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Abstract: With the increase in global environmental pollution, it is important to understand the
concentration characteristics and correlations with other pollutants of atmospheric particulate matter
as affected by relevant policies. The data presented in this paper were obtained at monitoring stations
in Xi’an, China, in the years from 2016 to 2020, and the spatial distribution characteristics of the mass
and quantity concentrations of particulate matter in the atmosphere, as well as its correlation with
other pollutants, were analyzed in depth. The results showed that the annual average concentrations
of PM10 and PM2.5 decreased year by year from 2016 to 2020. The annual concentrations of PM2.5

decreased by 20.3 µg/m3, and the annual concentrations of PM10 decreased by 47.3 µg/m3. The
days with concentrations of PM10 exceeding the standards decreased by 82 days, with a decrease
of 66.7%. The days with concentrations of PM2.5 exceeding the standards decreased by 40 days,
with a decrease of 35.4%. The concentration values of PM10 and PM2.5 were roughly consistent
with the monthly and daily trends. The change in monthly concentrations was U-shaped, and
the change in daily concentrations showed a double-peak behavior. The highest concentrations of
particulate matter appeared at about 8:00~9:00 am and 11:00 pm, and they were greatly affected by
human activity. The proportion of particles of 0~1.0 µm decreased by 1.94%, and the proportion of
particles of 0~2.5 µm decreased by 2.00% from 2016 to 2020. A multivariate linear regression model
to calculate the concentrations of the pollutants was established. This study provides a reference for
the comprehensive analysis and control of air pollutants in Xi’an and even worldwide.

Keywords: particulate matter; distribution characteristics; Xi’an; correlation; model

1. Introduction

With the continuous worsening of complex and intersecting air pollution problems
in recent years, people have been paying more attention to a series of problems caused by
air pollution [1]. The serious excess of particulate matter and other gaseous pollutants in
the atmosphere not only leads to the decline in atmospheric visibility but also seriously
affects routine travel and transportation [2] and even causes harm to the human body
to various extents [3,4]. The relevant literature shows that particles of different sizes can
cause respiratory diseases, infectious diseases, etc. [5]. The large-scale spread of COVID-19
(corona virus disease 2019) has brought unprecedented catastrophic effects on the life and
health of people all over the world [6] and has caused numerous deaths. In addition, toxic
and harmful gases, viruses, and bacteria attach to the surface of particulate matter [7],
which allows them to enter the human body and causes a chain reaction whose effects can
be life threatening. Therefore, how to create an appropriate and healthy living environment
has unanimously become the priority of nations worldwide.
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Therefore, many countries around the world have issued a series of relevant policies
and standards to limit the concentration of the emissions of various pollutants in the
atmosphere [8–10]. The determination of concentration distribution characteristics and
the source analysis of pollutants in the atmosphere have gradually become the focus of
scholars at home and abroad at the same time [11–15]. Research mainly focuses on the
composition of particulate matter [11], human health effects [12], correlation studies on
different pollutants [13,14], and the control of particulate matter pollution [15]. In addition,
how pollutants are measured, which are the most polluted areas, which activities are the
most polluting, and what is the impact of external factors on the accuracy of measurement
techniques are also hot points [16–18], with an example being the performance of low-cost
sensors for air quality monitoring [16]. However, there have been relatively few studies on
the changes in the concentration distribution of particulate matter and its correlation with
other major pollutants in recent years. Current research on air pollutants in China is also
limited to certain areas, such as Nanjing [19], Yunnan [20], Beijing [21], and other places;
meanwhile, there have been relatively few recent studies on northwest inland cities. In
addition, there is a significant difference between the north and the south in China, and the
particle concentration distributions in different regions show even greater differences [22].
Many different countries and regions around the world have introduced stricter control
measures and control methods for monitoring pollutants in the atmosphere and have also
strengthened energy adjustment measures and increased implementation efforts in recent
years. All of these factors will likely lead to changes in the concentration distribution
characteristics of pollutants in the atmosphere and the correlations among pollutants; there
might even be unexpected results. However, there are still relatively few relevant studies,
and the overall research effort is slightly insufficient. In particular, there is a serious lack of
research on the concentration distribution of pollutants in typical northwest cities in China
under the relevant control measures employed in recent years.

The spatio-temporal distribution of the quantity and mass concentrations of partic-
ulate matter in the atmosphere in Xi’an, as well as the correlations with other pollutants,
were analyzed in this paper using monitoring data and recorded data from 2016 to 2020.
This study could help stakeholders to clearly understand the change characteristics of
atmospheric concentration distributions in the five years considered as affected by relevant
policies; furthermore, it could also provide a reference for the comprehensive management
of and improvement in the atmospheric environment across the country and the world.

2. Methods

Xi’an, with located longitude 107.40◦~109.49◦ E and latitude 33.42◦~34.45◦ N, was
selected as the research area [23]. It is a long-established, old-civilization city with more
than 5000 years of civilization history [23], and it has a large population. However, the
atmospheric environmental conditions in Xi’an have become increasingly serious in recent
years, and this has deeply affected people’s lives. To solve this problem effectively and
rapidly, the government took a series of measures to protect the atmosphere in 2017, and
these were rapidly implemented. Examples include urban development without coal, and
coal-to-electricity and coal-to-gas transitions [24], and certain results were initially achieved.
Therefore, we decided to select the atmospheric data of Xi’an of a recent five-year period
(2016–2020) for in-depth research.

The data in this paper covered the period from 31 January 2016 to 31 December
2020 (provided by the tianqihoubao network (http://www.tianqihoubao.com/aqi/xian,
accessed on 6 June 2021)) and included the daily average concentration values of SO2, NO2,
PM10, PM2.5, O3, and CO. The hourly concentration values of six pollutants as recorded
at monitoring stations in Xi’an were provided by Weather Network (http://www.tianqi.
com/air/xian.html, accessed on 6 June 2021). GRIMM1.109 portable aerosol spectrometers
(GRIMM Aerosol, Ainring, Germany) were used to measure the concentration of particles
in the atmosphere. The particles ranging from 0.25 to 32 µm in diameter could be separated
into 31 channels. Repeatability was 5%. The average concentration over 20 min was recorded,

http://www.tianqihoubao.com/aqi/xian
http://www.tianqi.com/air/xian.html
http://www.tianqi.com/air/xian.html
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and the data were analyzed using mean values to reduce the experimental error. To ensure
the validity of data statistics, we report the Chinese standards for reference [25–27], as this
allows one to analyze data more efficiently. The Chinese standards establish daily average
concentrations of 35~75 µg/m3 PM2.5, 50~150 µg/m3 PM10, 50~150 µg/m3 SO2, 80 µg/m3

NO2, 4 mg/m3 CO, and 160~200 µg/m3 O3 (1-h values in the case of O3) [25].

3. Results and Discussion
3.1. Annual Concentrations of Particulate Matter

Figure 1 shows that the changes in the proportions of PM2.5 and PM10 concentrations
per year followed the same trend. The proportions of PM2.5 concentrations lower than
35 µg/m3 and of PM10 concentrations lower than 50 µg/m3 were relatively low, and
the proportions increased gradually over time. The proportions of PM2.5 concentrations
between 35 and 75 µg/m3 and of PM2.5 concentrations higher than 75 µg/m3 gradually
decreased. On the other hand, the proportions of PM10 concentrations between 50 and
150 µg/m3 showed a gradually increasing trend, with a fluctuating and dominant position.
The proportions of PM10 concentrations higher than 150 µg/m3 gradually decreased, and
the trend was the same as that of PM2.5 concentrations. It can be clearly seen from the graphs
that the proportion of days with low concentrations increased and that the proportion
of days with concentrations exceeding the standards decreased, which indicates that the
air quality in Xi’an gradually improved and the concentrations of particulate matter in
the atmosphere gradually decreased. More specifically, the concentrations of particulate
matter changed significantly from 2017 to 2018. The proportions of PM2.5 concentrations
lower than 35 µg/m3 increased by 8.42%. The main reasons were that a series of measures
were taken for controlling air pollution and that relevant energy production methods were
adjusted, which had an obvious effect on the concentration of particulate matter emissions.
The specific parameters are shown in Table 1.
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Figure 1. Changes in PM2.5 and PM10 concentrations from 2016 to 2020.

It can be seen from the table that the annual average concentrations of PM2.5 and PM10
gradually decreased from 2016 to 2020. The annual concentrations of PM2.5 decreased by
20.3 µg/m3, and the annual concentrations of PM10 decreased by 47.3 µg/m3. The annual
average concentrations of PM10 were 1.96 times, 1.86 times, 1.70 times, 1.46 times, and
1.29 times that of the secondary standard from 2016 to 2020, and 3.43 times, 3.26 times,
2.97 times, 2.56 times, and 2.25 times that of the primary standard [25]. The annual average
concentrations of PM2.5 were 2.02 times, 2.06 times, 1.73 times, 1.65 times, and 1.44 times
that of the secondary standard and 4.71 times, 4.81 times, 4.04 times, 3.85 times, and
3.36 times that of the primary standard [25]. The number of days with concentrations
exceeding the standards showed a downward trend. The average number of days with
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concentrations of PM10 exceeding the standards was 84 days from 2016 to 2020, and the
days with concentrations of PM10 exceeding the standards decreased by 82 days, with a
decrease of 66.7%. The average number of days with concentrations of PM2.5 exceeding the
standards was 94 days, and the days with concentrations of PM2.5 exceeding the standards
decreased by 40 days, with a decrease of 35.4%. Therefore, the concentrations of particulate
matter in the atmosphere in Xi’an in the five years considered were effectively controlled,
and certain results also were achieved, but further in-depth management is still required.

Table 1. Parameter statistics of PM10 and PM2.5 from 2016 to 2020.

Content Year Average
(µg/m3)

Max
(µg/m3)

Min
(µg/m3)

Number
of

Samples
(Days)

Days with
Concentrations
Exceeding the

Standards
(Days)

Average
Exceeding

Concentration
(µg/m3)

Percentage of
Days with

Concentrations
Exceeding the
Standards (%)

PM10
(µg/m3)

2016 137.3 501 24 366 123 238.8 33.6
2017 130.5 591 17 365 92 255.4 25.2
2018 118.9 568 20 363 92 229.5 25.3
2019 102.5 576 10 363 72 212.5 19.8
2020 90.0 297 16 366 41 190.0 11.2

PM2.5
(µg/m3)

2016 70.6 434 11 366 113 139.3 30.9
2017 72.1 490 8 365 109 147.4 29.9
2018 60.7 292 9 363 94 129.1 25.9
2019 57.7 292 5 363 79 141.2 21.8
2020 50.3 225 6 366 73 118.1 19.9

3.2. Seasonal Concentrations of Particulate Matter

The seasonal average statistics according to the climatic conditions of the Chinese re-
gion were defined for spring (March to May), summer (June to August), autumn (September
to November), and winter (December to February) [13,28,29]. The average concentrations
of particulate matter in different seasons are shown in Figure 2.
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Figure 2. Seasonal changes in PM2.5 and PM10 concentrations from 2016 to 2020.

Figure 2 shows that the seasonal average concentrations of different particles in the
five years considered presented good similarity, but there were still certain differences
in different seasons. The concentrations of PM2.5 followed the order of winter > au-
tumn > spring > summer, with the five-year average concentrations being 115.2 µg/m3,
56.0 µg/m3, 50.1 µg/m3, and 28.3 µg/m3, respectively. The concentrations in winter
were 2.06 times higher than those in autumn, 2.30 times higher than those in spring, and
4.07 times higher than those in summer. The concentrations of PM10 followed the order
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of winter > spring > autumn > summer, with the five-year average concentrations being
173.3 µg/m3, 122.4 µg/m3, 106.5 µg/m3, and 61.8 µg/m3, respectively. The concentrations
in winter were 1.42 times higher than those in spring, 1.63 times higher than those in
autumn, and 2.81 times higher than those in summer. Overall, it was observed that the
concentrations of particulate matter were the highest in winter and the lowest in summer,
which is consistent with the literature [22].

3.3. Monthly Concentrations of Particulate Matter

The average concentrations of particulate matter in different months are shown in
Figure 3.
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Figure 3. Monthly changes in PM2.5 and PM10 concentrations from 2016 to 2020.

Figure 3 shows that the monthly average concentrations of PM2.5 and PM10 all showed
a U-shaped trend. The average monthly concentrations of PM2.5 and PM10 were the lowest
in July and October, while the average monthly concentration of PM2.5 and PM10 were
the highest in December and January. It could also be seen that the concentrations of
particulate matter in the same months from 2016 to 2020 showed a gradually decreasing
trend. The concentrations of PM2.5 rose rapidly from the lowest value in July to December
and then began to decrease in spring. The concentrations of PM10 still had a high value
in spring, which might have been related to the frequent occurrence of dusty weather in
spring [23]. The average annual proportions of PM2.5/PM10 from 2016 to 2020 were 49.2%,
52.0%, 48.9%, 52.6%, and 52.8%, respectively. The atmospheric particles in Xi’an are mainly
fine particles, and it is still necessary to further study the source of fine particulate matter.

3.4. Daily Concentrations of Particulate Matter

The five days with the largest concentrations of PM2.5 were adopted in this paper,
namely, 20 December 2016; 5 January 2017; 15 January 2018; 6 January 2019; and 25 January
2020. For PM10, these were 20 December 2016; 5 January 2017; 3 December 2018; 12 May
2019; and 26 March 2020. The time period was from 0:00 to 24:00. The average distributions
of different daily concentrations of particulate matter are shown in Figure 4.

Figure 4 shows that the hourly average distribution trends of PM2.5 and PM10 were
consistent with a bimodal distribution. In addition, it can be seen that the maximum
concentrations in 2018, 2019, and 2020, after the adoption of relevant measures, were much
lower than the maximum concentrations in 2016 and 2017, before the adoption of measures.
The concentrations of PM2.5 and PM10 in 2020 were relatively low, which indirectly showed
that the phenomenon of high concentrations of particulate matter was controlled after the
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adoption of relevant measures. The concentrations at night were higher than those in the
daytime. The main reason was the demand for heating in winter, which leads to an increase
in the concentrations of particulate matter. Another reason was the influence of vertical
movement in the atmosphere, which is not conducive to the spread of particles [22,23].
As a result, the concentrations of particulate matter reached the maximum at around
11 o’clock at night. The concentrations of particulate matter gradually increased from
about 8:00 in the morning, which corresponds to the commuting peak, when pollutant
emissions also reach the peak of the day. The concentrations of particulate matter gradually
decreased in the afternoon. The main reasons were that solar radiation is stronger and the
temperature of the environment is higher, which make turbulent exchange and diffusion
of gases stronger. The atmosphere near the ground in the evening is more unstable, and
the lowest concentrations of particulate matter appeared around 17:00. Human activity
had a significant impact on the concentrations of particulate matter, and this conclusion
is consistent with the conclusion given by Zhu Changlin [28], which verifies the validity
of the results of this paper. However, the concentrations of PM10 on 12 May 2019 and 26
March 2020 changed significantly, which might have been related to local meteorological
parameters or the environment on those days [30]. The specific parameters of typical days
in Xi’an are shown in Table 2.
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Figure 4. Daily changes in PM2.5 and PM10 concentrations from 2016 to 2020.

Table 2. Statistics of PM10 and PM2.5 on typical days from 2016 to 2020.

Content Date Quality Level
Daily

Concentration
(µg/m3)

Concentration
Range (µg/m3) Weather Wind

Direction Wind Level

PM2.5
(µg/m3)

20 December 2016 Heavily polluted 434 415–455 Hazy Northeasterly 1–2
5 January 2017 Heavily polluted 490 398–558 Drizzly East wind 1–2
15 January 2018 Heavily polluted 292 245–345 Foggy Southwesterly 2
6 January 2019 Heavily polluted 292 271–320 Hazy North wind 1–2
25 January 2020 Heavily polluted 225 188–253 Drizzly East wind 3–4

PM10
(µg/m3)

20 December 2016 Heavily polluted 501 470–528 Hazy Northeasterly 1–2
5 January 2017 Heavily polluted 591 483–663 Drizzly East wind 1–2

3 December 2018 Heavily polluted 568 386–864 Hazy Southwesterly 1–2
12 May 2019 Heavily polluted 576 57–1624 Gloomy Northwesterly 3–4

26 March 2020 Moderately
polluted 297 29–1221 Cloudy Northwesterly 3–4

3.5. Quantity Concentrations of Atmospheric Particles

Outdoor atmospheric dust was used as the test dust source [31]. The atmospheric
particle size distributions during the test period are shown in Figure 5.
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Figure 5. Distributions of outdoor atmospheric particle sizes (average temperature of 19.9 ◦C~25.5 ◦C;
average humidity of 38.9~50.9%).

Figure 5a–e shows the quantity distributions of particle sizes in the outdoor atmo-
sphere during the test period. It can be seen that particles of sizes of 0~1.0 µm accounted for
the vast majority from 2016 to 2020, i.e., about 97.72%, 96.17%, 96.14%, 95.83%, and 95.78%,
respectively, with the proportion decreasing by 1.94%. Particles of sizes of 1.0~2.5 µm
accounted for about 0.235%, 0.281%, 0.282%, 0.173%, and 0.174%, respectively, with the



Int. J. Environ. Res. Public Health 2023, 20, 1051 8 of 13

proportion decreasing by 0.061%. However, the proportion of particles of sizes above
2.5 µm was relatively small; this is consistent with the conclusions given in the literature,
which verifies the validity of the results of this paper [22,23]. The changes in the 5 years
considered were relatively insignificant for particles of sizes larger than 2.5 µm, but there
was still a trend of decreasing concentrations.

Figure 5f shows that particles of an average particle size between 0 and 1.0 µm
accounted for 96.16% of the total in the five years considered, while particles of sizes
between 0 and 2.5 µm accounted for 96.37%, and particles of sizes between 0 and 10 µm
accounted for about 100%. It is clear that in Xi’an, particles are mainly composed of fine
particles; such particles can easily enter the respiratory tract and lungs of the human body,
leading to diseases and death [32]. With the rapid implementation of measures for the
control of atmospheric particulate matter concentrations, the proportion of particles of
0~1.0 µm decreased by 1.94%, and the proportion of particles of 0~2.5 µm decreased by
2.00%. The implementation of relevant measures and governance policies has achieved
certain results, but it is still necessary to increase the purification effect on fine particles in
the future to achieve the creation of a healthy environment.

3.6. Correlations between Particulate Matter and Other Major Pollutants

Various gaseous pollutants in the atmosphere are important sources of secondary
pollution of particulate matter [33]. Therefore, it is of great significance to study the
correlations between the concentrations of particulate matter and other major gas pollutants
to effectively control the concentrations of each pollutant. The annual average changes in
PM2.5, PM10, CO, SO2, NO2, and O3 in Xi’an from 2016 to 2020 are shown in Figure 6.
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Figure 6. Trends of annual average changes in quantities of various pollutants.

Figure 6 shows that all the considered pollutants showed a downward trend in the
five years under analysis. The annual average concentrations of NO2 were similar to those
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of PM2.5, which first increased and then decreased. The annual average concentrations
of SO2 and CO showed a trend similar to that of PM10, and both showed a decreasing
trend. In contrast, the annual average concentrations of O3 showed a different trend: they
first increased, then decreased, and then increased again over time. The annual average
concentrations of NO2 decreased by 16.6 µg/m3 from 2016 to 2020; those of SO2 decreased
by 11.0 µg/m3; and those of CO decreased by 0.873 mg/m3. Furthermore, the overall
annual concentrations of O3 decreased by 5.6 µg/m3. The correlations among pollutants
are shown in Table 3.

Table 3. Correlations among air pollutants in the atmosphere from 2016 to 2020.

Year Pollutant
Pollutant

PM2.5 PM10 SO2 NO2 CO O3

2016

PM2.5 1
PM10 0.799 1
SO2 0.509 0.547 1
NO2 0.562 0.552 0.461 1
CO 0.709 0.677 0.746 0.54 1
O3 0.39 0.327 0.414 0.308 0.504 1

2017

PM2.5 1
PM10 0.811 1
SO2 0.622 0.51 1
NO2 0.578 0.437 0.615 1
CO 0.903 0.646 0.692 0.556 1
O3 0.261 0.2 0.32 0.326 0.37 1

2018

PM2.5 1
PM10 0.694 1
SO2 0.664 0.433 1
NO2 0.574 0.394 0.57 1
CO 0.854 0.432 0.702 0.57 1
O3 0.268 0.167 0.221 0.342 0.271 1

2019

PM2.5 1
PM10 0.774 1
SO2 0.42 0.346 1
NO2 0.425 0.386 0.523 1
CO 0.842 0.481 0.459 0.399 1
O3 0.311 0.196 0.404 0.373 0.337 1

2020

PM2.5 1
PM10 0.622 1
SO2 0.509 0.486 1
NO2 0.265 0.47 0.395 1
CO 0.847 0.396 0.401 0.215 1
O3 0.210 0.129 0.168 0.235 0.274 1

It can be seen from the table that the average correlation between PM10 and PM2.5 in the
five years considered was 0.740, which means that they were highly correlated [22,34]. The
average correlation between SO2 and PM2.5 was 0.545, and the average correlation between
SO2 and PM10 was 0.464, with both being moderate correlations. The average correlation
values between NO2, and PM2.5, PM10, and SO2 were 0.481, 0.448, and 0.512, respectively,
which were also moderate correlations. The average correlation values between CO, and
PM2.5, PM10, SO2, and NO2 were 0.831, 0.526, 0.600, and 0.456, respectively, indicating that
CO was highly correlated with PM2.5 and moderately correlated with the other pollutants.
The average correlation values between O3, and PM2.5, PM10, SO2, NO2, and CO were
0.288, 0.204, 0.305, 0.317, and 0.351, respectively, all of which were weak correlations. It
can be seen that the concentrations of all pollutants decreased from 2016 to 2020 after
the implementation of relevant measures and that the correlations among pollutants also
decreased. The results show that the atmospheric environment in Xi’an demonstrated
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great improvements after the implementation of relevant measures; however, long-term
governance management is still needed.

It is practical to establish a multiple linear regression model for estimation. Here, it
was calculated according to Formula (1).

Yi = β0 + β1X1 + β2X2 + · · · · ·+ βkXk (1)

where X1, X2, · · ·Xk are the average daily concentration values of pollutants, and β0, β1, · ·
·βk are the coefficients.

The average data of the daily average concentrations of various pollutants from 2016
to 2020 were used for the analyses, and the collated concentrations of pollutants such as CO,
SO2, NO2, and PM10 were substituted into Formula (1) for the calculation. The multiple
regression formula of PM2.5 is presented in Formula (2).

Y = 0.265X1 + 0.078X2 − 0.078X3 + 63.9X4 − 42.7 (2)

The correlation coefficient (R) was 0.961, and the decision coefficient (R2) was 0.961;
the regression equation had an obvious effect. The daily average concentrations of CO,
SO2, NO2, and PM10 were substituted into Formula (2). The comparison of the actual PM2.5
data and the calculated results are shown in Figure 7.
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Figure 7. Comparison of calculated results and actual data of PM2.5.

The results show that the calculated results and actual data of the daily average
concentrations of various pollutants from 2016 to 2020 were in good agreement, with the
model showing a good prediction effect. However, there was a large fluctuation between
PM2.5 results and data in spring and winter, while the relative consistency between them
in summer and autumn was higher. There was a certain deviation in the prediction effect,
but overall, it still showed good agreement [23]. Therefore, it was concluded that the daily
average concentrations of pollutants in the atmosphere could be effectively predicted and
monitored using the multiple linear regression model (Equation (2)). This model is of great
significance to understand and analyze the spatio-temporal concentration distribution
characteristics and correlations with other pollutants of atmospheric particulate matter as
affected by relevant policies employed recently [35].
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4. Conclusions

In this paper, the spatial distribution characteristics of the mass and quantity con-
centrations of particulate matter in the atmosphere, as well as its correlations with other
pollutants as affected by relevant policies, were analyzed in depth. As a typical northwest
city, Xi’an, China, was selected as the research area; the period considered in this study
comprised the years from 2016 to 2020. We drew the following conclusions:

1. The annual average concentrations of PM10 and PM2.5 decreased year by year from
2016 to 2020. The annual concentrations of PM2.5 decreased by 20.3 µg/m3, and
the annual concentrations of PM10 decreased by 47.3 µg/m3. The decrease in PM10
concentrations was greater than that in PM2.5. The days with concentrations of PM10
exceeding the standards decreased by 82 days, with a decrease of 66.7%. The days
with concentrations of PM2.5 exceeding the standards decreased by 40 days, with a
decrease of 35.4%.

2. The concentration values of PM10 and PM2.5 were roughly consistent with the monthly
and daily trends. The distribution of PM10 was higher in winter and lower in summer.
The distribution of PM2.5 was higher in winter and lower in autumn. The change in
monthly concentration was U-shaped, with the lowest being in July and the highest
being in December. The changes in daily concentrations showed a double-peak behavior.
The highest concentrations of particulate matter appeared at about 8:00~9:00 am and
11:00 pm, and they were greatly affected by human activity.

3. The atmospheric particles in Xi’an were mainly fine particles. The proportion of
particles of 0~1.0 µm decreased by 1.94%, and the proportion of particles of 0~2.5 µm
decreased by 2.00% from 2016 to 2020. This study shows that the atmospheric envi-
ronment in Xi’an demonstrated great improvements after relevant measures were
implemented. A multivariate linear regression model to calculate the concentrations
of pollutants was also established in this paper. This study provides a reference for the
comprehensive analysis and control of air pollutants in Xi’an and even worldwide.
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