 and realize carbon neutral by 2060 (Double Carbon Target)”. To
achieve this goal, reducing emissions in each region will play a crucial role [14].

Beijing is located in the north-east of China, bordering the city of Tianjin to the east
and Hebei province to the west (Figure 1). As the political, economic, and cultural centre
of China, Beijing is far ahead in terms of economic and social development [11]. In 2021,
Beijing’s gross domestic product (GDP) per capita is RMB 183,980, ranking first in China.
However, the rapid economic development hides high energy consumption. According
to the Beijing Statistical Yearbook, total energy consumption in Beijing has increased from
41.44 million tonnes of standard coal in 2000 to 67.621 million tonnes of standard coal in 2020.
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The considerable energy consumption has led to serious problems, such as environmental
degradation, while promoting rapid economic development [15]. In recent years, Beijing
has promulgated and implemented a number of measures to reduce emissions. In 2020,
Beijing’s CE amounted to 49.6 million tonnes, a decrease of 8.94% from 2000. Despite the
remarkable achievements in reducing CE in Beijing, the city is still under great pressure
to reduce emissions at this stage. As the centre of scientific innovation and international
exchange in China, Beijing is also responsible for achieving the “Double Carbon” goal and
providing incentives and examples for other cities to make a low-carbon transition [16].
Therefore, it is essential to identify the main drivers of CE in Beijing and take targeted
policy measures.
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Excessive energy consumption is the main cause of CE [17] and improving energy
efficiency is critical to reducing CE. As a measure of the overall efficiency of energy use,
energy intensity (EI) can reflect the degree of economic dependence on energy. Reducing
EI helps to decouple energy consumption from economic development and is therefore
considered an effective pathway to green development [18,19]. Therefore, understanding
the relationship between EI and CE in Beijing is conducive to the formulation of scientific
and rational energy and environmental policies that will give Beijing the confidence to
successfully achieve its carbon reduction goal.

There are many studies on the factors that influence CE, but there is still room for
improvement. First, the existing studies on the impact of EI on CE are generally conducted
at the level of decomposition of the influencing factors of CE. Although the decomposition
analysis of the influencing factors of CE can comprehensively measure the contribution of
different factors to CE, it cannot clarify the elasticity coefficient of EI on CE. Second, the
existing studies on the relationship between EI and CE often do not take into account the
potential role of spatial factors and do not reveal the mechanism of EI on CE, leading to
specific research gaps in the relevant areas. Finally, existing studies tend to be national
or regional in scope, but relatively few studies address the relationship between EI and
CE in Beijing. To address the above problems, this study first measures the data of CE for
Beijing from 2010 to 2020, and then decomposes the factors affecting CE by constructing
the logarithmic mean Divisia index (LMDI) model. Second, the spatial Dubin model
(SDM) is used to analyse the spatial spillover effect in the process of EI influencing CE
reduction. Finally, the macro-regulatory role of economic development in EI influencing
CE is analysed. This study reveals the influence mechanism and characteristics of EI on CE
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in Beijing, thus providing scientific theoretical support and policy recommendations for
Beijing to promote the goal of carbon neutrality by 2050.

The rest of this paper is structured as follows: Section 2 reviews the literature. Section 3
describes the data and methodology. Section 4 contains the analysis and discussion of the
results. Finally, Section 5 concludes the whole study and suggests relevant countermeasures.

2. Literature Review

In recent years, CE has gained increasing attention in the face of climate deteriora-
tion [20–22]. Scholars have now conducted fruitful studies of CE around the world [23–25].
Moutinho et al. [26] analyse the relevant factors driving CE changes in Europe and find
that CE is closely linked to energy consumption and structure. Xu et al. [27] point out
that economic performance, population size, and energy structure are the most impor-
tant factors affecting changes in CE in China, with economic performance having the
greatest influence. Wu et al. [28] and Zhang et al. [22] conclude that energy structure in
China has a smaller influence on CE, while EI is the main factor affecting changes in CE.
Mousavi et al. [29] investigate the change factors of CE in Iran and suggest that the increase
in CE is mainly due to rapid economic development and an increase in energy consump-
tion, and the increase in the share of traditional fossil energy in Iran’s energy structure has
also contributed to CE. Sumabat et al. [30] examine the influencing factors of CE in the
Philippines and find that economic growth and people’s lifestyle are the most important
influencing factors of CE. Doganlar et al. [31] highlight a long-term influence of economic
growth, energy consumption, and financial development on CE using data for Turkey from
1965–2018. Sun et al. [32] investigate the main driving factors for CE in Belt and Road
Initiative countries and identify population, GDP per capita, EI, renewable energy, and
urbanization as five key factors. Ertugrul et al. [33] examine the relationship between CE,
trade openness, real income, and energy consumption using a sample of the ten largest
carbon emitters among emerging economies from 1971–2011.

Some articles have conducted an in-depth analysis of CE at the sectoral level [34–36].
Diakoulaki and Mandaraka [37] examine the changes in industry CE in EU countries from
1990 to 2003 and point out that production, EI, fuel mix, and utility mix are the main
factors affecting CE. Kopidou and Diakoulaki [38] explore the factors influencing CE from
the industrial sectors in four southern European countries and find that EI and economic
activities are the most important factors influencing CE variations. Lin and Benjamin [39]
suggest that GDP, EI, and carbon intensity are the key factors influencing CE in the trans-
port sector in China. Akbostanci et al. [40] analyse the factors causing changes in CE in
57 manufacturing industries in Turkey and find that changes in EI are the most important
factor for changes in CE. Li et al. [41] investigate the main drivers of CE in the agricultural
sectors in 18 European countries and conclude that changes in CE are closely related to EI.
O’Mahony [42] examines the drivers of CE in 11 final energy consumption sectors in Ireland
from 1990 to 2010 and concludes that EI and fossil fuel substitution can offset the increase
in emissions due to the scale effect of wealth and population growth. Han et al. [43] analyse
the factors affecting CE changes in Chinese agriculture and suggest that the scale effect
of agricultural development contributes positively to CE. Lin and Long [44] study CE in
China’s chemical industry and show that per capita production, scale of industrial economy,
EI, and energy structure affect CE significantly in the chemical industry. In addition to the
above influencing factors, industrial structure [45,46], urbanisation [21,47], foreign direct
investment [48,49], energy price [50,51], renewable energy consumption [52,53], research
and development (R&D) intensity [54], and green technology innovation [55] are also
important factors affecting the variations of CE.

In recent years, structural decomposition analysis (SDA) and index decomposition
analysis (IDA) have become important tools for analysing the drivers of CE. The core of
the SDA method is to convert the change of CE into the resulting force of the changes of
different associated driving forces to calculate the contribution of each driving force to the
change of CE [56]. Compared to the IDA method, the SDA method has certain advantages
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in distinguishing between indirect effects (e.g., technical effects) and direct effects, but this
method needs to draw on the inputs and outputs of the whole ecosystem, which in turn
requires a relatively large amount of data [57]. In contrast, the IDA method, which has
relatively lower data requirements and is more flexible in problem formulation, is widely
used to analyse the drivers of CE [44,56]. For the IDA method, the logarithmic mean Divisia
index (LMDI) model is typical due to its path independence, aggregation consistency and
ability to handle zero values [58–61]. For example, Dong et al. [62] decompose the drivers
of CE for 133 countries using the LMDI and find that a reduction in EI effectively curbs CO2
emissions, while an increase in GDP significantly increases CE. Hasan and Chongbo [63]
conduct a decomposition analysis of the drivers of CE in Bangladesh using the LMDI
method and find that government policies, population, and substitution outcomes have
a positive impact on reducing CE.

For China, Wang and Yan [64] point out that economic growth is the primary driver
of carbon emission growth, while EI is the most critical factor in reducing CO2 emis-
sions, and energy structure and industrial structure are not significant inhibitors of CE.
Yang et al. [65] examine the influencing factors of CO2 emissions in China by the LMDI
method and suggest that economic growth is the most significant driver of CE, while
energy consumption intensity is the main factor inhibiting CE. Liu et al. [66] analyse the
influencing factors of CO2 emissions in China’s transport sector based on the LMDI model
and find that the capital investment effect is the key factor promoting CO2 emissions.
Some studies have analysed the influencing factors of CE at the provincial level in China.
Liu et al. [67] decompose and analyse the influencing factors of economic development in
Sichuan province by the LMDI method and propose that population size and economic
development positively contribute to CO2 emissions. Gu et al. [68] examine the influencing
factors of CE in Shanghai using the LMDI method and highlight that GDP per capita is the
primary driver of CE growth in Shanghai, while energy consumption intensity is the main
influencing factor of CE reduction. Chen et al. [69] conduct a decomposition analysis of
industrial CO2 emissions in Dalian and point out that the economic growth effect is the
most important factor affecting industrial CO2 emissions, while the industrial structure is
the most significant influencing factor in reducing CE.

A large body of studies indicate that economic growth is one of the main drivers of
CE. However, there is not yet a unified academic consensus on the relationship between
EI and CE. Some scholars believe that there is a positive relationship between EI and
CE [20,70]. Wang et al. [20] apply an improved patron-driven acquisition (PDA) model
to investigate the impact of changes in CE based on Chinese data from 2005–2010 and
conclude that reducing EI can effectively mitigate the growth rate of CE. Some researchers
point out that EI has no significant impact on CE. Wang and Zhao [21] believe that energy
savings from energy efficiency are offset by new energy demand due to energy prices,
income and economic effects, leading to an increase in CE. Other scholars believe that the
impact of EI on CE reduction is not significant. Wu et al. [71] point out that changes in the
share of renewable energy and carbon intensity will be the two most important factors in
reducing CE over the next 30 years, while the contributions of industry structure, economic
growth, and EI are rather small. The relationship between EI and CE in Beijing cannot be
clarified by existing studies. Therefore, analysing the influencing factors of CE and further
revealing the relationship between EI and CE in Beijing can enrich and improve research in
related fields.

3. Data and Methodology
3.1. Estimation of Carbon Emissions

According to IPCC [72], CE can be measured by converting the consumption of
different energy sources. In this study, 12 main categories of fossil fuels are selected to
measure CE. The specific calculation formula is as follows.
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C =
12

∑
i=1

Ci =
12

∑
i=1

Ei × NCVi × CEFi × COFi ×
44
12

(1)

where C stands for CE; i stands for energy fuels, including raw coal, cleaned coal, briquettes,
coke, gasoline, kerosene, fuel oil, diesel oil, liquefied petroleum gas, refinery gas, other
petroleum products, and natural gas; Ei represents energy consumption; NCVi is the
average low calorific value; CEFi denotes the CE coefficient; COFi is the carbon oxidation
factor; 12/44 is the ratio of the molecular weights of carbon and carbon dioxide. Table 1
lists the relevant measured coefficients of CE for each energy source.

Table 1. Energy conversion factors and carbon emission coefficients.

Energy Type NCV
(kJ/kg, m3)

CEF
(kg/GJ) COF CO2 Emission Factor

(kg/kg, m3)

Raw Coal 20,908 26.37 0.94 1.9003
Cleaned Coal 26,344 25.41 0.98 2.4044

Briquettes 20,908 33.56 0.9 2.3183
Coke 28,435 29.42 0.93 2.8604

Gasoline 43,070 18.90 0.98 2.9251
Kerosene 43,070 19.60 0.98 3.0179
Diesel Oil 42,652 20.20 0.98 3.0959
Fuel Oil 41,816 21.10 0.98 3.1705

Liquefied Petroleum Gas 50,179 17.20 0.98 3.1013
Refinery Gas 45,998 18.20 0.98 3.0082

Other Petroleum Products 41,816 20.00 0.98 3.0052
Natural Gas 38,931 15.32 0.99 2.165

3.2. Models

There are two main approaches to analysing the factors influencing CE: decomposition
analysis and the econometric method based on regression models [73]. The advantage
of decomposition analysis is that the contribution of the different factors to CE can be
measured comprehensively, and the advantage of panel regression is that the elasticity
coefficient of each component to CE can be clarified [74]. Based on the decomposition
analysis of the factors influencing CE, this study aims to use econometric methods to
investigate the influence of EI on CE.

3.2.1. The Decomposition Method

In this study, the LMDI method is used to investigate the driving factors of CE in
Beijing, and the formula is as follows:

C =
5

∑
i=1

Ci =
5

∑
i=1

Ci
Ei

× Ei
Yi

× Yi
Y

× Y
P
× P =

5

∑
i=1

CIi × EIi × ISi × YP × P (2)

where C is the total amount of CE in Beijing; i denotes the industrial sectors, including
the agricultural sector, the manufacturing sector, the construction sector, the transport
sector, and the services sector. Ci is the CE produced by the i sector; Ei represents energy
consumption; Yi is the GDP in the i sector; Y is the GDP in Beijing; P represents population.
CIi = Ci/Ei is the carbon intensity expressed in CE per unit of energy consumption.
EIi = Ei/Yi is the EI expressed as energy consumption per unit of GDP; ISi = Yi/Y is
the ratio of the i sector’s GDP to the city’s GDP, reflecting Beijing’s industrial structure.
YP = Y/P is the GDP per capita, reflecting the economic development.

Then, Equation (2) can be used to determine the cumulative change in CE in year t
compared to the base year:

∆C = Ct − C0 = ∆CI + ∆EI + ∆IS + ∆YP + ∆P (3)
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where ∆C is the total effect. ∆CI is the carbon intensity effect, reflecting the contribution of
changes in CE per unit of energy to the total change in CE. ∆EI is the EI effect, reflecting
the influence of changes in energy use efficiency on the contribution to the total change
in CE. ∆IS is the industrial structure effect, reflecting the contribution of adaptation and
modernisation of the industrial structure to the overall change in CE. ∆YP is the economic
development effect, reflecting the contribution of changes in economic growth to the overall
change in CE. ∆P is the population size effect, reflecting the contribution of changes in
population size to the overall change in CE. The contribution of each decomposition factor
is calculated as follows:

∆CI =
5
∑
i

Ct
i−C0

i
ln Ct

i−ln C0
i
· ln CIt

i
CI0

i
; ∆EI =

5
∑
i

Ct
i−C0

i
ln Ct

i−ln C0
i
· ln EIt

i
EI0

i
;

∆IS =
5
∑
i

Ct
i−C0

i
ln Ct

i−ln C0
i
· ln ISt

i
IS0

i
; ∆YP =

5
∑
i

Ct
i−C0

i
ln Ct

i−ln C0
i
· ln YPt

i
YP0

i
;

∆P =
5
∑
i

Ct
i−C0

i
ln Ct

i−ln C0
i
· ln Pt

i
P0

i

(4)

The change in CE in year t compared to year t − 1 is thus calculated as:

∆C = Ct − Ct−1 = ∆CI + ∆EI + ∆IS + ∆YP + ∆P (5)

where the contribution of each decomposition factor is expressed as:

∆CI =
5
∑
i

Ct
i−Ct−1

i
ln Ct

i−ln Ct−1
i

· ln CIt
i

CIt−1
i

; ∆EI =
5
∑
i

Ct
i−Ct−1

i
ln Ct

i−ln Ct−1
i

· ln EIt
i

EIt−1
i

;

∆IS =
5
∑
i

Ct
i−Ct−1

i
ln Ct

i−ln Ct−1
i

· ln ISt
i

ISt−1
i

; ∆YP =
5
∑
i

Ct
i−Ct−1

i
ln Ct

i−ln Ct−1
i

· ln YPt
i

YPt−1
i

;

∆P =
5
∑
i

Ct
i−Ct−1

i
ln Ct

i−ln Ct−1
i

· ln Pt
i

Pt−1
i

(6)

3.2.2. The Econometric Model

To analyse the impact of EI on CE, this study first uses the classical OLS model to
construct the following benchmark regression:

ln Cit = α1 ln EIit + α2 ln ECOit + α3 ln POPit + α4 ln TECit

+α5 ln STRit + α6 ln OPEit + µi + εit

(7)

where i represents the municipal district of Beijing, and t represents the year. C is the
dependent variable; EI is the central explanatory variable. ECO, POP, TEC, STR, and
OPE are the control variables representing the level of economic development, the size
of the population, the level of technological innovation, the level of advanced industry,
and the degree of openness to the outside world. µi is the individual effect and εit is the
random error.

Tobler [75] points out that everything correlates with each other and that the correlation
between things that are close to each other is stronger. Therefore, it is necessary to study
the spatial spill over effect of EI on CE. LeSage and Pace [76] constructed the spatial
Durbin model (SDM) in 2009, which takes into account not only two spatial transmission
mechanisms of the dependent variable and the error term but also the spatial interaction.
That is, CE is not only influenced by the EI of this region but also by changes in CE and EI
in other regions. Therefore, this study uses the SDM model to examine the spatial spillover
effect of EI on CE. The model formula is as follows:
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ln Cit = β1 ln EIit + β2 ln ECOit + β3 ln POPit + β4 ln TECit

+β5 ln STRit + β6 ln OPEit + µi + νit

νit = λWνit + εit , εit ∼ N
(
0, σ2 I

) (8)

where νit is the error term. W is the spatial weight matrix.
To further investigate the impact mechanism of EI on CE, this study uses economic

development as a moderating variable to test the macro-regulatory effect of economic
development on energy in the process of CE reduction. Therefore, based on the benchmark
model (7), the interaction term between EI and economic development is introduced and
the moderating effect of economic development on the impact path of EI on CE is examined.
Thus, model (9) can be obtained. In the benchmark model (7) and model (9), if both α1
and γ1 are positive (negative) and γc is positive (negative), economic development has
an amplified moderating effect, i.e., the expansion of economic scale amplifies the impact
of EI on CE. When both α1 and γ1 are positive (negative), but γc is negative (positive),
economic development has a disruptive moderating effect, i.e., the expansion of economic
scale weakens the impact of EI on CE.

ln Cit = γ1 ln EIit + γ2 ln ECOit + γc ln EIit · ln ECOit + γ3 ln POPit

+γ4 ln TECit + γ5 ln STRit + γ6 ln OPEit + µi + εit

(9)

To further test whether economic development has a nonlinear moderating effect, the
following panel threshold model is constructed:

ln Cit = ρ1 · [ln EIit × I(sit ≤ q)] + ρ2 · [ln EIit × I(sit > q)] + ρ3 ln ECOit

+ρ4 ln POPit + ρ5 ln TECit + ρ6 ln STRit + ρ7 ln OPEit + µi + εit

(10)

where sit is the threshold variable, representing the scale of economic development, q is the
threshold parameter, and I(·) is the indicator function, which is equal to 1 if the condition
is satisfied, and 0 otherwise. When sit < q, the marginal effect of EI on CE is ρ1, and when
sit > q, the marginal effect of EI on CE is ρ2. Considering that there may be multiple
thresholds, this study constructs a panel data model with multiple thresholds as follows:

ln Cit = ρc · [ln EIit × I(sit)] + ρ3 ln ECOit + ρ4 ln POPit

+ρ5 ln TECit + ρ6 ln STRit + ρ7 ln OPEit + µi + εit

(11)

3.3. Data and Variables

Two main datasets are used in this study: the time series data in the decomposition
analysis of the CE drivers by LMDI and the panel data in the analysis of the relationship
between EI and CE by econometric models. In the decomposition analysis of the CE
drivers in Beijing by LMDI method, the energy consumption data are from China Energy
Statistical Yearbook and the process-related data are from Beijing Statistical Yearbook.
When measured using panel data, CE (C) is the explanatory variable and EI (EI) is the
key explanatory variable. Economic development level (ECO), population size (POP),
technological innovation level (TEC), industrial structure upgrading (STR), and openness
to the outside world (OPE) are control variables. Additionally, ECO is denoted by the unit
GDP of each region, POP is measured by the population density of each region, TEC is
calculated by the number of patent applications, STR is measured by the ratio of the GDP
of the tertiary industry to the secondary industry, and OPE is expressed by the amount
of actual utilized foreign direct investment. The relevant indicator data all come from the
China Energy Statistical Yearbook, the Beijing Statistical Yearbook, the Wind Database,
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and the Carbon Emission Accounts and Datasets (CEADs). Table 2 provides descriptive
statistics for the variables.

Table 2. Statistical description of the variables.

Variable Variable
Declaration Mean S.D. Min Max

C Carbon
emissions 4.1772 3.2368 0.4504 16.4133

EI Energy intensity 0.5070 0.3997 0.0717 2.5358
ECO Economic level 9.4305 8.4998 2.1347 45.7600
POP Population size 5198.0800 7265.4570 157.0000 25,787.0000

TEC Technology
innovation 9741.3130 15,999.3000 41.0000 95,140.0000

STR Industrial
structure 4.8740 6.7654 0.5018 39.4860

OPE Foreign direct
investment 74,246.9100 168,205.0000 100.0000 1,161,083.0000

4. Empirical Results

This section is divided into three subsections that describe the experimental results,
their interpretation, and the experimental conclusions that can be drawn.

4.1. Decomposition Analysis of the Driving Factors for Carbon Emissions

From Equations (2)–(6), the cumulative contribution of each decomposition factor of
CE (Figure 2) and the annual contribution (Figure 3) can be calculated. A contribution value
greater than zero for the LMDI decomposition in additive form indicates that the influencing
factor contributes positively to CE. In contrast, a contribution value less than zero indicates
that the influencing factor inhibits CE. Specifically, CE decreases by 18.3368 million tonnes
from 2010 to 2020, and the total CE shows a significant downward trend. Among them,
the impacts of economic development, population size, and carbon intensity are the main
drivers for the increase of CE in Beijing. In contrast, the impacts of EI and industrial
structure are the main drivers of the decrease of CE.

Among the five decomposition factors, the effect of economic development is the most
significant factor contributing to the growth of CE. From the decomposition results of LMDI
model, the cumulative contribution of economic development effect to the growth of CE is
always positive, and the effect of economic development drives the cumulative increase of
CE in Beijing from 2010 to 2020 by 12.4687 million tonnes. In terms of annual contribution,
the economic development effect has a weak inhibitory effect on CE in 2014–2015 and
2019–2020, while most other years have a significant promoting effect.

Figure 2 shows that the cumulative contribution of the population scale effect to CE
is always positive. From 2010 to 2020, this effect increases CE by 4.0466 million tonnes,
which is the second largest after the effect of economic development on CE. In terms of
annual contribution, the effect of population size has a weak inhibitory effect in 2016–2017,
2017–2018, and 2018–2019, while it has a more obvious promoting effect in the other years.
Overall, among the five decomposition factors, the effect of population size is the second
most important factor for the growth of CE in Beijing.

The effect of carbon intensity on CE is relatively weak. Figure 3 shows that carbon
intensity has a significant inhibitory effect on CE in 2010–2011, a significant promoting
effect in 2017–2018, while the effect on CE is not significant in the other years. Figure 2
shows that the cumulative contribution of the carbon intensity effect to CE has a slightly
inhibitory effect before 2016 and then changed to a facilitative effect. Throughout the
sample period, carbon intensity has a positive effect on CE and contributes to an increase
of 0.7340 million tonnes on CE. Although there is a positive impact on CE, its contribution
is much smaller than the effect of economic development and population size.
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EI refers to the level of energy consumption per unit of GDP, reflecting the extensive
use of energy in economic activities. In the LMDI decomposition results, the EI effect shows
a weak contribution to CE in 2018–2019 and a significant inhibitory effect in the other years.
Figure 2 shows that the EI effect is always negative in the cumulative contribution to CE.
The EI effect contributes to a cumulative reduction of 34.8172 million tonnes in CE in Beijing
from 2010 to 2020. The suppression effect of EI on CE is much larger than the promotion
effect of economic development, population size, and carbon intensity on CE, which is the
main factor for the decrease of CE in Beijing [11].

The influence of the industrial structure on CE is subject to considerable fluctuations.
In terms of annual contribution, the impact of industrial structure has a dampening effect
on CE in 2010–2011, 2011–2012, and 2012–2013, while it has a strengthening effect on CE in
each year of the 2014–2018 period, and again has a dampening effect on CE in 2018–2019
and 2019–2020. In terms of cumulative contribution, the effect of industrial structure has
a dampening effect on CE, and the effect of industrial structure contributes to a decrease of
CE by 0.7690 million tonnes during 2010–2020. Compared to the EI effect, the impact of the
industrial structure effect on the reduction of CE is relatively small.

The breakdown of the CE influencing factors shows that the EI effect is the key factor
for the decline of CE in Beijing. Therefore, this study further analyses the EI effect from
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the perspective of the five main CE sectors in Beijing. Table 3 shows the cumulative
contribution of EI effects to CE in each sector. The cumulative contribution of EI effect
to the reduction of CE in the manufacturing sector continues to increase from 2010–2018,
followed by a decreasing trend from 2019–2020. Among the sectors, the contribution of EI
effect to the reduction of CE in this sector is the highest, with a total emission reduction of
21.4063 million tonnes during the study period, accounting for 61.48% of the total emission
reduction in all sectors.

Table 3. Cumulative contribution of energy intensity impacts of different sectors on carbon emissions.

Year Total Agricultural
Sector

Manufacturing
Sector

Construction
Sector

Transport
Sector

Services
Sector

2011 −3.9866 −0.1326 −2.2607 −0.5006 −0.9087 −0.1841
2012 −6.9693 −0.3201 −4.8342 −0.8725 −0.6462 −0.2963
2013 −13.4180 −0.4522 −10.6408 −1.2674 −0.4512 −0.6064
2014 −16.5955 −0.5422 −13.0116 −1.3233 −0.9756 −0.7428
2015 −16.7543 −0.5376 −13.5302 −1.3913 −0.7250 −0.5701
2016 −21.8109 −0.6199 −17.6826 −1.6281 −1.0958 −0.7845
2017 −26.3147 −0.7786 −20.0379 −1.7720 −2.6203 −1.1058
2018 −31.6305 −0.9436 −22.0394 −1.9362 −4.0165 −2.6948
2019 −31.2980 −0.9374 −21.9902 −2.0865 −3.3859 −2.8979
2020 −34.8172 −0.9352 −21.4063 −2.2916 −7.1460 −3.0381

In the transport sector, the contribution of the EI effect is relatively small from 2010
to 2015 and increases significantly after 2015. Overall, the cumulative emission reduction
of the EI effect in the transport sector from 2010 to 2020 is 7.1460 million tonnes, which
accounts for 20.52% of the total EI reduction effect. Additionally, the EI effect of the services
sector and the construction sector varies only slightly, reaching emission reductions of
3.0381 million tonnes and 2.2916 million tonnes, representing 8.73% and 6.58%, respectively,
during the study period. Finally, the agricultural sector has the smallest EI effect, reducing
CE by only 0.9352 million tonnes over the entire study period, which corresponds to
a contribution to an emission reduction of 2.69%.

Table 4 shows the measured results of the annual contribution of the EI effect to CE
in each sector. It can be seen that prior to 2017, the manufacturing sector had the highest
contribution of the EI effect to the reduction of CE each year. However, from 2017 to
2018, the contribution of the manufacturing sector to the reduction of CE is gradually
overtaken by the transport and services sectors. The contribution of the manufacturing
sector to the reduction of CE in 2020 is only higher than that of the agricultural sector. It
lags behind the construction, transport, and services sectors. This reflects the fact that
with the reform of industrialisation in Beijing, energy efficiency has greatly improved,
and the problem of large amounts of CE caused by coarse industrial production has been
significantly improved.

Table 4. The annual contribution of energy intensity of different sectors to carbon emissions.

Year Total Agricultural
Sector

Manufacturing
Sector

Construction
Sector

Transport
Sector

Services
Sector

2010–2011 −3.9866 −0.1326 −2.2607 −0.5006 −0.9087 −0.1841
2011–2012 −2.8818 −0.1901 −2.4889 −0.3732 0.2804 −0.1101
2012–2013 −6.6117 −0.1348 −5.9625 −0.4142 0.2207 −0.3210
2013–2014 −3.1770 −0.1080 −2.3464 −0.0339 −0.5449 −0.1439
2014–2015 −0.2493 −0.0285 −0.6582 −0.0537 0.2873 0.2038
2015–2016 −5.1235 −0.1095 −4.1827 −0.1853 −0.3915 −0.2544
2016–2017 −4.5331 −0.1876 −2.1919 −0.1004 −1.6905 −0.3628
2017–2018 −4.7154 −0.1708 −1.1599 −0.1553 −1.5027 −1.7266
2018–2019 0.4854 −0.0241 0.0848 −0.1545 0.8100 −0.2307
2019–2020 −6.5568 −0.0098 −0.2858 −0.3328 −5.4760 −0.4525
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After 2015, the annual contribution of the transport sector to the reduction of CE
has increased significantly (except 2018–2019). In particular, the contribution of the trans-
port sector to the reduction of CE in 2019–2020 far exceeds the contribution of the other
four sectors. One possible reason is that new technologies are enabling the transport sector
to gradually move away from reliance on fossil fuels such as petrol and diesel, which
contributes significantly to the reduction of CE in this sector. The services sector is similar
to the construction sector in that both sectors show an increasing trend in their annual
contribution to the reduction of CE over time. The EI of the agricultural sector plays
a relatively minor role in reducing CE and the sector’s contribution to reducing CE shows
a decreasing development characteristic.

4.2. Analysis of the Spatial Spill over Effects

Figure 4 shows the regional distribution and development trend of CE in the different
municipalities of Beijing. It can be found that the values of CE are generally low in the
neighbouring areas of Yanqing, Huairou, Miyun, and Pinggu, which are located in the
north. In contrast, the levels of CE are generally high in Changping, Shunyi, Tongzhou,
Haidian, Chaoyang, Fangshan, and Daxing, which are located in the south-central region.
Over time, CE declines significantly in the south-central region, but remains high compared
to the northern region. Figure 5 shows the regional distribution characteristics and the de-
velopment of EI in Beijing. It can be seen that Dongcheng, Xicheng, Haidian, and Chaoyang,
which are located in the central region, have lower EI in 2010, while the surrounding areas
generally have higher EI. Over time, the EI of each municipality decreases significantly, and
in 2020, only Fangshan district had a higher EI, while the other districts have a lower EI.
Both CE and EI have similar distribution characteristics in neighbouring areas, suggesting
that there may be some spatial correlation between the municipalities.
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In this study, Moran’s I index [77] is also used to test the spatial correlation of CE and
EI. From Figures 4 and 5, it can be seen that CE and EI have some similarities between
neighbouring regions. Therefore, the neighbouring weight matrix (w1) is used to measure
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Moran’s index. Table 5 shows the results of measuring the Moran’s index of CE and EI. For
CE, the Moran’s index varies between 0.2070 and 0.2480 from 2010 to 2020. The Moran’s
index is positive and all at a significance level of 0.05, which means that CE is positively
correlated across regions.

Table 5. Spatial correlation test of carbon emissions and energy intensity.

Year
CE EI

I sd (I) z p I sd (I) z p

2010 0.2090 0.1290 2.1480 0.0160 0.0500 0.1220 0.9620 0.1680
2011 0.2090 0.1270 2.1610 0.0150 0.0870 0.1080 1.4260 0.0770
2012 0.2080 0.1270 2.1670 0.0150 0.0990 0.1080 1.5280 0.0630
2013 0.2070 0.1260 2.1700 0.0150 0.1720 0.1090 2.1920 0.0140
2014 0.2160 0.1280 2.2170 0.0130 0.1790 0.1100 2.2310 0.0130
2015 0.2220 0.1290 2.2400 0.0130 0.1790 0.1110 2.2070 0.0140
2016 0.2340 0.1310 2.2980 0.0110 0.1980 0.1170 2.2550 0.0120
2017 0.2410 0.1320 2.3350 0.0100 0.1820 0.1180 2.1100 0.0170
2018 0.2480 0.1330 2.3720 0.0090 0.1370 0.1170 1.7440 0.0410
2019 0.2390 0.1340 2.2810 0.0110 0.1380 0.1160 1.7740 0.0380
2020 0.2370 0.1350 2.2490 0.0120 0.1220 0.1040 1.8100 0.0350

Similarly, Moran’s I index for EI fluctuates between 0.0500 and 0.1980 with positive
values. It is within the significance level of 0.1 in most years, which means that EI has
spatial autocorrelation. Therefore, it is necessary to consider spatial factors when analysing
the relationship between EI and CE in this case.

Table 6 shows the regression results of EI on CE in Beijing. Column (1) corresponds to
the regression results of the benchmark model. The regression coefficient of lnEI is 0.1470
and at the significance level of 0.1, showing a positive correlation between EI and CE. The
OLS model reflects the most basic correlation between EI and CE, but ignores the spatial
factor, so its regression results may differ somewhat. For this reason, the SDM model is
used to examine the influence of EI on CE. Column (2) shows that the coefficient of EI on CE
is positive and significant, which means that a 1% reduction in EI can effectively contribute
to a 0.2346% reduction in CE. There is also a positive correlation between EI and CE, when
a spatial correlation is taken into account. To check the robustness and reliability of the
results, the results are further investigated by replacing the spatial weights and spatial
models. Columns (3)–(4) show the regression results using the geographical weight matrix
and the economic distance weight matrix, respectively. Columns (5)–(6) are the regression
results under the two spatial regression models of the spatial autoregressive model (SAR)
and the spatial error model (SEM). The results do not change fundamentally regardless of
the change in the weight matrix or the spatial model, which suggests that the conclusion
of a positive correlation between EI and CE is reliable. That is, reducing EI can effectively
mitigate CE.

Furthermore, this study divides the effects of EI on CE into direct, indirect, and total
effects, according to LeSage and Pace [76]. Table 7 shows that in the short term, each
1% reduction in EI in one area results in a 0.3416% reduction in CE, while CE decreases by
0.9530% in neighbouring areas. The indirect effect accounts for 73.61% of the total effect,
reflecting the significant spatial spillover effect of EI on CE. In the long run, a 1% decrease
in EI leads to a 0.3687% decrease in the local CE and a 1.1909% decrease in neighbouring
regions, so the indirect effect accounts for 76.36% of the total effect. The spatial spillover
effect of EI is also pronounced in the long run. In terms of the overall effect, in the short
run, a 1% decrease in EI leads to a 1.2947% decrease in CE. In the long run, however,
a 1% decrease in EI leads to a 1.5596% decrease in CE, showing that the long-run effect of
a decrease in EI is larger than the short-run effect.
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Table 6. The spatial spillover effect of energy intensity on carbon emissions.

(1) (2) (3) (4) (5) (6)

lnEI
0.1470 *** 0.2346 *** 0.0471 * 0.1398 *** 0.0872 *** 0.1222 ***
(0.0389) (0.0354) (0.0280) (0.0246) (0.0299) (0.0361)

lnECO
−0.3885 *** 0.0515 −0.0019 −0.1964 *** −0.0518 −0.2281 ***

(0.0712) (0.0678) (0.0575) (0.0469) (0.0645) (0.0834)

lnPOP
0.0128 0.5597 *** 0.2917 *** 0.2902 *** 0.3062 *** 0.2540 *

(0.1335) (0.1041) (0.0948) (0.0865) (0.1051) (0.1412)

lnTEC
−0.0523 * 0.0124 −0.0730 *** 0.0077 −0.0655 *** −0.0801 ***
(0.0267) (0.019) (0.0185) (0.0174) (0.0201) (0.0241)

lnSTR
0.0198 0.1413 *** −0.0103 0.0873 *** 0.0014 −0.0600

(0.0392) (0.032) (0.0272) (0.0252) (0.0057) (0.0435)

lnOPE
0.0074 −0.0022 0.0037 −0.0024 −0.0189 −0.0023

(0.0075) (0.0047) (0.0052) (0.0048) (0.0298) (0.0064)

ρ
0.7239 *** 0.7216 *** 0.7431 *** 0.5847 ***
(0.0605) (0.0552) (0.0498) (0.0624)

λ
0.5233 ***
(0.1145)

n 176 176 176 176 176 176
R2 0.8603 0.8534 0.8842 0.8536 0.8793 0.8517

AIC −394.4919 −279.7437 −484.4979 −499.8542 −452.1035 −416.9191
BIC −372.2985 −244.8684 −459.1340 −474.4903 −426.7397 −391.5553

Note: * and *** indicate that the regression coefficients are statistically significant at the 10% and 1% levels, respectively.

Table 7. The direct and indirect effects of energy intensity on carbon emissions.

Short-Term Long-Term

Direct Indirect Total Direct Indirect Total

lnEI
0.3416 *** 0.9530 *** 1.2947 *** 0.3687 *** 1.1909 *** 1.5596 ***
(0.0619) (0.3411) (0.3961) (0.0739) (0.4890) (0.5563)

lnECO
0.0307 −0.2252 −0.1945 0.0265 −0.2613 −0.2349

(0.0770) (0.3249) (0.3728) (0.0829) (0.4053) (0.4621)

lnPOP
0.7203 *** 1.3587 * 2.0789 ** 0.7642 *** 1.7477 2.5119 **
(0.1504) (0.7821) (0.8993) (0.1756) (1.0989) (1.2460)

lnTEC
0.0284 0.1450 0.1734 0.0322 0.1779 0.2101

(0.0254) (0.1238) (0.1432) (0.0285) (0.1609) (0.1840)

lnSTR
0.1618 *** 0.1727 0.3344 ** 0.1686 *** 0.2336 0.4023 *
(0.0366) (0.1440) (0.1665) (0.0399) (0.1922) (0.2196)

lnOPE
0.0000 0.0203 0.0203 0.0004 0.0237 0.0241

(0.0070) (0.0293) (0.0349) (0.0076) (0.0365) (0.0429)
Note: *, **, and *** indicate that the regression coefficients are statistically significant at the 10%, 5%, and
1% levels, respectively.

4.3. Influence Mechanism Analysis

To achieve Beijing’s goal of carbon neutrality by 2050, energy consumption, ecological
development, and CE are the main issues considered by policymakers. When examining
the relationship between EI and CE, it is, therefore, necessary to consider the role that
economic factors play in this process. For both countries and companies, technological
innovations are the most important way to reduce EI [19]. Green technological innovations
not only reduce EI and thus lower CE by improving production efficiency [78], but also
help develop new energy sources and change the industrial structure to reduce EI and,
thus, lower CE [79–81]. In this process, developed economies can provide continuous
capital investment for R&D and innovation, which guarantees the continuous promotion of
green technological innovations, thus enabling continuous reduction of EI and CE. At the
same time, developed economies place higher demands on the green environment. They
are more willing to reduce pollution from energy-intensive industries, so promoting CE
reduction is easier in developed economies. From this perspective, macroeconomics has
a positive regulatory role in EI on CE reduction.
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To verify the above conjecture, the moderating effect of economic development in
the process of EI is tested at CE using Equation (9). Table 8 shows the regression results,
indicating that the regression coefficient of the interaction term of EI and economic devel-
opment is significantly positive, and the regression coefficient of EI to CE remains positive.
Therefore, it can be concluded that economic factors have an enhanced moderating effect
on the process of EI on CE (Figure 6), i.e., a developed economic level can enhance the
promoting effect of EI on the reduction of CE.

Table 8. The test for the moderating effect and the threshold effect of economic development.

Moderating Effect Test Threshold Effect Test

lnEI
0.1481 ***

p value

(0.0376) Single 0.0867
lnEI * I (Th < q) 0.2152 ***

lnECO
−0.2912 *** (0.0350)

(0.0743)
Double 0.1767

lnEI * I (Th ≥ q) 0.3003 ***

lnEI·lnECO
0.0754 *** (0.0354)
(0.0218) Triple 0.1800

lnPOP
−0.1475 lnPOP 0.2264 *
(0.1370) (0.1157)

lnTEC
−0.0837 ***

Threshold

q1 2.7868
lnTEC −0.1376 ***

(0.0273) (0.0194)

lnSTR
0.0181 q2 3.3539

lnSTR −0.0765 **
(0.0379) (0.0368)

lnOPE
0.0112 q3 1.7495

lnOPE 0.0146 *
(0.0073) (0.0076)

Note: *, **, and *** indicate that the coefficients are statistically significant at the 10, 5, and 1% levels, respectively.
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The preceding analysis shows that economic factors contribute to improving the impact
of EI on CE. To further identify the potential non-linear moderating effect of economic
factors, Equation (10) is used to analyse the threshold effect. Table 8 shows the test results,
suggesting that economic development exceeds the simple threshold at a significance level
of 0.10, and the corresponding threshold is 2.7868. The double and triple thresholds are
not significant, indicating that economic factors have a non-linear effect on the simple
threshold to reduce CE by EI. When the economic development level is below the simple
threshold, the regression coefficient of EI is 0.2152 at a significance level of 0.10, indicating
that a 1% reduction in EI leads to a 0.2152% reduction in CE. When the economic level is
above the critical value, a 1% reduction in EI leads to a 0.3003% reduction in CE. Therefore,
the reduction of CE by EI is more effective in regions with a higher level of economic
development. From Sections 4.1 and 4.2, economic development has a facilitating effect on
CE. However, considering that the inhibiting effect of EI on CE is much higher than the
promoting effect of economic development, it can be concluded that promoting economic
development and lowering EI is an effective way to reduce CE.

Analysis of regional economic development level data shows that only the economic
development level of Xicheng District exceeds the threshold of 2.7868 from 2010 to 2012. The
economy of Dongcheng District develops rapidly and exceeds the critical value of 2.7868 in
2013, and the economic development level of Haidian and Chaoyang districts exceeds the



Int. J. Environ. Res. Public Health 2023, 20, 1379 15 of 19

economic threshold in 2017 and 2018. Among the 16 municipalities of Beijing in 2020, only
Dongcheng, Xicheng, Chaoyang, and Haidian districts have economic development levels
above the threshold. In these districts, CE can be significantly reduced by reducing EI. In
the remaining 12 municipalities, CE can still be reduced by lowering EI, but the lowering
effect of EI is not maximised. Therefore, in most areas of Beijing, the regional economy
needs to be strongly developed to maximise the effect of lowering CE.

5. Discussion and Conclusions
5.1. Discussion

This study shows that economic expansion is the main factor contributing to the
growth of CE in Beijing [64]. The expansion of the economy is often accompanied by
increased energy consumption and high demand for industrial products, which leads
to a continuous increase in carbon dioxide emissions. However, the inhibiting effect of
reducing EI on CE is much greater than the promoting effect of economic development and
population growth on CE. Therefore, reducing EI is key to promoting CE reduction and
achieving carbon neutrality in Beijing [65]. Broken down by sector, the manufacturing sector
has reduced 21.4063 million tonnes CE through EI reduction in the last ten years, making it
the most important sector in reducing CE through EI reduction. Due to the development
of new energy-powered vehicles and the impact of the epidemic, the transport sector in
Beijing has achieved a significant reduction of CE in recent years, gradually making it the
core sector of emission reduction. Therefore, new energy vehicles are key to promoting CE
reduction in Beijing’s next phase.

EI has a spatial spillover effect on CE, both in the short and long term. This means that
reducing EI in one region not only reduces CE in that region, but also effectively reduces
CE in neighbouring regions. This corresponds to the actual situation. Since all regions of
Beijing are interconnected in terms of economic development and industrial construction,
the process of improving energy efficiency and reducing energy intensity in one region
inevitably affects the economic development and CE of surrounding regions. It should be
noted that reducing EI has a significantly higher effect on emission reduction in the long
term. Therefore, the effect of EI on CE is continuous, i.e., a reduction in EI can sustainably
promote a reduction in CE.

Economic development has a positive moderating effect in the process of EI on CE,
and this moderating effect has a non-linear characteristic with a threshold value. Developed
economies can provide continuous capital investment for R&D and innovation, which
guarantees the continuous promotion of green technological innovations, thus enabling
a continuous reduction of EI and CE. In regions whose economic scale is above the threshold,
the reduction of EI has a greater impact on the reduction of CE. Only Dongcheng, Xicheng,
Haidian, and Chaoyang districts in Beijing have exceeded this economic threshold, while
the other regions are generally below it. Beijing thus needs to vigorously develop the
regional economy to maximise the impact of CE.

This study has two possible limitations. First, Beijing borders Hebei province and
Tianjin city, and Beijing’s carbon dioxide emissions are closely linked to both regions. This
study focuses on the impact of a reduction in EI on CE in Beijing but does not consider
the impact of Hebei and Tianjin. The surrounding areas of Beijing can be included in
future studies to thoroughly investigate the impact of energy intensity on CE. Second,
this study uses 2010 to 2020 as the study period due to data limitations. However, due to
the adjustment of energy and environmental policies in recent years, there are significant
differences between past development patterns and the current reality. Therefore, the
limited study period may not reflect the long-term impacts.

5.2. Conclusions and Policy Implications

This study measures CE in Beijing from 2010 to 2020 and analyses the factors influenc-
ing CE by applying the LMDI decomposition method. Considering the potential influence
of spatial factors on the process of EI affecting CE, the spatial spillover effect on CE is
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investigated using the SDM model. Finally, this study investigates the mechanism of the
influence of EI on CE. The main findings of this study are as follows:

First, economic development is the main factor influencing the growth of CE in Beijing.
Therefore, Beijing needs to accelerate the transformation of economic growth to ensure
synergistic development of the economy and the environment. Second, reducing EI is the
key to curbing the growth of CE. Therefore, low-carbon and energy-saving technologies
should be developed, and the efficiency of energy use should be vigorously improved.
At the same time, industrialisation reform should continue, and support for new energy
vehicles should be strengthened to ensure the gradual realisation of Beijing’s goal of
carbon neutrality. Third, given the spatial spillover effect of EI on CE, the government
should coordinate the development of production and construction in each region. Policy
formulation should take into account the development characteristics of surrounding
areas while actively promoting coordination and collaboration among regions to achieve
synergistic development of regional energy conservation and emission reduction. Finally,
economic development has a positive regulating effect on the effect of EI reduction on CE
and has a threshold character. At present, economic development in most areas of Beijing is
still below the threshold, and the CE reduction effect of EI is not maximised. Therefore, all
regions of Beijing need to further promote economic development and strive to optimise
the CE reduction effect of EI to ensure Beijing’s goal of carbon neutrality.
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